CN208953815U - 铌酸锂高频微型电光调制器芯片结构 - Google Patents

铌酸锂高频微型电光调制器芯片结构 Download PDF

Info

Publication number
CN208953815U
CN208953815U CN201821772681.3U CN201821772681U CN208953815U CN 208953815 U CN208953815 U CN 208953815U CN 201821772681 U CN201821772681 U CN 201821772681U CN 208953815 U CN208953815 U CN 208953815U
Authority
CN
China
Prior art keywords
layer
lithium niobate
chip structure
silica
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821772681.3U
Other languages
English (en)
Inventor
华平壤
姜城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAINIER TECHNOLOGY (TIANJIN) Co Ltd
Original Assignee
PAINIER TECHNOLOGY (TIANJIN) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAINIER TECHNOLOGY (TIANJIN) Co Ltd filed Critical PAINIER TECHNOLOGY (TIANJIN) Co Ltd
Priority to CN201821772681.3U priority Critical patent/CN208953815U/zh
Application granted granted Critical
Publication of CN208953815U publication Critical patent/CN208953815U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本实用新型公开了铌酸锂高频微型电光调制器芯片结构,所述调制器芯片结构包括:共面行波电极、二氧化硅缓冲层、光波导层和铌酸锂晶体层;其中,所诉光波导层制备于所述铌酸锂晶体层上,所述共面行波电极位于所述铌酸锂晶体层的上表面,所述二氧化硅缓冲层位于所述铌酸锂晶体层的下表面;所述共面行波电极包括中心电极和两偏电极,所述中心电极位于所述两偏电极的中间位置。本实用新型的有益效果是,通过在波导底层加入二氧化硅绝缘层,可以减小微波损耗,提高电场作用效率,实现较低的半波电压,或减小器件的尺寸;利用薄膜化芯片,减小或去除行波电极与铌酸锂晶片之间二氧化硅缓冲层,可有效提高电光转换效率。

Description

铌酸锂高频微型电光调制器芯片结构
技术领域
本实用新型涉及电光调制器芯片结构领域,特别是铌酸锂高频微型电光调制器芯片结构。
背景技术
在传统结构中,为实现相位匹配和减小微波损耗,比较可行的办法是调整电极厚度和SiO2缓冲层厚度。特别是在高带宽情况下,为减小微波损耗往往需要较厚的中心电极厚度(>20微米)和较厚的SiO2层厚度(>1微米)。一方面电极越厚,工艺难度越大,制作成本越高。另一方面较厚的缓冲层极大地阻碍了电场有效作用到光波导区域,增加了器件的驱动电压。在传统结构下,理论上工作在100GHZ时,半波驱动电压长度积VπL约为20Vcm(约12V@10GHz),这意味着需要非常高的驱动功率,无法满足实际功耗需求;
T.Gorman等人在2008年提出了一种薄膜化铌酸锂光波导调制器,在此方案中,铌酸锂调制器由一片绑定在开有沟槽的二氧化硅基底上铌酸锂薄膜构成;但是在实际制作中,铌酸锂与二氧化硅热胀系数差别大,易产生局部应力,上层薄膜容易崩裂,很难实现批量生产。
实用新型内容
本实用新型的目的是为了解决上述问题,设计了铌酸锂高频微型电光调制器芯片结构。
实现上述目的本实用新型的技术方案为,铌酸锂高频微型电光调制器芯片结构,所述调制器芯片结构包括:共面行波电极、二氧化硅缓冲层、光波导层和铌酸锂晶体层;
其中,所诉光波导层制备于所述铌酸锂晶体层上,所述共面行波电极位于所述铌酸锂晶体层的上表面,所述二氧化硅缓冲层位于所述铌酸锂晶体层的下表面;
所述共面行波电极包括中心电极和两偏电极,所述中心电极位于所述两偏电极的中间位置。
优选的,所述调制器芯片结构还包括:铌酸锂基底,所述铌酸锂基底位于所述二氧化硅缓冲层的下表面。
进一步的,所述二氧化硅层的厚度为6微米。
优选的,所述调制器芯片结构还包括:金膜层和二氧化硅基底,所述二氧化硅基底位于所述二氧化硅缓冲层的下方,所述金膜层位于所述二氧化硅基底与所诉二氧化硅缓冲层之间,所述铌酸锂晶体层的上表面为脊型结构,且该脊型结构与所述光波导层的位置相对应,所述二氧化硅基底刻蚀有沟槽,所述沟槽位于与所述二氧化硅缓冲层下方且其与所述光波导层的位置相对应。
进一步的,所述二氧化硅缓冲层的厚度大于1微米,所诉金膜层的厚度为400纳米。
其有益效果在于,1.通过在波导底层加入二氧化硅绝缘层,可以减小微波损耗,提高电场作用效率,实现较低的半波电压,或减小器件的尺寸。
2.利用薄膜化芯片,减小或去除行波电极与铌酸锂晶片之间二氧化硅缓冲层,可有效提高电光转换效率,与传统体材料平台上实现的调制器比较,可缩小器件体积或降低半波电压。
3.进一步优化了器件结构,首次提出了薄膜波导与脊形结构相结合,进一步提高电场作用效率,减小微波损耗,可在25GHz以上高带宽工作频率下,依然获得较低的VπL,降低现有器件的功耗。
4.提出使用金-金键合方式绑定铌酸锂薄膜制作调制器芯片,从而可选择先制备铌酸锂薄膜,波导后期加工的工艺流程。相比国外已有报道的制作工艺,本项目采用的工艺流程更加科学合理,成本低,成品率高,易于大规模生产加工。
附图说明
图1是本实用新型的横截面结构示意图,其中,(a)显示的是带宽低于2.5GHz时的结构,(b)显示的是带宽大于10GHz以上时的结构;
图2是本实用新型在带宽低于2.5GHz时结构的制作工艺流程;
图3是本实用新型在带宽大于10GHz时结构的制作工艺流程;
具体实施方式
下面结合附图对本实用新型进行具体描述,如图1所示,铌酸锂高频微型电光调制器芯片结构,所述调制器芯片结构包括:共面行波电极、二氧化硅缓冲层、光波导层和铌酸锂晶体层;
其中,所诉光波导层制备于所述铌酸锂晶体层上,所述共面行波电极位于所述铌酸锂晶体层的上表面,所述二氧化硅缓冲层位于所述铌酸锂晶体层的下表面;
所述共面行波电极包括中心电极和两偏电极,所述中心电极位于所述两偏电极的中间位置。
实施例1,当带宽低于2.5GHz时,所述调制器芯片结构还包括:铌酸锂基底,所述铌酸锂基底位于所述二氧化硅缓冲层的下表面,相比常规结构,通过将二氧化硅绝缘层设置于铌酸锂晶体与铌酸锂基底之间,可以减小微波损耗,提高电场作用效率,实现较低的半波电压,或减小器件的尺寸。
所述二氧化硅层的厚度为6微米。
如图2所示,2.5GHz铌酸锂高频微型电光调制器制作工艺流程:
1)镀制SiO2(二氧化硅):在该流程中首先选择在两块铌酸锂晶片表面利用化学气相沉积(PECVD)的方法制作二氧化硅缓冲层;
2)键合绑定:在真空高温高压环境下利用SiO2中氧-氧键实现两片铌酸锂的绑定。
3)减薄抛光:对其中一片铌酸锂进行研磨减薄,并抛光。最终获得绝缘铌酸锂衬底上铌酸锂薄膜,薄膜厚度约6微米。之所以选择铌酸锂作为衬底,是因为衬底与薄膜材料一致时,热应力最小,利于后期加工制作。
4)制作波导:后期进行波导加工制作时,选择500摄氏度以下进行的质子交换工艺(不能选择工作温度大于1000摄氏度钛扩散制作波导工艺,以防止键合层裂开)。
5)镀制电机:制作好波导后的芯片进一步的利用光刻、镀膜及电镀工艺完成金电极的制作,端面抛光后用于下一步的测试工作。
实施例2,如图1所示,当带宽大于10GHz时,所述调制器芯片结构还包括:金膜层和二氧化硅基底,所述二氧化硅基底位于所述二氧化硅缓冲层的下方,所述金膜层位于所述二氧化硅基底与所诉二氧化硅缓冲层之间,所述铌酸锂晶体层的上表面为脊型结构,且该脊型结构与所述光波导层的位置相对应,所述二氧化硅基底刻蚀有沟槽,所述沟槽位于与所述二氧化硅缓冲层下方且其与所述光波导层的位置相对应。
所述二氧化硅缓冲层的厚度大于1微米,所诉金膜层的厚度为400纳米。
如图3所示,10Ghz以上高频铌酸锂薄膜调制器的制备工艺流程:
1)刻蚀沟槽:首选选用二氧化硅作为衬底材料,在局部通过反应离子刻蚀制作沟槽;
2)局部镀制金膜:表面镀约200nm厚度金膜。
3)镀制SiO2及金膜:同时在另一光学级铌酸锂表面面镀制二氧化硅(>1微米),接着镀制200nm厚度金膜。
4)键合绑定:通过标准键合技术把二氧化硅基底和铌酸锂晶片通过金-金键绑定,使用研磨抛光工艺对铌酸锂进行减薄。
5)制作光波导,刻蚀脊型:进一步通过钛扩散或质子交换技术在铌酸锂薄膜上制作光波导。接着通过电感耦合离子刻蚀(ICP)在波导两侧刻蚀出脊型结构。
6)制作金电极:利用套刻及电镀工艺制作厚金电极,完成调制器芯片的制备。同样,进行端面抛光后就可以进行后期测试工作了。
工作原理:
图1中(a)显示的是带宽低于2.5GHz铌酸锂高频微型电光调制器,在带宽要求不高度情况下,更强的低半波电压,通过在光波导层加入二氧化硅缓冲层,减小微波损耗,提高电场作用效率,实现较低的半波电压,或减小器件的尺寸。相比于T.Gorman等人在2008年提出的一种薄膜化铌酸锂光波导调制器,该方案优点在于无需制作基底沟槽,简化的工艺步骤,可以采购商用化铌酸锂薄膜作为初始材料制作波导,有效降低了制作成本。
图1中(b)为带宽大于10GHz以上的铌酸锂高频微型电光调制器。该方案特点是在铌酸锂晶体层下镀制了一层二氧化硅,然后通过金-金键合,绑定到二氧化硅基底上。T.Gorman等人在2008年提出的一种薄膜化铌酸锂光波导调制器在实际制作中是很难实现批量生产的,原因在于铌酸锂与二氧化硅热胀系数差别大,易产生局部应力,上层薄膜容易崩裂,更别说在其表面高温制作钛扩散波导了。而使用金-金键合,可消除铌酸锂与二氧化硅基底间的应力,能够耐受高温处理,便于后期波导及电极制作。此外,在铌酸锂晶体层的光波导附近做成脊形,可降低电极加工难度的同时,更进一步提高电场作用效率。
上述技术方案仅体现了本实用新型技术方案的优选技术方案,本技术领域的技术人员对其中某些部分所可能做出的一些变动均体现了本实用新型的原理,属于本实用新型的保护范围之内。

Claims (5)

1.铌酸锂高频微型电光调制器芯片结构,其特征在于,所述调制器芯片结构包括:共面行波电极、二氧化硅缓冲层、光波导层和铌酸锂晶体层;
其中,所诉光波导层制备于所述铌酸锂晶体层上,所述共面行波电极位于所述铌酸锂晶体层的上表面,所述二氧化硅缓冲层位于所述铌酸锂晶体层的下表面;
所述共面行波电极包括中心电极和两偏电极,所述中心电极位于所述两偏电极的中间位置。
2.根据权利要求1所述的铌酸锂高频微型电光调制器芯片结构,其特征在于,所述调制器芯片结构还包括:铌酸锂基底,所述铌酸锂基底位于所述二氧化硅缓冲层的下表面。
3.根据权利要求2所述的铌酸锂高频微型电光调制器芯片结构,其特征在于,所述二氧化硅层的厚度为6微米。
4.根据权利要求1所述的铌酸锂高频微型电光调制器芯片结构,其特征在于,所述调制器芯片结构还包括:金膜层和二氧化硅基底,所述二氧化硅基底位于所述二氧化硅缓冲层的下方,所述金膜层位于所述二氧化硅基底与所诉二氧化硅缓冲层之间,所述铌酸锂晶体层的上表面为脊型结构,且该脊型结构与所述光波导层的位置相对应,所述二氧化硅基底刻蚀有沟槽,所述沟槽位于与所述二氧化硅缓冲层下方且其与所述光波导层的位置相对应。
5.根据权利要求4所述的铌酸锂高频微型电光调制器芯片结构,其特征在于,所述二氧化硅缓冲层的厚度大于1微米,所诉金膜层的厚度为400纳米。
CN201821772681.3U 2018-10-30 2018-10-30 铌酸锂高频微型电光调制器芯片结构 Active CN208953815U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821772681.3U CN208953815U (zh) 2018-10-30 2018-10-30 铌酸锂高频微型电光调制器芯片结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821772681.3U CN208953815U (zh) 2018-10-30 2018-10-30 铌酸锂高频微型电光调制器芯片结构

Publications (1)

Publication Number Publication Date
CN208953815U true CN208953815U (zh) 2019-06-07

Family

ID=66743431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821772681.3U Active CN208953815U (zh) 2018-10-30 2018-10-30 铌酸锂高频微型电光调制器芯片结构

Country Status (1)

Country Link
CN (1) CN208953815U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394446A (zh) * 2019-08-13 2021-02-23 中国科学院苏州纳米技术与纳米仿生研究所 端面耦合器及其制作方法、端面耦合方法
CN112558217A (zh) * 2020-12-11 2021-03-26 中国科学院微电子研究所 一种电光器件及其制造方法
CN113534506A (zh) * 2020-04-21 2021-10-22 富士通光器件株式会社 光学波导装置和制造光学波导装置的方法
US11789202B2 (en) 2020-01-13 2023-10-17 Innolight Technology (Suzhou) Ltd. Hybrid integrated optoelectronic chip and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394446A (zh) * 2019-08-13 2021-02-23 中国科学院苏州纳米技术与纳米仿生研究所 端面耦合器及其制作方法、端面耦合方法
US11789202B2 (en) 2020-01-13 2023-10-17 Innolight Technology (Suzhou) Ltd. Hybrid integrated optoelectronic chip and method of manufacturing the same
CN113534506A (zh) * 2020-04-21 2021-10-22 富士通光器件株式会社 光学波导装置和制造光学波导装置的方法
CN112558217A (zh) * 2020-12-11 2021-03-26 中国科学院微电子研究所 一种电光器件及其制造方法

Similar Documents

Publication Publication Date Title
CN208953815U (zh) 铌酸锂高频微型电光调制器芯片结构
JP4443011B2 (ja) 進行波型光変調器
CN109613647B (zh) 一种铌酸锂/氮化硅光波导集成结构及其制备方法
US5373579A (en) Optical waveguide device
US5408566A (en) Optical guided-wave device and manufacturing method
CN107065232A (zh) 基于铌酸锂薄膜的宽带行波电光调制器及其制备方法
CN109298551A (zh) 一种基于铌酸锂厚膜的高速电光调制器及其制备方法
WO2005019913A1 (ja) 光導波路デバイスおよび進行波形光変調器
US20070127862A1 (en) Optically functional device
JP2002357797A (ja) 光導波路デバイス、その製造方法および進行波形光変調器
US20100307678A1 (en) Method for manufacturing optical nonreciprocal element
CN110618488B (zh) 一种带氮化硅层的单晶薄膜及其制备方法
TWI607257B (zh) 光學元件
CN108241225A (zh) 一种低驱动电压铌酸锂电光调制器及其制造方法
CN105974614A (zh) 一种采用脊形波导的马赫曾德光调制器晶片结构及其制备工艺
JP2574594B2 (ja) 光導波路素子とその製造方法
WO2014156459A1 (ja) 光変調器
CN107305297A (zh) 基于铌酸锂单晶薄膜的宽带行波电光调制器
CN211506095U (zh) 一种铌酸锂薄膜电光调制器
JP2574606B2 (ja) 誘電体光導波路素子およびその製造方法
JPH06289347A (ja) 光導波路素子とその製造方法
JP2581486B2 (ja) 光導波路素子およびその製造方法
JP2004219600A (ja) 光変調用電極および光変調器
WO2021111525A1 (ja) 光学素子及びその製造方法
JP4875918B2 (ja) 光導波路素子及びその製造方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant