CN208334194U - 一种测量高量程浊度的光路结构 - Google Patents

一种测量高量程浊度的光路结构 Download PDF

Info

Publication number
CN208334194U
CN208334194U CN201820932901.8U CN201820932901U CN208334194U CN 208334194 U CN208334194 U CN 208334194U CN 201820932901 U CN201820932901 U CN 201820932901U CN 208334194 U CN208334194 U CN 208334194U
Authority
CN
China
Prior art keywords
receiving unit
light
center
colorimetric bottle
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820932901.8U
Other languages
English (en)
Inventor
阮小东
陈云龙
边宝丽
李蔚
刘少飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hky Technology Co Ltd
Original Assignee
Hky Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hky Technology Co Ltd filed Critical Hky Technology Co Ltd
Priority to CN201820932901.8U priority Critical patent/CN208334194U/zh
Application granted granted Critical
Publication of CN208334194U publication Critical patent/CN208334194U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了一种测量高量程浊度的光路结构,所述光路结构包括:光源、透镜、前向散射接收单元、比色瓶、90°散射接收单元、后向散射接收单元和透射接收单元,比色瓶内装有待测样品。本实用新型所提供的光路结构,通过四个接收单元特殊的光路设计,隔离相互影响以及杂散光的干扰,使各接收单元接收到最原始的初始信号,根据样品浊度与各信号之间的关系,实现对高量程浊度样品的测量,解决了现有浊度仪量程不高的问题。

Description

一种测量高量程浊度的光路结构
技术领域
本实用新型涉及一种光路结构,具体涉及一种测量高量程浊度的光路结构。
背景技术
浑浊度是反映液体物理性状的参数之一,与液体中悬浮物的浓度、颗粒的大小、形状、等有关,例如在水质好坏的检测中,浑浊度就是一项非常重要的指标。我国每年没有处理的水的排放量是2000亿吨,这些污水造成了90%流经城市的河道受到污染,75%的湖泊富营养化,并且日益严重。在此背景下,提高水环境监测水平,大力发展水环境监测仪器刻不容缓。
一束平行光在透明液体中传播,如果液体中无任何悬浮颗粒存在,那么光束在直线传播时不会改变方向;若有悬浮颗粒、光束在遇到颗粒时就会改变方向(不管颗粒透明与否)。这就形成所谓散射光。颗粒愈多(浊度愈高)光的散射就愈严重。浊度是用一种称作浊度计的仪器来测定的。浊度计发出光线,使之穿过一段样品,并从与入射光呈90°的方向上检测有多少光被水中的颗粒物所散射,根据Mie散射定理由接收到的散射光强计算液体的浊度。
在传统的浊度仪中,都是通过测量90°散射光或者透射光两个信号来检测样品的浊度,这两个信号与样品的浊度值在一定浊度范围内成线性关系。但当样品浊度值比较高时,透射光检测不到信号,90°散射光与样品的浊度值不再具有一定的数学关系,这就使得传统的浊度仪普遍量程比较低,一般为0-1000NTU。当样品的浊度值比较高时,尤其是污水样品,现有的浊度仪无法满足检测要求。
实用新型内容
针对现有技术中存在的缺陷,本实用新型的目的在于提供一种测量高量程浊度的光路结构,实现对高量程浊度样品的测量。
为实现上述目的,本实用新型采用的技术方案如下:
一种测量高量程浊度的光路结构,所述光路结构包括:通过连接器件固定的光源、透镜、前向散射接收单元、比色瓶、90°散射接收单元和后向散射接收单元,以及透射接收单元,所述比色瓶内装有待测样品;
所述光源和所述透镜均安装在所述比色瓶的一侧,所述透射接收单元安装在所述比色瓶的另一侧,所述光源发出的光依次穿过所述透镜的中心、所述比色瓶的中心和所述透射接收单元的中心,形成主光路;
所述前向散射接收单元、所述90°散射接收单元和所述后向散射接收单元沿同一直线依次排列布置,该直线与所述主光路平行,所述透镜的中心与所述比色瓶的中心形成的连线与所述比色瓶的中心与所述90°散射接收单元的中心形成的连线之间的夹角为90°,所述前向散射接收单元位于靠近所述透镜一侧,所述后向散射接收单元位于靠近所述透射接收单元一侧。
进一步,如上所述的一种测量高量程浊度的光路结构,所述透镜的中心与所述比色瓶的中心形成的连线与所述比色瓶的中心与所述前向散射接收单元的中心形成的连线之间的夹角为45°。
进一步,如上所述的一种测量高量程浊度的光路结构,所述透镜的中心与所述比色瓶的中心形成的连线与所述比色瓶的中心与所述后向散射接收单元的中心形成的连线之间的夹角为135°。
进一步,如上所述的一种测量高量程浊度的光路结构,所述光源发出的光为850nm单色光。
本实用新型的有益效果在于:本实用新型所提供的光路结构,通过四个接收单元特殊的光路设计,隔离相互影响以及杂散光的干扰,使各接收单元接收到最原始的初始信号,根据样品浊度与各信号之间的关系,实现对高量程浊度样品的测量,解决了现有浊度仪量程不高的问题。
附图说明
图1为本实用新型实施例中提供的一种测量高量程浊度的光路结构的结构图;
图2为本实用新型实施例中提供的在固定光程下浊度值同各接收信号之间的关系图。
具体实施方式
下面结合说明书附图与具体实施方式对本实用新型做进一步的详细说明。
如图1所示,一种测量高量程浊度的光路结构,光路结构包括:通过连接器件固定的光源1、透镜2、前向散射接收单元3、比色瓶4、90°散射接收单元5和后向散射接收单元6,以及透射接收单元7,比色瓶4内装有待测样品;
光源1和透镜2均安装在比色瓶4的一侧,透射接收单元7安装在比色瓶4的另一侧,光源发出的光依次穿过透镜的中心、比色瓶4的中心和透射接收单元7的中心,形成主光路;
前向散射接收单元3、90°散射接收单元5和后向散射接收单元6沿同一直线依次排列布置,该直线与主光路平行,透镜2的中心与比色瓶4的中心形成的连线与比色瓶4的中心与90°散射接收单元5的中心形成的连线之间的夹角为90°,前向散射接收单元3位于靠近透镜2一侧,后向散射接收单元6位于靠近透射接收单元7一侧。
透镜2的中心与比色瓶4的中心形成的连线与比色瓶4的中心与前向散射接收单元3的中心形成的连线之间的夹角为45°。
透镜2的中心与比色瓶4的中心形成的连线与比色瓶4的中心与后向散射接收单元6的中心形成的连线之间的夹角为135°。
光源1发出的光为850nm单色光。
光源1发出的850nm单色光经透镜2转化为平行光线,经过装满待测样品的比色瓶4时吸收衰减,其中前向散射接收单元3接收前向45°散射光,90°散射接收单元5接收90°散射光,后向散射接收单元6接收后向135°散射光,透射接收单元7接收透射光。
工作时,平行光线穿过比色瓶4内的待测样品,待测样品会对光线有一定吸收,符合贝尔定律,同时待测样品中的小颗粒对光线有一定的散射,符合Mie散射定理。在规定的光程范围内,当待测样品的浊度在0-1000NTU时,可以使用90°散射接收单元5接收的90°散射光信号和透射接收单元7接收的透射光信号来检测待测样品的浊度,通过两者的信号比率获取待测样品的浊度;当待测液浊度>1000NTU时,透射接收单元7逐渐检测不到透射光信号,无法通过90°散射光信号和透射光信号获取待测样品的浊度,此时,可以使用前向散射接收单元3接收的前向散射光信号来检测待测样品的浊度,此时,后向散射接收单元6接收的后向散射光信号作为参比,用来克服各种干扰。
如图2所示,在固定光程下,浊度值同各接收信号之间的关系:
1)透射光信号:随着浊度值升高,透射光信号逐渐降低;当浊度值大于2000NTU时,透射光信号很弱,几乎检测不到。
2)后向散射光信号:在0-500NTU,后向散射光信号与浊度值成线性关系;在500-1000NTU时,随之浊度值的增加,后向散射光信号增加,但两者不成比例关系;在>1000NTU时,后向散射光信号开始减弱。
3)90°散射光信号:在0-1000NTU,90°散射光信号与浊度值成线性关系;在1000-2500NTU时,随之浊度值的增加,90°散射光信号增加,但两者不成比例关系;在>2500NTU时,90°散射光信号开始减弱。
4)前向散射光信号:在0-10000NTU,前向散射光信号与浊度值成线性关系。
现有浊度仪的量程一般为0-1000NTU,通过本实用新型提供的光路结构,可以将浊度的量程扩展到0-10000NTU。
显然,本领域的技术人员可以对本实用新型进行各种改动和变型而不脱离本实用新型的精神和范围。这样,倘若本实用新型的这些修改和变型属于本实用新型权利要求及其同等技术的范围之内,则本实用新型也意图包含这些改动和变型在内。

Claims (4)

1.一种测量高量程浊度的光路结构,其特征在于,所述光路结构包括:通过连接器件固定的光源(1)、透镜(2)、前向散射接收单元(3)、比色瓶(4)、90°散射接收单元(5)和后向散射接收单元(6),以及透射接收单元(7),所述比色瓶(4)内装有待测样品;
所述光源(1)和所述透镜(2)均安装在所述比色瓶(4)的一侧,所述透射接收单元(7)安装在所述比色瓶(4)的另一侧,所述光源发出的光依次穿过所述透镜的中心、所述比色瓶(4)的中心和所述透射接收单元(7)的中心,形成主光路;
所述前向散射接收单元(3)、所述90°散射接收单元(5)和所述后向散射接收单元(6)沿同一直线依次排列布置,该直线与所述主光路平行,所述透镜(2)的中心与所述比色瓶(4)的中心形成的连线与所述比色瓶(4)的中心与所述90°散射接收单元(5)的中心形成的连线之间的夹角为90°,所述前向散射接收单元(3)位于靠近所述透镜(2)一侧,所述后向散射接收单元(6)位于靠近所述透射接收单元(7)一侧。
2.根据权利要求1所述的一种测量高量程浊度的光路结构,其特征在于,所述透镜(2)的中心与所述比色瓶(4)的中心形成的连线与所述比色瓶(4)的中心与所述前向散射接收单元(3)的中心形成的连线之间的夹角为45°。
3.根据权利要求1所述的一种测量高量程浊度的光路结构,其特征在于,所述透镜(2)的中心与所述比色瓶(4)的中心形成的连线与所述比色瓶(4)的中心与所述后向散射接收单元(6)的中心形成的连线之间的夹角为135°。
4.根据权利要求1-3任一项所述的一种测量高量程浊度的光路结构,其特征在于,所述光源(1)发出的光为850nm单色光。
CN201820932901.8U 2018-06-15 2018-06-15 一种测量高量程浊度的光路结构 Active CN208334194U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820932901.8U CN208334194U (zh) 2018-06-15 2018-06-15 一种测量高量程浊度的光路结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820932901.8U CN208334194U (zh) 2018-06-15 2018-06-15 一种测量高量程浊度的光路结构

Publications (1)

Publication Number Publication Date
CN208334194U true CN208334194U (zh) 2019-01-04

Family

ID=64771467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820932901.8U Active CN208334194U (zh) 2018-06-15 2018-06-15 一种测量高量程浊度的光路结构

Country Status (1)

Country Link
CN (1) CN208334194U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883997A (zh) * 2019-02-01 2019-06-14 中国海洋大学 一种高精度智能浊度检测装置及其标定方法和使用方法
CN114047101A (zh) * 2021-07-12 2022-02-15 中国科学院大气物理研究所 一种颗粒物不规则程度表征的光学模拟系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883997A (zh) * 2019-02-01 2019-06-14 中国海洋大学 一种高精度智能浊度检测装置及其标定方法和使用方法
CN109883997B (zh) * 2019-02-01 2020-07-03 中国海洋大学 一种高精度智能浊度检测装置及其标定方法和使用方法
CN114047101A (zh) * 2021-07-12 2022-02-15 中国科学院大气物理研究所 一种颗粒物不规则程度表征的光学模拟系统及方法

Similar Documents

Publication Publication Date Title
CN103149158B (zh) 一种双棱镜水质监测光纤传感系统
CN201488943U (zh) 一种智能化浊度分析仪
CN102445437B (zh) 一种浊度测量方法及装置
CN208334194U (zh) 一种测量高量程浊度的光路结构
CN101743466A (zh) 空间频率光学测量仪器和方法
Hongve et al. Comparison of nephelometric turbidity measurements using wavelengths 400–600 and 860 nm
McCluney Radiometry of water turbidity measurements
CN102721654A (zh) 一种用于CODCr测量的背景吸收校正方法
CN105203505A (zh) 一种水质在线浊度色度一体检测装置及方法
CN204101456U (zh) 一种适合全自动生化分析仪的光学检测装置
CN201732058U (zh) 一种全自动液体浊度测试仪
CN206515236U (zh) 水质监测装置
CN101398380A (zh) 快速水中矿物油测量仪器
CN203310744U (zh) 液芯波导食品检测仪
CN201653899U (zh) 无机盐中硫酸根测定仪
CN102692396B (zh) 一种内毒素检测系统及其定量检测方法
CN202794024U (zh) 一种用于测量分子光谱吸收的样品池
CN205080058U (zh) 一种水质在线浊度色度一体检测装置
CN102384889B (zh) 一种全自动便潜血分析仪的积分球式光学系统
CN202133468U (zh) 一种用于测量脉冲激光能量的系统
CN204228605U (zh) 一种水浊度的测量装置及测量系统
CN207937355U (zh) 一种投入式便携浊度仪
CN205139008U (zh) 一种高精度测量浊度的光路结构
CN204758471U (zh) 基于选通双光路的水浊度测量系统
CN115266509A (zh) 一种基于激光雷达的水下垂向悬浮物浓度探测方法及系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant