CN208833411U - 执行器损耗参数测试系统 - Google Patents

执行器损耗参数测试系统 Download PDF

Info

Publication number
CN208833411U
CN208833411U CN201821887751.XU CN201821887751U CN208833411U CN 208833411 U CN208833411 U CN 208833411U CN 201821887751 U CN201821887751 U CN 201821887751U CN 208833411 U CN208833411 U CN 208833411U
Authority
CN
China
Prior art keywords
actuator
rotating object
test system
lost
parameter test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821887751.XU
Other languages
English (en)
Inventor
李祎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ctekcom Electromechanical Technology (changzhou) Co Ltd
Original Assignee
Ctekcom Electromechanical Technology (changzhou) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ctekcom Electromechanical Technology (changzhou) Co Ltd filed Critical Ctekcom Electromechanical Technology (changzhou) Co Ltd
Priority to CN201821887751.XU priority Critical patent/CN208833411U/zh
Application granted granted Critical
Publication of CN208833411U publication Critical patent/CN208833411U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本实用新型提供一种执行器损耗参数测试系统,包括支撑机构、驱动机构、执行器、力矩传感器及处理器,驱动机构及执行器设置在支撑机构上,力矩传感器设置在驱动机构上;驱动机构用于设置旋转物体,驱动旋转物体旋转;力矩传感器用于测量执行器与旋转物体接触时旋转物体产生的力矩;执行器及力矩传感器与处理器相连接,处理器用于控制执行器,并用于根据测量得到的力矩及执行器的名义输出力测试得到执行器的总输出力损耗。本实用新型执行器损耗参数测试系统用于对接触旋转物体的执行器进行损耗参数的测试,准确地得出执行器的总输出力损耗,进而能够在执行器的应用中对执行器的总输出力损耗进行修正,提高控制精度,使控制结果符合预期。

Description

执行器损耗参数测试系统
技术领域
本实用新型涉及执行器技术领域,具体而言,涉及一种执行器损耗参数测试系统。
背景技术
执行器是自动控制系统中必不可少的一个重要组成部分,它的作用是接受控制器送来的控制信号,改变被控介质的大小,从而将被控变量维持在所要求的数值上或一定的范围内。执行器按其能源形式可分为气动、液动、电动三大类。
在过程控制系统中,执行器由执行机构和自动化调节机构两部分组成。自动化调节机构通过执行元件直接改变生产过程的参数,使生产过程满足预定的要求。执行机构则接受来自控制器的控制信号把它转换为驱动调节机构的输出(如角位移或直线位移输出),它也采用适当的执行元件,但要求与调节机构不同。
目前,在执行器的应用中,由于内部力损失与其他外界干扰的存在,执行器实际加载于受作用体上的力总是小于执行器名义输出的力,因而影响了执行器的控制精度。例如,在汽车制动系统中,由于控制刹车片的执行机构存在内部力损失,使得实际施加在刹车盘上的制动力并不等于驾驶员所希望的力,导致制动过程与实际需要不同,容易导致事故发生。
为了精确控制执行器,抵消执行器损耗的力,需要知道执行器的名义输出力与作用在受力物体上的力来推算损耗的力,或者直接测量出损耗的力。然而,在实际工作中,上述两种方式均难以实现,尤其是,当执行器的动作端作用于以执行器运动方向为轴向的高速旋转物体,且工况较为恶劣时(例如,刹车片贴合于刹车盘),由于执行器与受作用物体之间存在高速位移,因而无法添加传感器在受力物体表面,测量实际施加在受力物体上的力;或在工况较为恶劣时,静态条件下的执行器内部的力损失与动态高速旋转时不同,使得在执行器的应用中难以进行精确控制,从而无法实现高精度的加工或操纵。
实用新型内容
鉴于上述问题,本实用新型提供了一种执行器损耗参数测试系统,该执行器损耗参数测试系统能用于对接触旋转物体的执行器进行损耗参数的测试,较为便捷、准确地得出执行器的总输出力损耗,进而能够在执行器的应用中对执行器的总输出力损耗进行修正,提高控制精度,使控制结果符合预期。
为了实现上述目的,本实用新型采用如下的技术方案:
执行器损耗参数测试系统,包括支撑机构、驱动机构、执行器、力矩传感器及处理器,
所述驱动机构及执行器设置在所述支撑机构上,所述力矩传感器设置在所述驱动机构上;
所述驱动机构用于设置旋转物体,并驱动旋转物体旋转;所述力矩传感器用于测量所述执行器与旋转物体接触时所述旋转物体产生的力矩;
所述执行器及力矩传感器与所述处理器相连接,所述处理器用于控制所述执行器,并用于根据测量得到的力矩及所述执行器的名义输出力测试得到所述执行器的总输出力损耗。
作为上述执行器损耗参数测试系统的进一步可选方案,所述执行器损耗参数测试系统还包括测距机构,所述测距机构用于测量所述执行器的执行机构施力面的几何中心与所述旋转物体的转动中心之间的距离;
所述测距机构与所述处理器相连接,所述处理器还用于根据所述测量得到的力矩、执行器的名义输出力及执行器的执行机构施力面的几何中心与所述旋转物体的转动中心之间的距离测试得到所述执行器与旋转物体之间的摩擦系数。
作为上述执行器损耗参数测试系统的进一步可选方案,所述测距机构包括几何中心测定件、转动中心测定件及测距仪,所述测距仪与所述处理器相连接;
所述几何中心测定件用于测定所述执行器的执行机构施力面的几何中心;所述转动中心测定件用于测定所述旋转物体的转动中心;所述测距仪用于测量所述执行器的执行机构施力面的几何中心与所述旋转物体的转动中心之间的距离。
作为上述执行器损耗参数测试系统的进一步可选方案,所述几何中心测定件为激光雷达。
作为上述执行器损耗参数测试系统的进一步可选方案,所述转动中心测定件为寻边器。
作为上述执行器损耗参数测试系统的进一步可选方案,所述测距仪为激光测距仪。
作为上述执行器损耗参数测试系统的进一步可选方案,所述支撑机构包括支撑台架及支撑件,
所述支撑件设置于所述支撑台架上,所述驱动机构设置在所述支撑台架上,所述执行器设置在所述支撑件上。
作为上述执行器损耗参数测试系统的进一步可选方案,所述驱动机构包括驱动电机、供电件及电机控制器,
所述供电件与驱动电机相连接,所述供电件用于为所述驱动电机供电;所述电机控制器设置在所述驱动电机上,所述电机控制器用于调整所述驱动电机的功率;
所述力矩传感器及旋转物体设置在所述驱动电机的输出轴上。
作为上述执行器损耗参数测试系统的进一步可选方案,所述力矩传感器为压电式力矩传感器。
作为上述执行器损耗参数测试系统的进一步可选方案,所述处理器为数据收集与处理计算机。
下面对本实用新型的优点或原理进行说明:
执行器损耗参数测试系统,能用于对接触旋转物体的执行器进行损耗参数的测试,驱动机构及执行器设置在支撑机构上,力矩传感器设置在驱动机构上,执行器及力矩传感器与处理器相连接,在测试时,将旋转物体设置在驱动机构上,开启驱动机构,驱动旋转物体旋转;处理器根据设定的执行器的名义输出力控制执行器运行,并且执行器与旋转物体相贴合;在执行器与旋转物体相贴合时,力矩传感器测量执行器与旋转物体接触时旋转物体产生的力矩;处理器根据测量得到的力矩及执行器的名义输出力测试得到执行器的总输出力损耗;该执行器损耗参数测试系统应用成本较低,并且容易安装和实现,通过执行器与旋转物体接触时旋转物体产生的力矩以及执行器的名义输出力,便能够较为便捷、准确地得出在该工况下接触旋转物体的执行器的总输出力损耗,进而能够在执行器的相应应用中对执行器的总输出力损耗进行修正,提高控制精度,使控制结果符合预期。
为使本实用新型的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本实用新型实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本实用新型的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本实用新型实施例的执行器损耗参数测试系统的结构示意图。
附图标记说明:
10-支撑机构;11-支撑台架;12-支撑件;13-导轨;20-驱动机构;21-驱动电机;211-输出轴;22-电机控制器;30-旋转物体;40-执行器;50-力矩传感器;60-处理器。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本实用新型实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本实用新型的实施例的详细描述并非旨在限制要求保护的本实用新型的范围,而是仅仅表示本实用新型的选定实施例。基于本实用新型的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
在本实用新型中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本实用新型及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本实用新型中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或点连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的联通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。
参见图1,图1是本实用新型实施例的执行器损耗参数测试系统的结构示意图。
本实用新型实施例的执行器损耗参数测试系统,包括支撑机构10、驱动机构20、执行器40、力矩传感器50及处理器60。
驱动机构20及执行器40设置在支撑机构10上,力矩传感器50设置在驱动机构20上。
驱动机构20用于设置旋转物体30,并驱动旋转物体30旋转;力矩传感器50用于测量执行器40与旋转物体30接触时旋转物体30产生的力矩。
执行器40及力矩传感器50与处理器60相连接,处理器60用于控制执行器40,并用于根据测量得到的力矩及执行器40的名义输出力测试得到执行器40的总输出力损耗。
本实用新型实施例的执行器损耗参数测试系统,能用于对接触旋转物体30的执行器40进行损耗参数的测试,驱动机构20及执行器40设置在支撑机构10上,力矩传感器50设置在驱动机构20上,执行器40及力矩传感器50与处理器60相连接,在测试时,将旋转物体30设置在驱动机构20上,开启驱动机构20,驱动旋转物体30旋转;处理器60根据设定的执行器40的名义输出力控制执行器40运行,并且执行器40与旋转物体30相贴合;在执行器40与旋转物体30相贴合时,力矩传感器50测量执行器40与旋转物体30接触时旋转物体30产生的力矩;处理器60根据测量得到的力矩及执行器40的名义输出力测试得到执行器40的总输出力损耗;该执行器损耗参数测试系统应用成本较低,并且容易安装和实现,通过执行器40与旋转物体30接触时旋转物体30产生的力矩以及执行器40的名义输出力,便能够较为便捷、准确地得出在该工况下接触旋转物体30的执行器40的总输出力损耗,进而能够在执行器40的相应应用中对执行器40的总输出力损耗进行修正,提高控制精度,使控制结果符合预期。
例如,本实用新型实施例的执行器损耗参数测试系统能应用于汽车制动系统方面。
需要说明的是,执行器40的名义输出力理解为执行器40名义上应该输出的力。
在本实施例中,执行器损耗参数测试系统还包括测距机构(图中未示出),测距机构用于测量执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离。
测距机构与处理器60相连接,处理器60还用于根据测量得到的力矩、执行器40的名义输出力及执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离测试得到执行器40与旋转物体30之间的摩擦系数。
本实用新型实施例的执行器损耗参数测试系统,能采用测距机构用于测量执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离,通过执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离、测量得到的力矩及执行器40的名义输出力测试得到执行器40与旋转物体30之间的摩擦系数,以更好地排查误差来源,在执行器40的相应应用中对执行器40的总输出力损耗进行更为精准的修正,进一步提高控制精度,使控制结果更为理想。
在本实施例中,执行器40的总输出力损耗满足以下计算公式:
①f=(M2-M1)·Fact/(M2+M1)。
其中,f为执行器40的总输出力损耗;M1为执行器40与旋转物体30接触时旋转物体30的第一力矩;M2为执行器40与旋转物体30接触时旋转物体30的第二力矩;Fact为执行器40的名义输出力。
执行器40与旋转物体30之间的摩擦系数满足以下计算公式:
②μrotor=(M2+M1)·r/2Fact
其中,μrotor为执行器40与旋转物体30之间的摩擦系数,r为执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离。
以下,给出上述的公式①f=(M2-M1)·Fact/(M2+M1)和②μrotor=(M2+M1)·r/2Fact的理论推导及证明:
根据物理力学规律,可知,摩擦力始终与物体运动的方向或运动趋势的方向相反;
设:执行器40正向移动为正方向;
Fact为执行器40的名义输出力;
F1、F2为执行器40实际施加在旋转物体30上的两次力,两者方向均为正,且垂直于受力物体表面;
μ为执行器40材料的摩擦系数;
f为执行器40的总输出力损耗;
根据物理基础知识可知,摩擦系数只与材料表面的结构及材料本身的特性有关。在短时间内,由于执行器40变化极其微小,因此可以视作在短时间内μ保持不变;
执行器40由于漏液/漏气/漏磁,以及摩擦力等其他因素而导致的f,在统计学上,相同工况的极短时间内f也保持不变。
由于不存在理想刚体,所有物体均存在受压形变的情况,在弹性结构不被破坏时,当物体位置不变时,受力增大,则受挤压,产生形变,产生方向等于受力方向的运动趋势。受力减小时,产生反向于受力方向的运动趋势;
当执行器40接触旋转物体30时,位置保持不变,根据以上推导,可知:
③Fact-f=F1,即,当执行器40加力,出现正向运动趋势时;
④Fact+f=F2,即,当执行器40减力,出现反向运动趋势时;
在上述两过程中,执行器40并没有脱离旋转物体30,并始终对旋转物体30保持压力;
对于被执行器40接触的旋转物体30,其转动状态不变时,其力矩等于执行器40对其的摩擦力;即,
F1·μrotor=M1·r,F2·μrotor=M2·r,通过换算后可得知,
⑤F1=M1·r/μrotor
⑥F2=M2·r/μrotor
M1为执行器40与旋转物体30接触时旋转物体30的第一力矩,M2为执行器40与旋转物体30接触时旋转物体30的第二力矩,μrotor为执行器40与旋转物体30之间的摩擦系数,r为执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离;
通过换算,即,将⑤代入③,将⑥代入④,可得:
⑦Fact-f=M1·r/μrotor
⑧Fact+f=M2·r/μrotor
通过换算,即,⑦+⑧,可得:
②μrotor=(M2+M1)·r/2Fact
通过换算,即,⑧-⑦,可得:
⑨f=(M2-M1)·r/2μrotor
通过换算,即,将②代入⑨,可得:
①f=(M2-M1)·Fact/(M2+M1)。
通过上述的理论推导及证明,可知,该执行器损耗参数测试系统能通过在执行器40正向运动与反向运动时,测试得到执行器40的总输出力损耗和执行器40与旋转物体30之间的摩擦系数。
在本实施例中,测距机构包括几何中心测定件、转动中心测定件及测距仪,测距仪与处理器60相连接。
几何中心测定件用于测定执行器40的执行机构施力面的几何中心;转动中心测定件用于测定旋转物体30的转动中心;测距仪用于测量执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离。
在测量执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离时,能先通过几何中心测定件测定执行器40的执行机构施力面的几何中心,及转动中心测定件测定旋转物体30的转动中心,再用测距仪测量执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离,此种方式能够提高执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离的测量精度,以更为准确地测试得到执行器40与旋转物体30之间的摩擦系数,从而在执行器40的相应应用中对执行器40的总输出力损耗进行更为精准的修正。
作为一种可选的实施方式,几何中心测定件为激光雷达,转动中心测定件为寻边器,测距仪为激光测距仪。
几何中心测定件选用激光雷达,转动中心测定件选用寻边器,测距仪选用激光测距仪,能保证测定、测量的精度和效果。
具体地,激光雷达能用于测定执行器40的执行机构施力面的力学中心,执行器40的执行机构施力面的力学中心测定后,可利用几何中心与力学中心的偏移,更为精准地计算出执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离。
需要说明的是,力学中心是平面或曲面所受压力的合力的作用线同该平面或曲面的交点,执行器40的执行机构施力面的力学中心,并非一定是几何中心,因为材料的不均匀形变,执行器40的执行机构施力面上力的分布并不均匀。
作为一种可选的实施方式,激光测距仪为手持式激光测距仪。手持式激光测距仪能更便于测量执行器40的执行机构施力面的几何中心与旋转物体30的转动中心之间的距离。
作为一种可选的实施方式,处理器60为数据收集与处理计算机。作为优选的,数据收集与处理计算机为主机型高速计算机,例如,IBM Systemz9Typ 2094型主机型计算机。
处理器60的选用能较好地保障执行器40的控制效果及执行器损耗参数测试系统的测试效果和测试精度。
作为一种可选的实施方式,支撑机构10包括支撑台架11及支撑件12,支撑件12设置于支撑台架11上,驱动机构20设置在支撑台架11上,执行器40设置在支撑件12上。
支撑机构10结构简单,能在保障该执行器损耗参数测试系统可实现的前提下,节省成本,便于测试。
需要说明的是,在本实施例中,支撑机构10还可以为其他结构,在此,不对其他结构的支撑机构10做列举,只要其他结构的支撑机构10能够保障该执行器损耗参数测试系统可实现,其应当属于本实用新型所要要求的保护范围。
作为一种可选的实施方式,支撑件12可滑动地设置在支撑台架11上。具体地,支撑台架11上可设置导轨13,支撑件12可滑动地设置在支撑台架11的导轨13上。
需要说明的是,在测试时,也可通过移动驱动机构20的方式使执行器40与旋转物体30相贴合。
作为一种可选的实施方式,驱动机构20包括驱动电机21、供电件(图中未示出)及电机控制器22。
供电件与驱动电机21相连接,供电件用于为驱动电机21供电;电机控制器22设置在驱动电机21上,电机控制器22用于调整驱动电机21的功率。
力矩传感器50及旋转物体30设置在驱动电机21的输出轴211上。
驱动机构20包括有电机控制器22,能便于该执行器损耗参数测试系统的测试,保障该执行器损耗参数测试系统的测试效果及实用性。
作为一种可选的实施方式,力矩传感器50为压电式力矩传感器。
力矩传感器50采用压电式力矩传感器,能提高执行器40与旋转物体30接触时旋转物体30产生的力矩的测试精度,进而提高该执行器损耗参数测试系统测试精度。
理论上,只进行一次(正向或反向)的测试,便可推算出执行器40的摩擦力及执行器40与旋转物体30之间的摩擦系数。
作为一种可选的实施方式,执行器40上设置有红外温度探测器。
在该执行器损耗参数测试系统反复测试时,执行器40的名义输出力的变化会造成执行器40与旋转物体30温度的变化,执行器40与旋转物体30温度的变化容易造成形变与化学性质变化,红外温度探测器的设置,能在温度产生一定变化时,予以提醒,测试人员可在收到提醒后,停止测试,在执行器40与旋转物体30温度回到可测试范围内,在进行测试,以确保该执行器损耗参数测试系统的测试效果及测试精度。
在上述所有实施例中,“大”、“小”是相对而言的,“多”、“少”是相对而言的,“上”、“下”是相对而言的,对此类相对用语的表述方式,本实用新型实施例不再多加赘述。
应理解,说明书通篇中提到的“在本实施例中”、“本实用新型实施例中”或“作为一种可选的实施方式”意味着与实施例有关的特定特征、结构或特性包括在本实用新型的至少一个实施例中。因此,在整个说明书各处出现的“在本实施例中”、“本实用新型实施例中”或“作为一种可选的实施方式”未必一定指相同的实施例。此外,这些特定特征、结构或特性可以以任意适合的方式结合在一个或多个实施例中。本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本实用新型所必须的。
在本实用新型的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本实用新型实施例的实施过程构成任何限定。
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应与权利要求的保护范围为准。

Claims (10)

1.执行器损耗参数测试系统,其特征在于,包括支撑机构、驱动机构、执行器、力矩传感器及处理器,
所述驱动机构及执行器设置在所述支撑机构上,所述力矩传感器设置在所述驱动机构上;
所述驱动机构用于设置旋转物体,并驱动旋转物体旋转;所述力矩传感器用于测量所述执行器与旋转物体接触时所述旋转物体产生的力矩;
所述执行器及力矩传感器与所述处理器相连接,所述处理器用于控制所述执行器,并用于根据测量得到的力矩及所述执行器的名义输出力测试得到所述执行器的总输出力损耗。
2.根据权利要求1所述的执行器损耗参数测试系统,其特征在于,所述执行器损耗参数测试系统还包括测距机构,所述测距机构用于测量所述执行器的执行机构施力面的几何中心与所述旋转物体的转动中心之间的距离;
所述测距机构与所述处理器相连接,所述处理器还用于根据所述测量得到的力矩、执行器的名义输出力及执行器的执行机构施力面的几何中心与所述旋转物体的转动中心之间的距离测试得到所述执行器与旋转物体之间的摩擦系数。
3.根据权利要求2所述的执行器损耗参数测试系统,其特征在于,所述测距机构包括几何中心测定件、转动中心测定件及测距仪,所述测距仪与所述处理器相连接;
所述几何中心测定件用于测定所述执行器的执行机构施力面的几何中心;所述转动中心测定件用于测定所述旋转物体的转动中心;所述测距仪用于测量所述执行器的执行机构施力面的几何中心与所述旋转物体的转动中心之间的距离。
4.根据权利要求3所述的执行器损耗参数测试系统,其特征在于,所述几何中心测定件为激光雷达。
5.根据权利要求3所述的执行器损耗参数测试系统,其特征在于,所述转动中心测定件为寻边器。
6.根据权利要求3所述的执行器损耗参数测试系统,其特征在于,所述测距仪为激光测距仪。
7.根据权利要求1所述的执行器损耗参数测试系统,其特征在于,所述支撑机构包括支撑台架及支撑件,
所述支撑件设置于所述支撑台架上,所述驱动机构设置在所述支撑台架上,所述执行器设置在所述支撑件上。
8.根据权利要求1所述的执行器损耗参数测试系统,其特征在于,所述驱动机构包括驱动电机、供电件及电机控制器,
所述供电件与驱动电机相连接,所述供电件用于为所述驱动电机供电;所述电机控制器设置在所述驱动电机上,所述电机控制器用于调整所述驱动电机的功率;
所述力矩传感器及旋转物体设置在所述驱动电机的输出轴上。
9.根据权利要求1所述的执行器损耗参数测试系统,其特征在于,所述力矩传感器为压电式力矩传感器。
10.根据权利要求1所述的执行器损耗参数测试系统,其特征在于,所述处理器为数据收集与处理计算机。
CN201821887751.XU 2018-11-15 2018-11-15 执行器损耗参数测试系统 Active CN208833411U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821887751.XU CN208833411U (zh) 2018-11-15 2018-11-15 执行器损耗参数测试系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821887751.XU CN208833411U (zh) 2018-11-15 2018-11-15 执行器损耗参数测试系统

