CN208782235U - Bicrystal ultraviolet laser - Google Patents

Bicrystal ultraviolet laser Download PDF

Info

Publication number
CN208782235U
CN208782235U CN201821556571.3U CN201821556571U CN208782235U CN 208782235 U CN208782235 U CN 208782235U CN 201821556571 U CN201821556571 U CN 201821556571U CN 208782235 U CN208782235 U CN 208782235U
Authority
CN
China
Prior art keywords
laser
crystal
pump
frequency
pulsed light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201821556571.3U
Other languages
Chinese (zh)
Inventor
任戬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen JPT Optoelectronics Co Ltd
Original Assignee
Shenzhen JPT Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen JPT Optoelectronics Co Ltd filed Critical Shenzhen JPT Optoelectronics Co Ltd
Priority to CN201821556571.3U priority Critical patent/CN208782235U/en
Application granted granted Critical
Publication of CN208782235U publication Critical patent/CN208782235U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

A kind of bicrystal ultraviolet laser, including the first pump laser, the second pump laser, the first focus pack, the second focus pack, resonant component, first laser crystal, second laser crystal, adjusting Q crystal, two frequency-doubling crystals and frequency tripling crystal;Resonant component constitutes laser resonator;When exporting the 355nm pulsed light of low-repetition-frequency, the first pump laser exports pump light, and first laser crystal generates 1064nm laser;When exporting the 355nm pulsed light of high repetition frequency, the second pump laser exports pump light, and second laser crystal generates 1064nm laser;Under the modulation of adjusting Q crystal, two frequencys multiplication and frequency tripling crystal, the intracavitary formation 355nm pulsed light of laser resonance;By first laser crystal and difference of the second laser crystal on the life time of the level, when so as to switch single laser resonator between low-repetition-frequency output and high repetition frequency output, the 355nm pulse optical power of output keeps stablizing.

Description

Bicrystal ultraviolet laser
Technical field
The utility model relates to laser technology fields, more particularly to a kind of bicrystal ultraviolet laser.
Background technique
Laser is one of the great utility model in modern science technology, wherein the 355nm laser of end pumping is applied to Cold working field, the application value in metal, nonmetallic and Precision Machining are especially prominent.It is higher due to holding pump can get Beam quality, acquisition beam quality is excellent, and the end of the long-acting stable operation of energy pumps green laser, goes to growing laser processing Industry is significant.
The general single-ended pumping of end-pumped laser or both-end pumping laser crystal on the market, then utilize Q switched element Resonant cavity is carried out to adjust to form pulsed light.In practical application, the parameter of high frequency low frequency can be carried out different operating, tradition side is utilized The pulsed light mean power that formula is formed can change at different frequencies, can not be simultaneously under high repetition frequency and low-repetition-frequency There is preferable power stability, causes the 355nm pulsed light of high repetition frequency and low-repetition-frequency defeated by different equipment Out, the equipment input cost of laser processing is caused to improve.
Utility model content
Based on this, it is necessary to provide a kind of can stablize in high repetition frequency and low-repetition-frequency and export 355nm pulsed light Bicrystal ultraviolet laser.
A kind of bicrystal ultraviolet laser, including the first pump laser, the second pump laser and first pumping Corresponding first focus pack of laser, the second focus pack corresponding with second pump laser, resonant component, first Laser crystal, second laser crystal, adjusting Q crystal, two frequency-doubling crystals and frequency tripling crystal;The resonant component include first before End mirror, turning mirror, the first tail end mirror and the second tail end mirror before end mirror, second;End mirror before end mirror, described second before described first, The turning mirror, the first tail end mirror and the second tail end mirror constitute laser resonator;End mirror and described second before described first Preceding end mirror is correspondingly arranged;The turning mirror respectively with described first before end mirror, the frequency tripling crystal be correspondingly arranged;Described second End mirror is correspondingly arranged before tail end mirror and described second;The first laser crystal, second laser crystal setting are described the Before one before end mirror and described second between end mirror;The adjusting Q crystal, two frequency-doubling crystal and frequency tripling crystal setting It is intracavitary in the laser resonance;When exporting the 355nm pulsed light of low-repetition-frequency, the first pump laser output pumping The pump light of light, the first pump laser output focuses on the first laser crystal, institute through first focus pack First laser crystal is stated in the intracavitary generation 1064nm laser of the laser resonance;The 1064nm generated by the first laser crystal Laser transmits the second laser crystal;When exporting the 355nm pulsed light of high repetition frequency, the second pump laser output The pump light of pump light, the second pump laser output focuses on the second laser crystalline substance through second focus pack Body, the second laser crystal is in the intracavitary generation 1064nm laser of the laser resonance;It is generated by the second laser crystal 1064nm laser transmits the first laser crystal;Under the modulation of the adjusting Q crystal, the intracavitary formation of laser resonance 1064nm pulsed light, when 1064nm pulsed light passes through two frequency-doubling crystal, part 1064nm pulsed light is converted to 532nm pulse Light;532nm pulsed light and 1064nm pulsed light carry out in the frequency tripling crystal and frequency, generates 355nm pulsed light;1064nm Pulsed light, 532nm pulsed light and 355nm pulsed light separate after exporting frequency tripling crystal, and 355nm pulsed light is output to described Outside laser resonator.
Above-mentioned bicrystal ultraviolet laser, by being swashed by the first pumping when exporting the 355nm pulsed light of low-repetition-frequency Light device exports pump light, and first laser crystal generates 1064nm laser, when exporting the 355nm pulsed light of high repetition frequency, by Second pump laser exports pump light, and second laser crystal generates 1064nm laser, is swashed by first laser crystal and second Difference of the luminescent crystal on the life time of the level, so as to keep single laser resonator defeated with high repetition frequency in low-repetition-frequency output When switching between out, the 355nm pulse optical power of output keeps stablizing, low so as to be realized using the equipment of separate unit laser processing Repetition rate and stablizing for high repetition frequency 355nm pulsed light export.
The first laser crystal is Nd:YAG in one of the embodiments, and the second laser crystal is Nd: YVO4。
The two-sided plating 1064nm of the first laser crystal and the second laser crystal increases in one of the embodiments, Permeable membrane.
The two-sided plating 808/ of the first laser crystal and the second laser crystal in one of the embodiments, 880nm anti-reflection film.
It in one of the embodiments, further include diaphragm, the diaphragm is equipped with light hole, and the light hole is in described Between first laser crystal and the second laser crystal.
It in one of the embodiments, further include optical fiber component, the optical fiber component includes the first transmission fiber and second Transmission fiber;First pump laser couples first transmission fiber and exports pump light, second pump laser Couple the second transmission fiber output pump light.
The optical fiber component further includes first be correspondingly arranged with first focus pack in one of the embodiments, Fixing piece, the output end of first transmission fiber are fixed on first fixing piece.
The optical fiber component further includes second be correspondingly arranged with second focus pack in one of the embodiments, Fixing piece, the output end of second transmission fiber are fixed on second fixing piece.
First focus pack includes the first plano-convex lens and the second plano-convex lens, institute in one of the embodiments, The convex surface for stating the first plano-convex lens is opposite with the convex surface of second plano-convex lens.
Second focus pack includes third plano-convex lens and the 4th plano-convex lens, institute in one of the embodiments, The convex surface for stating third plano-convex lens is opposite with the convex surface of the 4th plano-convex lens.
Detailed description of the invention
Fig. 1 is the structure chart of the bicrystal ultraviolet laser of a preferred embodiment of the utility model;
Fig. 2 is between power, pulsewidth and the repetition rate of the pulsed light of bicrystal ultraviolet laser shown in FIG. 1 output Graph of relation.
Specific embodiment
The utility model will be described more fully below for the ease of understanding the utility model,.But this is practical It is novel to realize in many different forms, however it is not limited to embodiment described herein.On the contrary, providing these implementations The purpose of example is to make the understanding of the disclosure of the utility model more thorough and comprehensive.
Unless otherwise defined, all technical and scientific terms used herein are led with the technology for belonging to the utility model The normally understood meaning of the technical staff in domain is identical.Terminology used in the description of the utility model herein only be The purpose of description specific embodiment, it is not intended that in limitation the utility model.
Referring to Fig. 1, being the bicrystal ultraviolet laser 100 of one better embodiment of the utility model, for exporting 355nm pulsed light.The bicrystal ultraviolet laser 100 includes the first pump laser 11, the second pump laser 12 and first Corresponding first focus pack 21 of pump laser 11, second focus pack 22 corresponding with the second pump laser 12, resonance Component, first laser crystal 41, second laser crystal 42, adjusting Q crystal 50, two frequency-doubling crystals 61 and frequency tripling crystal 62;Resonance Component includes end mirror 32, turning mirror 33, the first tail end mirror 34 and the second tail end mirror 35 before end mirror 31, second before first;Before first End mirror 32, turning mirror 33, the first tail end mirror 34 and the second tail end mirror 35 constitute laser resonator before end mirror 31, second;Before first End mirror 32 is correspondingly arranged before end mirror 31 and second;Turning mirror 33 respectively with first before end mirror 31, frequency tripling crystal 62 be correspondingly arranged; End mirror 32 is correspondingly arranged before second tail end mirror 35 and second;First laser crystal 41, second laser crystal 42 are arranged before first Before end mirror 31 and second between end mirror 32;Adjusting Q crystal 50, two frequency-doubling crystals 61 and frequency tripling crystal 62 are arranged in laser resonance It is intracavitary;When exporting the 355nm pulsed light of low-repetition-frequency, the first pump laser 11 exports 808nm 880nm pump light, The pump light of first pump laser 11 output focuses on first laser crystal 41, first laser crystal through the first focus pack 21 Population inversion is realized after 41 absorption pump energies, in the intracavitary generation 1064nm laser of laser resonance;By first laser crystal The 41 1064nm laser generated transmit second laser crystal 42;When exporting the 355nm pulsed light of high repetition frequency, the second pumping swashs Light device 12 exports 808nm 880nm pump light, and the pump light of the second pump laser 12 output is poly- through the second focus pack 22 Coke arrives second laser crystal 42, and second laser crystal 42 realizes population inversion after absorbing pump energy, in laser resonator Interior generation 1064nm laser;First laser crystal 41 is transmitted by the 1064nm laser that second laser crystal 42 generates;In adjusting Q crystal Under 50 modulation, the intracavitary formation 1064nm pulsed light of laser resonance, when 1064nm pulsed light passes through two frequency-doubling crystals 61, part 1064nm pulsed light is converted to 532nm pulsed light;532nm pulsed light and 1064nm pulsed light carried out in frequency tripling crystal 62 and Frequently, 355nm pulsed light is generated;1064nm pulsed light, 532nm pulsed light and 355nm pulsed light are after exporting frequency tripling crystal 62 It separates, 355nm pulsed light is output to outside laser resonator.
By export low-repetition-frequency 355nm pulsed light when, by the first pump laser 11 export pump light, first Laser crystal 41 generates 1064nm laser, defeated by the second pump laser 12 when exporting the 355nm pulsed light of high repetition frequency Pump light out, second laser crystal 42 generate 1064nm laser, by first laser crystal 41 and second laser crystal 42 in energy Difference on life time of the level, so as to switch single laser resonator between low-repetition-frequency output and high repetition frequency output When, the 355nm pulse optical power of output keeps stablizing, so as to using the equipment of separate unit laser processing realize low-repetition-frequency and High repetition frequency 355nm pulsed light stablizes output.
In a wherein embodiment, for realize first laser crystal 41 and 42 low-repetition-frequency of second laser crystal and There is different upper level lifetimes, first laser crystal 41 is Nd:YAG, and second laser crystal 42 is Nd between high repetition frequency: YVO4;Due to being had differences in life time of the level characteristic for Nd:YAG and Nd:YVO4;The upper level lifetime of Nd:YVO4 is short, about 90us-100us, Nd:YAG upper level lifetime are long, about 230us, and due to the difference of this characteristic, Nd:YVO4 (is greater than in high frequency There is relatively good laser output under 30kHZ), Nd:YAG has relatively good laser output under low frequency (being less than 20kHZ), to make Laser resonator when low-repetition-frequency exports and switches between high repetition frequency output, protect by the 355nm pulse optical power of output It is fixed to keep steady.
Referring to Fig. 2, in Fig. 2, the mean power for the 532nm pulsed light that bicrystal ultraviolet laser 100 exports be P, Pulse width is τ;In the present embodiment, it when activating second laser crystal 42 by the second pump laser 12, is exported 355nm pulsed light there is smaller pulsewidth, i.e., under same average power output, the operation of opposite first laser crystal 41 is imitated Fruit, peak value of pulse are higher;If exporting 355nm pulsed light, 355nm pulse under low-repetition-frequency by second laser crystal 42 The power decline of light is serious, and when exporting 355nm pulsed light under low-repetition-frequency by first laser crystal 41, then it is able to maintain Biggish pulse energy.
Further, since first laser crystal 41 is Nd:YAG, second laser crystal 42 is Nd:YVO4, and Nd:YAG It is had differences on pulse width characteristic with Nd:YVO4, in the 355nm pulsed light for needing high-pulse widths, the first pumping swashs Light device 11 starts, and the second pump laser 12 stops, Nd:YAG crystal active work, to export the 355nm of high-pulse widths Pulsed light;When needing the 355nm pulsed light of low pulse width, the starting of the second pump laser 12, the first pump laser 11 Stop, Nd:YVO4 crystal active work, so that the 355nm pulsed light of low pulse width is exported, so as to add using separate unit laser The equipment of work realizes that low pulse width and stablizing for high-pulse widths 355nm pulsed light export;In other embodiments, may be used also To be, first laser crystal 41 is Nd:YVO4, and second laser crystal 42 is Nd:YAG.
In a wherein embodiment, pass through first laser crystal 41 or second laser crystal to reduce 1064nm laser The two-sided plating 1064nm anti-reflection film of loss when 42 surface, first laser crystal 41 and second laser crystal 42, to reduce The reflection of 1064nm laser.
In a wherein embodiment, pass through 42 table of first laser crystal 41 or second laser crystal to reduce pump light The two-sided plating 808/880nm anti-reflection film of loss when face, first laser crystal 41 and second laser crystal 42, to improve first The absorption of laser crystal 41 or second laser crystal 42 to pump light.
Referring to Fig. 1, in a wherein embodiment, it is double for the output mode for adjusting bicrystal ultraviolet laser 100 Crystal ultraviolet laser 100 further includes diaphragm 70, and diaphragm 70 is equipped with light hole, and light hole is in first laser crystal 41 and the Between dual-laser crystal 42;When bicrystal ultraviolet laser 100 is run, the 1064nm laser for meeting transverse mode property requirements passes through Light hole, so that bicrystal ultraviolet laser 100 be made to be in scheduled output mode;Further, since diaphragm 70 is arranged Between first laser crystal 41 and second laser crystal 42, it can avoid second laser crystal 42 and receive the first pump laser 11 The pump light or first laser crystal 41 issued receives the pump light that the second pump laser 12 is issued, to avoid First laser crystal 41 activates simultaneously with second laser crystal 42, avoids the unnecessary consumption of pump light.
In a wherein embodiment, to make pump caused by the first pump laser 11 or the second pump laser 12 Pu light reliable transmission, bicrystal ultraviolet laser 100 further include optical fiber component, and optical fiber component includes the first transmission fiber 81 and the Two transmission fibers 82;First pump laser 11 couples the first transmission fiber 81 and exports pump light, 12 coupling of the second pump laser Close the second transmission fiber 82 output pump light.
In a wherein embodiment, for the output end for fixing the first transmission fiber 81, optical fiber component further includes and the The first fixing piece 83 that one focus pack 21 is correspondingly arranged, the output end of the first transmission fiber 81 are fixed on the first fixing piece 83 On.
In a wherein embodiment, for the output end for fixing the second transmission fiber 82, optical fiber component further includes and the The second fixing piece 84 that two focus packs 22 are correspondingly arranged, the output end of the second transmission fiber 82 are fixed on the second fixing piece 84 On.
In a wherein embodiment, for the aberration for reducing by the first focus pack 21, the first focus pack 21 includes the One plano-convex lens 23 and the second plano-convex lens 24, the convex surface of the first plano-convex lens 23 are opposite with the convex surface of the second plano-convex lens 24; Further, the loss for reduction pump light on the first focus pack 21, the first plano-convex lens 23 and the second plano-convex lens 24 Plate 808nm/880nm anti-reflection film;Specifically, the focus of the first focus pack 21 is in first laser crystal 41, and with first 41 end face of laser crystal is at 1-3mm.
In a wherein embodiment, for the aberration for reducing by the second focus pack 22, the second focus pack 22 includes the Three plano-convex lens 25 and the 4th plano-convex lens 26, the convex surface of third plano-convex lens 25 are opposite with the convex surface of the 4th plano-convex lens 26; Further, the loss for reduction pump light on the second focus pack 22, third plano-convex lens 25 and the 4th plano-convex lens 26 Plate 808nm/880nm anti-reflection film;Specifically, the focus of the second focus pack 22 is in second laser crystal 42, and with second 42 end face of laser crystal is at 1-3mm.
Specifically, the first pump laser 11 and the second pump laser 12 are semiconductor laser;Swash to improve first The pump light that luminescent crystal 41 or second laser crystal 42 are absorbed into, or reduce the loss of 1064nm laser, end mirror 31 before first, the The plating of end mirror 32 808nm/880nm is anti-reflection before two and 1064nm high-reflecting film, the first tail end mirror 34 and the second tail end mirror 35 plate 1064nm High-reflecting film;Turning mirror 33 plates 1064nm high-reflecting film;
Further, to improve 1064nm laser to the transfer efficiency of 532nm laser, the materials of two frequency-doubling crystals 61 are reduced Or volume, two frequency-doubling crystals 61 are arranged close to the first tail end mirror 34,1064nm laser reflexes to turning mirror through end mirror 31 before first 33, after the reflection of turning mirror 33,1064nm laser is from the end face of frequency tripling successively incident frequency tripling crystal 62 and two frequency-doubling crystals When 61,1064nm laser pass through two frequency-doubling crystals 61, part 1064nm laser is converted to 532nm laser, part 532nm laser It is totally reflected with remaining 1064nm laser by the first tail end mirror 34, again through two frequency-doubling crystals 61, another part 1064nm laser is converted into 532nm laser;532nm laser and 1064nm laser carry out in frequency tripling crystal 62 and frequency, generates 355nm laser;To realize separating for 1064nm pulsed light, 532nm pulsed light and 355nm pulsed light, while avoiding bicrystal purple The service life of outer laser 100 is impacted, and the output end of frequency tripling crystal 62 is cut using Brewster angle, in other embodiments, The separation of 1064nm pulsed light, 532nm pulsed light and 355nm pulsed light can also be realized by optical splitter or plated film;1064nm After pulsed light, 532nm pulsed light and the separation of 355nm pulsed light, outside 355nm pulse light output to laser resonator, 1064nm arteries and veins Continuation is washed off to work in laser resonator interior resonance;To avoid influence of the 532nm pulsed light to 355nm pulse light output, twin crystal Body ultraviolet laser 100 further includes light barrier 90, and light barrier 90 stops 532nm pulsed light, makes pure 355nm laser It is output to outside laser resonator.
Specifically, two frequency-doubling crystals 61 are LBO, KDP or KTP, frequency tripling crystal 62LBO or BBO.
In a kind of wherein embodiment, adjusting Q crystal 50 is arranged before second between end mirror 32 and the second tail end mirror 35;It adjusts Q crystal 50 is acousto-optic Q crystal, electric light Q crystal or passive Q-adjusted crystal 50;Specifically, end mirror 32 is anti-by 1064nm laser before second It is incident upon the second tail end mirror 35, then after the reflection of the second tail end mirror 35, along backtracking, under the modulation of adjusting Q crystal 50, laser 1064nm pulsed light is formed in resonant cavity;In present embodiment, by the multiple folding of laser resonator, space efficiency utilization is non- Chang Gao, in a limited space in realize each optical device putting without any confusion, although compact, there is no interference dresses With the case where, volume required for complete machine is greatly reduced during realization, so that laser more minimizes, is conducive to Downstream application end integrates.
In the present embodiment, by export low-repetition-frequency 355nm pulsed light when, by the first pump laser rear pump Pu light, first laser crystal generate 1064nm laser, when exporting the 355nm pulsed light of high repetition frequency, are swashed by the second pumping Light device exports pump light, and second laser crystal generates 1064nm laser, by first laser crystal and second laser crystal in energy Difference on life time of the level, so as to switch single laser resonator between low-repetition-frequency output and high repetition frequency output When, the 355nm pulse optical power of output keeps stablizing, so as to using the equipment of separate unit laser processing realize low-repetition-frequency and High repetition frequency 355nm pulsed light stablizes output.
Each technical characteristic of embodiment described above can be combined arbitrarily, for simplicity of description, not to above-mentioned reality It applies all possible combination of each technical characteristic in example to be all described, as long as however, the combination of these technical characteristics is not deposited In contradiction, all should be considered as described in this specification.
Above-described embodiments merely represent several embodiments of the utility model, the description thereof is more specific and detailed, But it cannot be understood as the limitations to utility model patent range.It should be pointed out that for the common skill of this field For art personnel, without departing from the concept of the premise utility, various modifications and improvements can be made, these are belonged to The protection scope of the utility model.Therefore, the scope of protection shall be subject to the appended claims for the utility model patent.

Claims (10)

1. a kind of bicrystal ultraviolet laser, which is characterized in that including the first pump laser, the second pump laser and institute State corresponding first focus pack of the first pump laser, the second focus pack corresponding with second pump laser, humorous Shake component, first laser crystal, second laser crystal, adjusting Q crystal, two frequency-doubling crystals and frequency tripling crystal;The resonant component Including end mirror, turning mirror, the first tail end mirror and the second tail end mirror before end mirror, second before first;It is end mirror before described first, described End mirror, the turning mirror, the first tail end mirror and the second tail end mirror constitute laser resonator before second;First front end End mirror is correspondingly arranged before mirror and described second;The turning mirror is corresponding with end mirror, the frequency tripling crystal before described first respectively Setting;End mirror is correspondingly arranged before the second tail end mirror and described second;The first laser crystal, the second laser crystal Setting is before described first before end mirror and described second between end mirror;The adjusting Q crystal, two frequency-doubling crystal and described three Frequency-doubling crystal setting is intracavitary in the laser resonance;When exporting the 355nm pulsed light of low-repetition-frequency, first pumping laser Device exports pump light, and the pump light of the first pump laser output focuses on described first through first focus pack and swashs Luminescent crystal, the first laser crystal is in the intracavitary generation 1064nm laser of the laser resonance;It is produced by the first laser crystal Raw 1064nm laser transmits the second laser crystal;When exporting the 355nm pulsed light of high repetition frequency, second pumping Laser exports pump light, and the pump light of second pump laser output focuses on described the through second focus pack Dual-laser crystal, the second laser crystal is in the intracavitary generation 1064nm laser of the laser resonance;It is brilliant by the second laser The 1064nm laser that body generates transmits the first laser crystal;Under the modulation of the adjusting Q crystal, the laser resonance is intracavitary 1064nm pulsed light is formed, when 1064nm pulsed light passes through two frequency-doubling crystal, part 1064nm pulsed light is converted to 532nm Pulsed light;532nm pulsed light and 1064nm pulsed light carry out in the frequency tripling crystal and frequency, generates 355nm pulsed light; 1064nm pulsed light, 532nm pulsed light and 355nm pulsed light separate after exporting frequency tripling crystal, 355nm pulse light output To outside the laser resonator.
2. bicrystal ultraviolet laser according to claim 1, which is characterized in that the first laser crystal is Nd: YAG, the second laser crystal are Nd:YVO4.
3. bicrystal ultraviolet laser according to claim 2, which is characterized in that the first laser crystal and described The two-sided plating 1064nm anti-reflection film of dual-laser crystal.
4. bicrystal ultraviolet laser according to claim 2, which is characterized in that the first laser crystal and described The two-sided plating 808/880nm anti-reflection film of dual-laser crystal.
5. bicrystal ultraviolet laser according to claim 1, which is characterized in that further include diaphragm, set on the diaphragm There is light hole, the light hole is between the first laser crystal and the second laser crystal.
6. bicrystal ultraviolet laser according to claim 1, which is characterized in that it further include optical fiber component, the optical fiber Component includes the first transmission fiber and the second transmission fiber;First pump laser couples the first transmission fiber output Pump light, second pump laser couple second transmission fiber and export pump light.
7. bicrystal ultraviolet laser according to claim 6, which is characterized in that the optical fiber component further include with it is described The first fixing piece that first focus pack is correspondingly arranged, the output end of first transmission fiber are fixed on first fixing piece On.
8. bicrystal ultraviolet laser according to claim 6, which is characterized in that the optical fiber component further include with it is described The second fixing piece that second focus pack is correspondingly arranged, the output end of second transmission fiber are fixed on second fixing piece On.
9. bicrystal ultraviolet laser according to claim 1, which is characterized in that first focus pack includes first Plano-convex lens and the second plano-convex lens, the convex surface of first plano-convex lens are opposite with the convex surface of second plano-convex lens.
10. bicrystal ultraviolet laser according to claim 1, which is characterized in that second focus pack includes the Three plano-convex lens and the 4th plano-convex lens, the convex surface of the third plano-convex lens are opposite with the convex surface of the 4th plano-convex lens.
CN201821556571.3U 2018-09-21 2018-09-21 Bicrystal ultraviolet laser Withdrawn - After Issue CN208782235U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821556571.3U CN208782235U (en) 2018-09-21 2018-09-21 Bicrystal ultraviolet laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821556571.3U CN208782235U (en) 2018-09-21 2018-09-21 Bicrystal ultraviolet laser

Publications (1)

Publication Number Publication Date
CN208782235U true CN208782235U (en) 2019-04-23

Family

ID=66162262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821556571.3U Withdrawn - After Issue CN208782235U (en) 2018-09-21 2018-09-21 Bicrystal ultraviolet laser

Country Status (1)

Country Link
CN (1) CN208782235U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933378A (en) * 2018-09-21 2018-12-04 深圳市杰普特光电股份有限公司 Bicrystal ultraviolet laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933378A (en) * 2018-09-21 2018-12-04 深圳市杰普特光电股份有限公司 Bicrystal ultraviolet laser

Similar Documents

Publication Publication Date Title
CN103618205B (en) A kind of full-solid-state single longitudinal mode yellow light laser
CN204103242U (en) A kind of high power single longitudinal mode ultraviolet all-solid-state laser
CN102280812A (en) Side-pumped high-power laser device
CN103594914A (en) Yellow orange light laser based on self frequency-doubling laser crystal
CN208782229U (en) Bicrystal infrared laser
CN109119875B (en) Bicrystal infrared laser
CN104953457B (en) The alternately device of output dual wavelength adjusting Q pulse laser
CN208782235U (en) Bicrystal ultraviolet laser
CN101000997A (en) Nd:LuVO4 laser with wave of 916 nm
CN208782230U (en) Bicrystal green (light) laser
CN108963741B (en) Bicrystal green (light) laser
CN201349092Y (en) All-solid-state electro-optic Q-switched green laser
CN101527425A (en) Barium tungstate crystal all-solid-state continuous Raman laser
CN101345389B (en) Full-solid state five-wavelength simultaneously outputting laser device and 5-wavelength laser generation method
CN108933378B (en) Bicrystal ultraviolet laser
CN101728757A (en) All-solid-state laser
CN102280810A (en) Frequency-doubling laser with wide temperature working range
CN102623885B (en) All solid Raman self frequency doubling yellow laser of BaTeMo2O9 crystal
CN208862362U (en) Controllable passive Q-adjusted green (light) laser
CN100438232C (en) Quasi-continuous high power red, green double-wavelength laser with LD side pumping
CN102738695A (en) Semiconductor diode side-pump intracavity frequency doubling ultraviolet laser and method thereof
CN102044837A (en) High-power green laser for pumps at two ends of semiconductor diode
CN101527422A (en) Dual-wavelength solid laser with different light-emitting directions
CN202444176U (en) LD (laser disc) end pumping electro-optical Q-switching green laser
CN101447639A (en) Full solid state electro-optic modulation Q green laser

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20190423

Effective date of abandoning: 20190910