CN208874468U - 一种无桥pfc充电电路 - Google Patents

一种无桥pfc充电电路 Download PDF

Info

Publication number
CN208874468U
CN208874468U CN201821442882.7U CN201821442882U CN208874468U CN 208874468 U CN208874468 U CN 208874468U CN 201821442882 U CN201821442882 U CN 201821442882U CN 208874468 U CN208874468 U CN 208874468U
Authority
CN
China
Prior art keywords
module
circuit
connect
bridge
switching tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201821442882.7U
Other languages
English (en)
Inventor
冯申
李廷会
廖志贤
韩晓盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Normal University
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN201821442882.7U priority Critical patent/CN208874468U/zh
Application granted granted Critical
Publication of CN208874468U publication Critical patent/CN208874468U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本实用新型公开了一种无桥PFC充电电路,属于电子电路领域,包括无桥boost PFC电路,主控模块、逻辑控制模块、驱动模块、输出电压采样模块、电感电流采样模块、EMI滤波模块、过流检测模块、过压检测模块和显示模块。通过设置在保证电路高的PF值的前提下,实现算法简单,降低电路成本,降低电路纹波,实现对电感电流的采样,母线电压的采样,以及对电路的过流过压保护,对电路各个性能条件的显示;选择单周期控制,相比平均电流控制不用检测交流电压,控制算法在每个开关周期都在调控,使的稳态性能更好;交流输入端加了一个继电器,对电路进行预充,减小电路纹波,交流输入端加入了EMI模块来减少干扰。

Description

一种无桥PFC充电电路
技术领域
本实用新型涉及电子电路领域,尤其涉及一种无桥PFC充电电路。
背景技术
随着电力电子的应用越来越广泛,为了提高功率因数,减小谐波电流, PFC(powerfactor correct)电路的研究与应用也得到重视。数字电源在开关频率更高的情况下实施更为复杂的非线性预测及自适应控制算法,从而令电源设计实现更佳的能效和电源规格,所以数字电源比模拟电源更具有前景。相对于传统的PFC电路,无桥PFC省掉了前级的整流桥,使得电路的效率得以提升。控制策略大致分为平均电流法和单周期控制法,平均电流法需要采集交流输入端电压和电感电流,以及母线电压,在一定的开关周期内计算平均电感电流,进行闭环控制。而单周期控制法是在每个开关周期内令开关变量的平均值与控制参考量相等或者成一定的比例,也就是说可以在一个开关周期内消除瞬态误差,同时,这种控制方法与平均电流法相比不需要采集交流电压,节省了电路成本。但是在现有的无桥PFC电路中,共模干扰严重,电感电流采样困难,并且过流过压等保护不到位,经常烧坏MOS管。所以,为了更好的应用无桥PFC来实现整流,设计一个充电体系很重要。
实用新型内容
本实用新型的目的在于提供一种无桥PFC充电电路,解决现有无桥PFC 电路中,共模干扰严重,电感电流采样困难,并且过流过压等保护不到位,经常烧坏MOS管的技术问题。提供一种在保证电路高的PF值的前提下,实现算法简单,降低电路成本,降低电路纹波,实现对电感电流的采样,母线电压的采样,以及对电路的过流过压保护,对电路各个性能条件的显示。
一种无桥PFC充电电路,包括无桥boost PFC电路,主控模块、逻辑控制模块、驱动模块、输出电压采样模块、电感电流采样模块、EMI滤波模块、过流检测模块、过压检测模块和显示模块;
所述主控模块分别通过输出电压采样模块和电感电流采样模块与无桥 boostPFC电路连接,分别用于采样无桥boost PFC电路的电感电流和输出电压,通过单周期控制方法计算出占空比,通过PWM口输出驱动波形,经过逻辑控制模块输出到驱动模块,控制无桥boost PFC电路中开关的开启和关闭,所述主控模块经逻辑控制模块与驱动模块连接,所述显示模块与主控模块连接,所述逻辑控制模块经过流检测模块与电感电流采样模块连接,所述逻辑控制模块经过压检测模块与输出电压采样模块连接,所述EMI滤波模块与无桥boost PFC电路的输入端连接,所述电感电流采样模块分别与无桥boost PFC 电路和EMI滤波模块连接,所述驱动模块与无桥boost PFC电路连接,所述输出电压采样模块的采样端与无桥boost PFC电路的输出端连接。
进一步地,所述无桥boost PFC电路包括电感L1、L2、开关管S1、S2、二极管D1、D2、电容C1、C2和电阻RL,所述电感L1一端与火线L连接,另一端分别与二极管D1输入端和开关管S1连接,所述电感L2一端与零线N 连接,另一端分别与二极管D2输入端和开关管S2连接,所述开关管S1与二极管D1串联连接,开关管S2与二极管D2串联连接,所述开关管S1、S2 均与驱动模块连接,所述电容C1、C2和电阻RL并联设置,所述电容C1、 C2和电阻RL的一端分别与二极管D1、D2的输出端连接,所述电容C1、 C2和电阻RL的另一端分别与开关管S1、S2连接,且接地。
进一步地,所述无桥boost PFC电路的火线L与电感L1之间还设置有预充继电器K1和电阻R2,所述预充继电器K1与电阻R2并联连接,所述主控模块的IO口与预充继电器K1连接。
进一步地,所述开关管S1、S2均为MOS管或者IGBT。
进一步地,所述电感电流采样模块包括差分放大电路、加法电路和限幅度电路,所述差分放大电路与无桥boost PFC电路连接,所述差分放大电路经加法电路与限幅度电路连接。
进一步地,所述过流检测模块将采集到的电感电流经过同向放大电路,若采集的值超过预设VREF的幅值,将输出数字信号AC-OCP,若采集的值由0变为1,逻辑控制模块接收到会即刻关闭开关管,过程判断时间约为1us。
进一步地,所述无桥boost PFC电路的充放电过程为:在火线L为高电平时,充电过程中,电流流过的顺序为,电感L1,开关管S1,开关关S2,电感 L2,零线N,放电过程,电流流过的顺序为,电感L1,续流二极管D1,负载,开关管S2,电感L2,零线N,在零线N为高电平时,充电过程,电流流过的顺序为,电感L2,开关管S2,开关关S1,电感L1,火线L,放电过程,电流流过的顺序为,电感L2,续流二极管D2,负载,开关管S1,电感L1,火线L,在输入交流为正半周期,开关管S2常开,主控模块占空比控制开关管 S1,在输入交流为负半周期,开关管S1常开,主控模块占空比控制开关管 S2,输出端的电容C1,滤毛刺,减小纹波和共模干扰,C2是电解电容,用于储能的,电感L1和L2为共磁芯,在交流输入端L线和电感L1之间加设的预充继电器K1,与主控模块IO连接,主控模块控制K1的开启,电路首先通过电阻R2构成闭合回路,通过2个开关管内部体二极管的和2个二极管构成的整流桥进行自然整流,然后再打开继电器K1。
本实用新型采用了上述技术方案,本实用新型具有以下技术效果:
本实用新型通过设置在保证电路高的PF值的前提下,实现算法简单,降低电路成本,降低电路纹波,实现对电感电流的采样,母线电压的采样,以及对电路的过流过压保护,对电路各个性能条件的显示;选择单周期控制,相比平均电流控制不用检测交流电压,控制算法在每个开关周期都在调控,使的稳态性能更好;交流输入端加了一个继电器,对电路进行预充,减小电路纹波,交流输入端加入了EMI模块来减少干扰。
附图说明
图1是本实用新型的整体电路示意图。
图2是本实用新型的电感电流采样模块及过流检测模块原理图。
图3是本实用新型的电流示意图。
图4是本实用新型的电流另一种情况示意图。
具体实施方式
为使本实用新型的目的、技术方案及优点更加清楚明白,以下参照附图并举出优选实施例,对本实用新型进一步详细说明。然而,需要说明的是,说明书中列出的许多细节仅仅是为了使读者对本实用新型的一个或多个方面有一个透彻的理解,即便没有这些特定的细节也可以实现本实用新型的这些方面。
如图1所示,本实用新型可应用在PFC校正电路,实现整流,对负载RL 供电。根据本实用新型的一种无桥PFC充电电路结构示意图,包括基本型无桥boost PFC电路,主控模块1,逻辑控制模块2,驱动模块3,母线电压采样模块4,电感电流采样模块5,EMI滤波模块6,过流检测模块7,过压检测模块8和显示模块9。
所述的主控模块通过ADC采样口对电感电流,母线电压进行采样,通过单周期控制策略计算出占空比,通过本身的PWM口输出驱动波形,经过逻辑控制模块输出驱动模块,然后信号流到开关管的G极,从而控制开关管的开启或者关断。
所述的逻辑控制模块为FPGA芯片,逻辑判断速度快,连接在主控模块和驱动模块之间。
基本型无桥boost PFC电路拓扑是两个boost电路组成,在火线L为高电平时,充电过程,电流流过的顺序为,电感L1,开关管S1,开关关S2,电感 L2,零线N,放电过程,电流流过的顺序为,电感L1,续流二极管D1,负载,开关管S2,电感L2,零线N。在零线N为高电平时,充电过程,电流流过的顺序为,电感L2,开关管S2,开关关S1,电感L1,火线L,放电过程,电流流过的顺序为,电感L2,续流二极管D2,负载,开关管S1,电感L1,火线L。在输入交流为正半周期,开关管S2常开,主控模块占空比控制开关管 S1。在输入交流为负半周期,开关管S1常开,主控模块占空比控制开关管 S2。
输出端有小电容C1,滤毛刺的,减小纹波和共模干扰,C2是电解电容,储能的。电感L1和L2共磁芯,不仅能减少干扰,还能提高磁芯利用率,节约成本。
在交流输入端L线和电感L1之间加了一个预充继电器K1,与主控模块IO 连接,程序控制K1的开启。电路首先通过电阻R2构成闭合回路,通过2个开关管内部体二极管的和2个二极管构成的整流桥进行自然整流,然后再打开继电器K1。这个过程可以对整个电路预充,减少整个电路的损耗和启动带来的干扰。
所述的显示模块与主控模块相连,能够显示当前的母线电压,工作正常或者不正常,是过流还是过压等信息。
主控模块采用数字芯片,数字电源比模拟电源稳定性好,模拟电源的乘法器,差分器等都可以用软件算法来实现,使的电路不会产生温飘,成本减少等,控制性能也更优越。控制策略选择单周期控制,相比平均电流控制不用检测交流电压,控制算法在每个开关周期都在调控,使的稳态性能更好。
逻辑控制模块可以实时的判断是否过压过流,从而快速关闭主控模块的 PWM输出,起到保护电路的作用。
由于基本无桥PFC电路是两个并联的boost升压电路组成,共模干扰严重,电感电流采样也就较为困难。众所周知,电感电流的采样具有很大的重要性,关系到整个电路的PF值。采用有源采样方式,光耦隔离采样或者霍尔传感器电流采样都可以提高抗干扰能力,相比较其他的电流采样方式,比如电阻分压,或者采集开关管的漏极电流再转换为电感电流,更具稳定性,在工业的运用上,有源采样更具有稳定性,和实时性。给出了电感电流采样的具体实施。同时,在每个工频周期内,两个电感没有共磁芯将导致电感利用率低,所以这里我们采用共磁芯电感,节约成本。
在对电流和电压采样和过流过压信号的产生也做了具体的电路说明。
在交流输入端加了一个继电器,对电路进行预充,减小电路纹波。
EMI即电磁干扰,电磁干扰分为传导电磁干扰(Conducted EMI)和辐射电磁干扰(Radiated EMI)两种,其中,传导电磁干扰噪声在火线、零线间传播,易产生共模干扰和差模干扰。辐射电磁干扰对整个电路的工作也起到了严重的影响,包括对环路的干扰,对驱动波形的干扰等。所以本实用新型在交流输入端加入了EMI模块来减少干扰。
如图2所示,所述的电感电流采样模块,运用霍尔传感器采集到的电流I, R5与R8阻值相等,R3与R9阻值相等,经过差分放大电路U1A,其脚1生成电感电流以电压形式即I*R7*R3/R5,波形如图3所示。R6与R4阻值相等,再经过加法电路将整个正弦波形向上搬移,使的没有负电压,运放U1B的7 脚的电压值即(I*R7*R3/R5+3.3)/2,波形如图4所示。再经过限幅电路,将采样信号IAC,传给主控模块ADC口。
所述的开关管Q1,Q2为MOS管或者IGBT。
所述的电感电流过流模块,采集到的电感电流经过一个同向放大电路,若此值超过预设VREF的幅值,将输出数字信号AC-OCP,此值若由0变为1,逻辑控制模块接收到会即刻关闭开关管,起到了过流保护的作用。此过程判断速度快,时间约为1us,能防止过流烧坏开关管。
所述的母线电压采集模块,可以用多种方案采集,影响不是很大。过压检测模块可以和过流检测模块用法一致,将过压信号DC-OVP传给逻辑控制模块,从而关闭PWM波,能有效预防过压带来的损害。
两个驱动管的驱动波形随着输入电压的走势而打波。基本型无桥boost PFC 电路拓扑是两个boost电路组成,在火线L为高电平时,充电过程,电流流过的顺序为,电感L1,开关管Q1,开关关Q2,电感L2,零线N,放电过程,电流流过的顺序为,电感L1,续流二极管D1,负载,开关管Q2,电感L2,零线N。在零线N为高电平时,充电过程,电流流过的顺序为,电感L2,开关管Q2,开关关Q1,电感L1,火线L,放电过程,电流流过的顺序为,电感L2,续流二极管D2,负载,开关管Q1,电感L1,火线L。在输入交流为正半周期,开关管Q2常开,主控模块占空比控制开关管Q1。在输入交流为负半周期,开关管Q1常开,主控模块占空比控制开关管Q2。这样总是保证高频的打波管耗时间短。
以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。

Claims (6)

1.一种无桥PFC充电电路,其特征在于:包括无桥boost PFC电路,主控模块、逻辑控制模块、驱动模块、输出电压采样模块、电感电流采样模块、EMI滤波模块、过流检测模块、过压检测模块和显示模块;
所述主控模块分别通过输出电压采样模块和电感电流采样模块与无桥boost PFC电路连接,所述主控模块经逻辑控制模块与驱动模块连接,所述显示模块与主控模块连接,所述逻辑控制模块经过流检测模块与电感电流采样模块连接,所述逻辑控制模块经过压检测模块与输出电压采样模块连接,所述EMI滤波模块与无桥boost PFC电路的输入端连接,所述电感电流采样模块分别与无桥boost PFC电路和EMI滤波模块连接,所述驱动模块与无桥boost PFC电路连接,所述输出电压采样模块的采样端与无桥boost PFC电路的输出端连接。
2.根据权利要求1所述的一种无桥PFC充电电路,其特征在于:所述无桥boost PFC电路包括电感L1、L2、开关管S1、S2、二极管D1、D2、电容C1、C2和电阻RL,所述电感L1一端与火线L连接,另一端分别与二极管D1输入端和开关管S1连接,所述电感L2一端与零线N连接,另一端分别与二极管D2输入端和开关管S2连接,所述开关管S1与二极管D1串联连接,开关管S2与二极管D2串联连接,所述开关管S1、S2均与驱动模块连接,所述电容C1、C2和电阻RL并联设置,所述电容C1、C2和电阻RL的一端分别与二极管D1、D2的输出端连接,所述电容C1、C2和电阻RL的另一端分别与开关管S1、S2连接,且接地。
3.根据权利要求2所述的一种无桥PFC充电电路,其特征在于:所述无桥boost PFC电路的火线L与电感L1之间还设置有预充继电器K1和电阻R2,所述预充继电器K1与电阻R2并联连接,所述主控模块的IO口与预充继电器K1连接。
4.根据权利要求3所述的一种无桥PFC充电电路,其特征在于:所述开关管S1、S2均为MOS管或者IGBT。
5.根据权利要求1所述的一种无桥PFC充电电路,其特征在于:所述电感电流采样模块包括差分放大电路、加法电路和限幅度电路,所述差分放大电路与无桥boost PFC电路连接,所述差分放大电路经加法电路与限幅度电路连接。
6.根据权利要求5所述的一种无桥PFC充电电路,其特征在于:所述过流检测模块将采集到的电感电流经过同向放大电路,若采集的值超过预设VREF的幅值,将输出数字信号AC-OCP,若采集的值由0变为1,逻辑控制模块接收到会即刻关闭开关管,过程判断时间约为1us。
CN201821442882.7U 2018-09-05 2018-09-05 一种无桥pfc充电电路 Expired - Fee Related CN208874468U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821442882.7U CN208874468U (zh) 2018-09-05 2018-09-05 一种无桥pfc充电电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821442882.7U CN208874468U (zh) 2018-09-05 2018-09-05 一种无桥pfc充电电路

Publications (1)

Publication Number Publication Date
CN208874468U true CN208874468U (zh) 2019-05-17

Family

ID=66466806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821442882.7U Expired - Fee Related CN208874468U (zh) 2018-09-05 2018-09-05 一种无桥pfc充电电路

Country Status (1)

Country Link
CN (1) CN208874468U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600172A (zh) * 2021-03-02 2021-04-02 广东高斯宝电气技术有限公司 图腾柱无桥pfc变换器的保护电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600172A (zh) * 2021-03-02 2021-04-02 广东高斯宝电气技术有限公司 图腾柱无桥pfc变换器的保护电路
CN112600172B (zh) * 2021-03-02 2021-06-25 广东高斯宝电气技术有限公司 图腾柱无桥pfc变换器的保护电路

Similar Documents

Publication Publication Date Title
CN102694460B (zh) 三相升降压功率因数校正变换器
CN101986542B (zh) 一种高输入功率因数的pfc控制方法及其控制电路
CN107896069A (zh) 一种新型单相混合三电平整流器
CN110365205A (zh) 一种高效率图腾柱无桥pfc整流器控制方法
CN201839200U (zh) 一种变占空比控制的功率因数校正电路
CN105429451B (zh) 一种pfc电感饱和抑制电路、方法及电源设备
CN107196491B (zh) 一种双buck并网逆变器半周期电流畸变抑制系统及其方法
CN201408996Y (zh) 一种带有功率因数校正的三相输入均流控制器
CN104289489A (zh) 基于无刷直流电机的高压清洗机驱动系统及方法
CN107370404A (zh) 集成pfc高压半桥谐振同步整流ac/dc电源模块
CN106787669A (zh) 一种升压式数字控制有源功率因数校正变换器
CN206100548U (zh) 基于arm控制系统来实现单级pfcled驱动的电源系统
CN101383513A (zh) 单相功率因数校正单周期控制器
CN108075657A (zh) 小功率apfc电路
CN109245515A (zh) 一种无桥pfc充电电路及其控制算法
CN115065230A (zh) 一种三相无桥sepic型pfc变换器
CN103532409B (zh) 小型风力发电用三相反激式倍压单开关整流电路
CN111431394A (zh) 一种新型降压式单相三电平无桥pfc变换器系统
CN208874468U (zh) 一种无桥pfc充电电路
CN106160504A (zh) 交流宽电压输入的电力电子交流稳压器
CN109951098B (zh) 一种快速隔离断路器及其控制算法
CN107659138B (zh) 一种串联型功率解耦无电解电容pfc电路及解耦控制方法
CN106849708A (zh) 一种pfc整流装置
CN212850263U (zh) 一种新型occ降压pfc电路
CN207490786U (zh) 全硬件实现三相三开关三电平pfc整流器的系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190517

Termination date: 20200905

CF01 Termination of patent right due to non-payment of annual fee