Publications (1)

Publication Number Publication Date
CN208833411U true CN208833411U (zh) 2019-05-07

Family

ID=66319929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821887751.XU Active CN208833411U (zh) 2018-11-15 2018-11-15 执行器损耗参数测试系统

Country Status (1)

Country Link
CN (1) CN208833411U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297628A (zh) * 2018-11-15 2019-02-01 赛腾机电科技(常州)有限公司 执行器损耗参数测试系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297628A (zh) * 2018-11-15 2019-02-01 赛腾机电科技(常州)有限公司 执行器损耗参数测试系统及方法
CN109297628B (zh) * 2018-11-15 2024-02-02 赛腾机电科技(常州)有限公司 执行器损耗参数测试系统及方法

Similar Documents

Publication Publication Date Title
CN107179254B (zh) 一种面-面接触扭动微动摩擦磨损试验系统及其控制方法
CN103900813B (zh) 一种滚珠丝杠转动惯量及摩擦力矩的测量装置
US10507560B2 (en) Apparatus movable by a coordinate measuring machine for positioning a measuring instrument with respect to a workpiece
CN103697819B (zh) 一种微位移传感器标定装置
CN103048071B (zh) 用于监测悬浮状态下无框力矩电机动态扭矩的装置及方法
CN101968340B (zh) 一种端面跳动与偏摆的测量装置及方法
CN200986478Y (zh) 滚珠丝杠副摩擦力矩测量仪
CN206177207U (zh) 一种螺距测量仪
CN108153234B (zh) 机床直线运动运行态的全自由度精度检测装置
CN102680739B (zh) 六维加速度传感器标定平台及标定方法
CN103234848A (zh) 一种薄膜表面纳米刻划与摩擦粘滑特性测试装置
CN103528813A (zh) 一种叶片-涂层机匣的碰摩实验装置
CN102879032A (zh) 测角精度动态测量装置
RU131157U1 (ru) Однокомпонентный динамометр для измерения тангенциальной составляющей силы резания при точении
CN208833411U (zh) 执行器损耗参数测试系统
CN104297089A (zh) 微观摩擦磨损性能测试装置
CN109506933A (zh) 传动机构综合性能测试平台
CN102672537A (zh) 一种精密轴系圆光栅光学分度方法
CN202255307U (zh) 轧辊辊形误差在线测量装置
CN109297628A (zh) 执行器损耗参数测试系统及方法
CN202974319U (zh) 测角精度动态测量装置
CN201173762Y (zh) 刹车盘专用量具
CN205262322U (zh) 回程误差的测量装置
CN107941192A (zh) 一种舵偏角测试仪
CN103884462A (zh) 接触压力及摩擦力动态检测装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant