CN208060728U - 放射性活度连续监测与核素识别装置 - Google Patents

放射性活度连续监测与核素识别装置 Download PDF

Info

Publication number
CN208060728U
CN208060728U CN201820602376.3U CN201820602376U CN208060728U CN 208060728 U CN208060728 U CN 208060728U CN 201820602376 U CN201820602376 U CN 201820602376U CN 208060728 U CN208060728 U CN 208060728U
Authority
CN
China
Prior art keywords
identification device
nuclide identification
detection chamber
detector
radioactive activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820602376.3U
Other languages
English (en)
Inventor
刘春雨
蒋丹枫
单陈瑜
刘夏杰
吕永红
林鹏
谢文章
林有奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
China Nuclear Power Technology Research Institute Co Ltd
CGN Power Co Ltd
China Nuclear Power Institute Co Ltd
Original Assignee
China General Nuclear Power Corp
China Nuclear Power Technology Research Institute Co Ltd
CGN Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, China Nuclear Power Technology Research Institute Co Ltd, CGN Power Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN201820602376.3U priority Critical patent/CN208060728U/zh
Application granted granted Critical
Publication of CN208060728U publication Critical patent/CN208060728U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/178Circuit arrangements not adapted to a particular type of detector for measuring specific activity in the presence of other radioactive substances, e.g. natural, in the air or in liquids such as rain water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本实用新型公开了一种放射性活度连续监测与核素识别装置,包括壳体、气体过滤层、塑料闪烁体探测器和高纯锗探测器、第一处理单元和第二处理单元;壳体内设有第一探测腔室和第二探测腔室,壳体上设有第一进出口和第二进出口,第一进出口、第一探测腔室、第二探测腔室和第二进出口依次连通形成放射性气体流道;气体过滤层设置在第一探测腔室和第二探测腔室之间,塑料闪烁体探测器设置在第一探测腔室内,其探测端朝向气体过滤层;高纯锗探测器设置在第二探测腔室内,其探测端朝向气体过滤层;第一处理单元通讯连接塑料闪烁体探测器;第二处理单元通讯连接高纯锗探测器。本实用新型实现等离子体熔融系统中放射性废气的放射性活度监测和核素识别。

Description

放射性活度连续监测与核素识别装置
技术领域
本实用新型涉及核辐射监测技术领域,尤其涉及一种放射性活度连续监测与核素识别装置。
背景技术
放射性废物等离子体熔融减容处理系统(以下简称“等离子体熔融系统”)在处理放射性废物的过程中会产生放射性废气,包括二噁英、NOX、SOX、飞灰等常规污染物以及挥发性放射性核素,主要有Co-58、Co-60、Mn-54、Cr-51、Nb-95、Zr-95、Cs-134、Cs-137等。因此,处理放射性废物时需要在等离子体熔融系统的排气管线上设置连续监测仪器,监测废气中的放射性活度是否满足国标的要求,以保护人类环境、降低公众辐射剂量。
然而,目前还没有专门用于等离子体熔融系统开发的放射性活度连续监测装置,而在核电系统中,废气处理系统(TEG)的排放管线上设置有取样连续监测仪进行管道内的直接测量,结构较为复杂,外壳容易被污染,需要破损工艺管道,并增加额外的测量管段,后续设备的更换和维护较为麻烦。此外,等离子体熔融系统中的放射性核素种类较于废气处理系统更多,测量对象γ与β射线同时存在,源项谱更加复杂,探测器量程宽度要求也有较大差别,也无法使用现有的取样连续监测仪进行核素识别,因此核电系统中的取样连续监测仪并不适用于等离子体熔融系统。
实用新型内容
本实用新型要解决的技术问题在于,提供一种用于等离子体熔融系统的放射性活度连续监测与核素识别装置。
本实用新型解决其技术问题所采用的技术方案是:提供一种放射性活度连续监测与核素识别装置,包括壳体、气体过滤层、塑料闪烁体探测器和高纯锗探测器、第一处理单元和第二处理单元;所述壳体内设有相连通的第一探测腔室和第二探测腔室,所述壳体上设有第一进出口和第二进出口,所述第一进出口、第一探测腔室、第二探测腔室和第二进出口依次连通形成放射性气体流道;
所述气体过滤层设置在所述第一探测腔室和第二探测腔室之间,所述塑料闪烁体探测器设置在所述第一探测腔室内,其探测端朝向所述气体过滤层;所述高纯锗探测器设置在所述第二探测腔室内,其探测端朝向所述气体过滤层;所述第一处理单元通讯连接所述塑料闪烁体探测器,接收并处理所述塑料闪烁体探测器的输出信号以获得放射性气体β总活度;所述第二处理单元通讯连接所述高纯锗探测器,接收并处理所述高纯锗探测器的输出信号以获得放射性气体的核素种类。
优选地,所述第一处理单元包括通讯连接的放大处理单元和显示单元;所述放大处理单元与所述塑料闪烁体探测器通讯连接。
优选地,所述第二处理单元包括信号处理单元;所述信号处理单元对所述高纯锗探测器的输出信号采样后得到放射性气体的γ能谱,根据γ能谱利用寻峰和拟合算法识别出能峰的位置,并结合核素库中的信息分辨获得γ能谱中的核素种类。
优选地,所述气体过滤层为滤纸。
优选地,所述放射性活度连续监测与核素识别装置还包括将滤纸送至所述第一探测腔室和第二探测腔室之间的走纸装置。
优选地,所述走纸装置包括相对设置在放射性气体流道两侧的第一滚轮和第二滚轮,所述滤纸的相对两端绕覆在所述第一滚轮和第二滚轮上。
优选地,所述走纸装置还包括连接并驱动所述第一滚轮和/或第二滚轮转动的电机。
优选地,所述放射性活度连续监测与核素识别装置还包括射线准直件,所述射线准直件设置在所述塑料闪烁体探测器的探测端外围。
优选地,所述射线准直件为相对两端开放的筒体。
优选地,所述放射性活度连续监测与核素识别装置还包括与所述第一处理单元和第二处理单元通讯连接的终端处理单元,所述终端处理单元结合放射性气体β总活度和放射性气体的核素种类获得各核素的活度。
本实用新型的放射性活度连续监测与核素识别装置,用于放射性废物等离子体熔融减容处理系统(等离子体熔融系统),实现等离子体熔融系统中放射性废气的放射性活度监测与核素识别;结构简单、安装维护方便。
附图说明
下面将结合附图及实施例对本实用新型作进一步说明,附图中:
图1是本实用新型一实施例的放射性活度连续监测与核素识别装置的结构示意图。
具体实施方式
为了对本实用新型的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本实用新型的具体实施方式。
如图1所示,本实用新型一实施例的放射性活度连续监测与核素识别装置,用于放射性废物等离子体熔融减容处理系统(等离子体熔融系统),对其排放的放射性废气的放射性活度进行监测与核素识别。该放射性活度连续监测与核素识别装置可包括壳体10、气体过滤层20、塑料闪烁体探测器30和高纯锗探测器40、第一处理单元50和第二处理单元60。
壳体10内设有相连通的第一探测腔室11和第二探测腔室12,壳体10上设有第一进出口13和第二进出口14。第一进出口13连通第一探测腔室11,第二进出口14连通第二探测腔室12,从而第一进出口13、第一探测腔室11、第二探测腔室12和第二进出口14依次连通形成放射性气体流道;放射性气体可从第一进出口13进入放射性气体流道,通过第二进出口14排出;或者放射性气体从第二进出口14进入,从第一进出口13排出。
气体过滤层20设置在第一探测腔室11和第二探测腔室12之间,对放射性气体进行过滤。本实用新型中,气体过滤层20用于过滤气溶胶,聚源积聚效应,放射性气体中的气溶胶等物质被滤于气体过滤层20,再通过塑料闪烁体探测器30和高纯锗探测器40对气溶胶等物质进行探测。
本实施例中,气体过滤层20选用滤纸。滤纸优选为玻璃纤维微孔滤纸。
进一步,本实用新型的放射性活度连续监测与核素识别装置还包括将滤纸送至第一探测腔室11和第二探测腔室12之间的走纸装置70,其能够根据滤纸的使用情况自动更换滤纸,延长维护周期。
走纸装置70包括相对设置在放射性气体流道两侧的第一滚轮71和第二滚轮72,滤纸的相对两端绕覆在第一滚轮71和第二滚轮71上。走纸装置70还包括连接并驱动第一滚轮71和/或第二滚轮72转动的电机(未图示)。
走纸装置70还可包括支撑第一滚轮71和第二滚轮72的外壳73,外壳73可设置在壳体10的外围。
在壳体10内,塑料闪烁体探测器30和高纯锗探测器40位于气体过滤层20的相对两侧。
塑料闪烁体探测器30设置在第一探测腔室11内,其探测端朝向气体过滤层20,从而对积聚在气体过滤层20上的物质进行探测,以获得放射性气体中的β总活度。塑料闪烁体探测器30采用具有高β/γ比的塑料闪烁体,以使得其探测更精确。具有高β/γ比的塑料闪烁体探测器30的标准可参考《塑料闪烁体》GB/T 13376-2008的记载,β与γ效率比≥150。
对应塑料闪烁体探测器30,本实用新型的放射性活度连续监测与核素识别装置还可包括射线准直件80,射线准直件80设置在塑料闪烁体探测器30的探测端外围,对塑料闪烁体探测器30的探测端和气体过滤层20之间的光路进行准直,提高测量精度。作为选择,射线准直件80可为相对两端开放的筒体。
高纯锗探测器40设置在第二探测腔室12内,其探测端朝向气体过滤层20,从而对积聚在气体过滤层20上的物质进行探测,以测得放射性气体的γ能谱,实现放射性气体中的核素识别,可以有效排除天然氡及其子体的影响。高纯锗探测器40外围通过金属外壳设置,保证高纯锗探测器40内部探测元件不受污染。
第一处理单元50与塑料闪烁体探测器30通讯连接,用于接收并处理塑料闪烁体探测器30的输出信号以获得放射性气体β总活度。第二处理单元60与高纯锗探测器40通讯连接,用于接收并处理高纯锗探测器40的输出信号以获得放射性气体的核素种类。
具体地,第一处理单元50可包括通讯连接的放大处理单元51和显示单元52;放大处理单元51与塑料闪烁体探测器30通讯连接。在塑料闪烁体探测器30内,通常设有塑料闪烁体、光电倍增管和前置放大器,放大处理单元51可通过电缆与前置放大器连接,前置放大器将光电倍增管的输出信号放大后通过电缆输出至放大处理单元51,放大处理单元51经过放大和处理后输出至显示单元52,显示单元52将获得的放射性气体β总活度(核素总活度)显示出来。
第二处理单元60可包括信号处理单元61,用于对高纯锗探测器40的输出信号采样后得到放射性气体的γ能谱,根据γ能谱利用寻峰和拟合算法识别出能峰的位置,并结合核素库中的信息分辨获得γ能谱中的核素种类。高纯锗探测器40内设有高纯锗晶体和前置放大器,信号处理单元61可通过电缆连接该前置放大器。
进一步地,本实用新型的放射性活度连续监测与核素识别装置还可包括与第一处理单元50和第二处理单元60通讯连接的终端处理单元(未图示),终端处理单元结合放射性气体β总活度和放射性气体的核素种类获得各核素的活度。具体地,终端处理单元可扣除能谱中的放射性本底,以蒙特卡洛模拟能谱为刻度修正数据,计算出各种核素的含量,根据各核素含量信息,结合β总活度,计算出放射性气体中各核素的活度。终端处理单元可集成在电脑中。
参考图1(图中箭头为放射性气体流通方向),将第一进出口13作为进口为例,本实用新型的放射性活度连续监测与核素识别装置工作时,开启抽气泵,使放射性气体通过第一进出口13进入壳体10内;放射性气体流经滤纸时被过滤,之后由第二进出口14流出壳体10。塑料闪烁体探测器30探测滤纸上放射性核素的β总活度,输出信号经过电缆输出到第一处理单元50;高纯锗探测器40探测滤纸上放射性核素的γ能谱,输出信号经过电缆输出到第二处理单元60;第二处理单元60根据本底扣除算法将能谱中的环境本底扣除,对能谱数据进行预处理,并利用基于核素识别的解谱算法分析能谱数据,得到放射性气体的核素种类;终端处理单元以蒙特卡洛模拟能谱为刻度修正数据,计算出各种核素的含量,根据各核素含量信息,结合β总活度,计算出放射性气体中各核素的活度。
以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (10)

1.一种放射性活度连续监测与核素识别装置,其特征在于,包括壳体(10)、气体过滤层(20)、塑料闪烁体探测器(30)和高纯锗探测器(40)、第一处理单元(50)和第二处理单元(60);所述壳体(10)内设有相连通的第一探测腔室(11)和第二探测腔室(12),所述壳体(10)上设有第一进出口(13)和第二进出口(14),所述第一进出口(13)、第一探测腔室(11)、第二探测腔室(12)和第二进出口(14)依次连通形成放射性气体流道;
所述气体过滤层(20)设置在所述第一探测腔室(11)和第二探测腔室(12)之间,所述塑料闪烁体探测器(30)设置在所述第一探测腔室(11)内,其探测端朝向所述气体过滤层(20);所述高纯锗探测器(40)设置在所述第二探测腔室(12)内,其探测端朝向所述气体过滤层(20);所述第一处理单元(50)通讯连接所述塑料闪烁体探测器(30),接收并处理所述塑料闪烁体探测器(30)的输出信号以获得放射性气体β总活度;所述第二处理单元(60)通讯连接所述高纯锗探测器(40),接收并处理所述高纯锗探测器(40)的输出信号以获得放射性气体的核素种类。
2.根据权利要求1所述的放射性活度连续监测与核素识别装置,其特征在于,所述第一处理单元(50)包括通讯连接的放大处理单元(51)和显示单元(52);所述放大处理单元(51)与所述塑料闪烁体探测器(30)通讯连接。
3.根据权利要求1所述的放射性活度连续监测与核素识别装置,其特征在于,所述第二处理单元(60)包括信号处理单元(61);所述信号处理单元(61)对所述高纯锗探测器(40)的输出信号采样后得到放射性气体的γ能谱,根据γ能谱利用寻峰和拟合算法识别出能峰的位置,并结合核素库中的信息分辨获得γ能谱中的核素种类。
4.根据权利要求1所述的放射性活度连续监测与核素识别装置,其特征在于,所述气体过滤层(20)为滤纸。
5.根据权利要求4所述的放射性活度连续监测与核素识别装置,其特征在于,所述放射性活度连续监测与核素识别装置还包括将滤纸送至所述第一探测腔室(11)和第二探测腔室(12)之间的走纸装置(70)。
6.根据权利要求5所述的放射性活度连续监测与核素识别装置,其特征在于,所述走纸装置(70)包括相对设置在放射性气体流道两侧的第一滚轮(71)和第二滚轮(72),所述滤纸的相对两端绕覆在所述第一滚轮(71)和第二滚轮(72)上。
7.根据权利要求6所述的放射性活度连续监测与核素识别装置,其特征在于,所述走纸装置(70)还包括连接并驱动所述第一滚轮(71)和/或第二滚轮(72)转动的电机。
8.根据权利要求1所述的放射性活度连续监测与核素识别装置,其特征在于,所述放射性活度连续监测与核素识别装置还包括射线准直件(80),所述射线准直件(80)设置在所述塑料闪烁体探测器(30)的探测端外围。
9.根据权利要求8所述的放射性活度连续监测与核素识别装置,其特征在于,所述射线准直件(80)为相对两端开放的筒体。
10.根据权利要求1-9任一项所述的放射性活度连续监测与核素识别装置,其特征在于,所述放射性活度连续监测与核素识别装置还包括与所述第一处理单元(50)和第二处理单元(60)通讯连接的终端处理单元,所述终端处理单元结合放射性气体β总活度和放射性气体的核素种类获得各核素的活度。
CN201820602376.3U 2018-04-24 2018-04-24 放射性活度连续监测与核素识别装置 Active CN208060728U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820602376.3U CN208060728U (zh) 2018-04-24 2018-04-24 放射性活度连续监测与核素识别装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820602376.3U CN208060728U (zh) 2018-04-24 2018-04-24 放射性活度连续监测与核素识别装置

Publications (1)

Publication Number Publication Date
CN208060728U true CN208060728U (zh) 2018-11-06

Family

ID=63984037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820602376.3U Active CN208060728U (zh) 2018-04-24 2018-04-24 放射性活度连续监测与核素识别装置

Country Status (1)

Country Link
CN (1) CN208060728U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752751A (zh) * 2019-01-23 2019-05-14 成都理工大学 空气中131i动态平衡监测装置及监测方法
CN110153045A (zh) * 2019-06-17 2019-08-23 博思英诺科技(北京)有限公司 放射性污染材料活度连续甄别自动分选的设备及检测方法
CN111856543A (zh) * 2020-06-23 2020-10-30 苏州热工研究院有限公司 一种水中总β与总γ在线监测装置及水中总β与总γ活度浓度的计算方法
CN112764081A (zh) * 2020-12-28 2021-05-07 陕西卫峰核电子有限公司 一种放射性气溶胶实时探测装置
EP3951435A1 (en) * 2020-08-03 2022-02-09 Rotem Ind. Ltd. Method and system for stack monitoring of radioactive nuclides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752751A (zh) * 2019-01-23 2019-05-14 成都理工大学 空气中131i动态平衡监测装置及监测方法
CN110153045A (zh) * 2019-06-17 2019-08-23 博思英诺科技(北京)有限公司 放射性污染材料活度连续甄别自动分选的设备及检测方法
CN111856543A (zh) * 2020-06-23 2020-10-30 苏州热工研究院有限公司 一种水中总β与总γ在线监测装置及水中总β与总γ活度浓度的计算方法
EP3951435A1 (en) * 2020-08-03 2022-02-09 Rotem Ind. Ltd. Method and system for stack monitoring of radioactive nuclides
CN112764081A (zh) * 2020-12-28 2021-05-07 陕西卫峰核电子有限公司 一种放射性气溶胶实时探测装置

Similar Documents

Publication Publication Date Title
CN208060728U (zh) 放射性活度连续监测与核素识别装置
CN106291655B (zh) 一种气载放射性监测仪
CN103197338B (zh) 水下辐射监测方法及系统
CN104361916B (zh) 一种燃料元件破损典型核素监测仪
CN103913762B (zh) 一种通道放射性物质检测监控装置及检测方法
CN101019041A (zh) 放射线方向性检测器和放射线监测方法及装置
CN103712668B (zh) 被动式核物位检测器及检测方法
CN103852475A (zh) 一种基于伽马射线的多道测钾仪
CN106291653B (zh) 流体总α、总β放射性连续在线监测方法及装置
CN104849742B (zh) α与β的粒子活度探测装置
CN111638540B (zh) 放射性惰性气体的测量装置、方法、设备及存储介质
JP3930234B2 (ja) ラドン濃度測定装置および方法
CN108802792A (zh) 放射性惰性气体的测量装置及方法
CN204705719U (zh) 一种便携式放射性污染测量仪
CN207883331U (zh) 一种核电站燃料元件包壳完整性检测在线啜吸机柜
CN106054231A (zh) 放射性测定装置
Glavič-Cindro et al. Compact radioactive aerosol monitoring device for early warning networks
CN113484895B (zh) 一种用于高氡本底的α表面污染检测仪及检测方法
CN206609977U (zh) 一种用于流体放射性测量的检测器
JP2014009977A (ja) 放射性漏洩水モニタリングシステム及び放射性漏洩水モニタリング方法
CN109752751A (zh) 空气中131i动态平衡监测装置及监测方法
CN106094001A (zh) 放射源应急机器人
CN206609978U (zh) 一种用于流体放射性测量的检测器
US20190391284A1 (en) SYSTEM AND METHOD FOR EVALUATING ELUTION EFFICIENCY AND RADIOPURITY OF Tc-99m GENERATORS
CN115436987B (zh) 空气中I-131的γ-β联合监测系统及监测方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant