CN207925585U - 耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池 - Google Patents

耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池 Download PDF

Info

Publication number
CN207925585U
CN207925585U CN201820259417.3U CN201820259417U CN207925585U CN 207925585 U CN207925585 U CN 207925585U CN 201820259417 U CN201820259417 U CN 201820259417U CN 207925585 U CN207925585 U CN 207925585U
Authority
CN
China
Prior art keywords
cathode
anode
chamber
carbon
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201820259417.3U
Other languages
English (en)
Inventor
周少奇
许明熠
李猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUIZHOU ACADEMY OF SCIENCES
South China University of Technology SCUT
Original Assignee
GUIZHOU ACADEMY OF SCIENCES
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUIZHOU ACADEMY OF SCIENCES, South China University of Technology SCUT filed Critical GUIZHOU ACADEMY OF SCIENCES
Application granted granted Critical
Publication of CN207925585U publication Critical patent/CN207925585U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本实用新型公开了耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,包含厌氧阳极主体、厌氧阴极主体、厌氧密闭采样系统、气压稳定系统、磁力搅拌系统、外电路及隔膜、数据采集系统。本实用新型间歇运行,装置结构简单,与传统阴极反硝化脱氮型MFC相比,脱氮效果显著,氮负荷明显提高,产电效果良好,实用性大增,为微生物燃料电池和厌氧氨氧化技术开辟出一种新的应用。

Description

耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池
技术领域
本实用新型属于微生物电化学系统技术领域,尤其涉及一种耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池。
背景技术
近年来,随着产业规模的扩大和人类活动的加剧,生活污水和工业废水中的氮污染呈现浓度增高、排放量增大的趋势,高氮含量废水的随意排放,不仅容易引起水体富营养化,还会大量消耗水中的溶解氧,造成严重的水体环境破坏。同时由于能源日趋紧张,污染治理过程中的能耗问题逐渐被重视起来,开发节能工艺与产品是国内外环保界的重点研究方向。
微生物燃料电池(Microbial Fuel Cell,简称MFC)是一种以产电微生物为催化剂,通过生物降解作用将存储在污染物中的化学能直接转化为电能的装置,阴极脱氮型MFC作为其应用的一种,兼具了同步脱氮除碳产电的性能,具有相当的现实意义和应用前景。其阳极中,有机物被降解产生电子,随即电子通过阳极电极、外电路、外置电阻后到达阴极电极,硝态氮和亚硝态氮等氮素污染物在阴极得到电子被还原成N2。目前脱氮型MFC研究主要基于同步硝化反硝化、短程硝化反硝化、同步脱碳氨氧化等反应去除氮素,但其共同的缺陷在于反应路线长、剩余污泥量大、能耗高,系统复杂,维护成本高。
厌氧氨氧化技术(Anaerobic Ammonium Oxidation,简称Anammox)是一种同时去除氨氮和亚硝氮的式高效脱氮技术,其在厌氧氨氧化菌作用下,以铵盐为电子供体,亚硝酸盐为电子受体,一步同时将两种污染物转化为氮气。将Anammox与双室型MFC耦合,创造阴极高效脱氮环境的同时获得电压输出是最新出现的理念,这不仅能解决MFC细菌氮负荷低的缺陷,还能给Anammox技术提供一个崭新的应用方向,很好地利用其高氮负荷、低污泥浓度、高反应速率的特点,非常值得进一步研究。
本实用新型所述MFC的原理为:阴、阳极室由质子交换膜隔开,形成相对独立的反应环境,在生物电化学耦合成功后,阴、阳极反应通过电子传递形成联系并相互影响,阳极中乙酸盐由电化学活性菌催化降解,产生的电子传递并富集于阳极电极上,随后其通过外电路传递至阴极电极,阴极室在发生厌氧氨氧化反应的同时,生成的硝酸盐因获得电子被进一步去除。
实用新型内容
本实用新型的主要目的在于克服现有阴极脱氮型MFC的缺陷,提供一种耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,具体技术方案如下。
一种耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,包括阳极电化学活性菌除碳系统、阴极厌氧氨氧化菌脱氮系统、外电路及数据在线采集系统、厌氧密闭采样系统、气压稳定系统、磁力搅拌系统;其中,阳极电化学活性菌除碳系统中各部件的结构关系为:在阳极室左侧装第一配亚克力隔板,在中间加入第一硅胶垫片并使用螺钉铆紧进行密封,阳极室右侧内部嵌入阳极电极碳毡,碳毡内部插入一根钛丝,并引出至阳极室外以供外电路连线,阳极室内部填充满电化学活性菌和阳极电解液;阴极厌氧氨氧化菌脱氮系统中各部件的结构关系为:在阴极室右侧装配另第二亚克力隔板,在中间加入第二硅胶垫片并使用螺钉铆紧进行密封,阴极室左侧内部嵌入阴极电极碳布,碳布右侧涂上一层铂碳催化层,并在旁边紧密贴合另一根钛丝,并引出至阴极室外以供外电路连线,阴极室内部填充满厌氧氨氧化菌和阴极电解液;外电路及数据在线采集系统中各部件的结构关系为:将阳极电化学活性菌除碳系统和阴极厌氧氨氧化菌脱氮系统进行拼合,中间夹入质子交换膜,质子交换膜的两侧均设有硅胶垫片,使用螺钉铆紧进行密封构成一个耦合整体,随后使用铜制导线连接至两根所述钛丝,并联接入电阻箱,再连至数据采集器进行数据采集,全周期不间断运行;所述厌氧密闭采样系统中各部件的结构关系为:在阳极室左侧、阴极室右侧分别打孔并插入亚克力管,使用亚克力胶粘牢后各自连接一个医用三通阀,并接入一次性注射器;所述气压稳定系统中各部件的结构关系为:在阳极室、阴极室顶部分别打孔并插入亚克力管,使用亚克力胶粘牢后各自连接一个医用三通阀,并接入蓝玻璃注射器;磁力搅拌系统中各部件的结构关系为:在阳极室、阴极室内部均加入磁力搅拌子,底部放置磁力搅拌器。
进一步地,所述反应器阳极室和阴极室构型大小完全相同,有效容积约28mL,进样口和取样口于两极室侧边,通过医用三通阀保证取样过程中双室的环境严格厌氧,通过一次性注射器取样,构成厌氧密闭采样系统。
进一步地,所述反应器顶部设置气压稳定系统,采用阻力最小的蓝玻璃注射器收集产生的气体,主要包括阳极可能产生的CO2和阴极产生的N2,通过医用三通阀保证换气过程中双室的严格厌氧,构成气压稳定系统。
进一步地,所述反应器阴、阳极室均使用磁力搅拌系统,使其电解液混合更为充分,磁力搅拌器全周期不间断运行,控制转速于200r/min,构成磁力搅拌系统。
进一步地,所述反应器阳极使用碳毡作为电极,阴极使用碳布作为电极,碳毡和碳布均为直径3.0±0.1cm的圆形,碳毡厚度为0.50±0.05cm;碳毡和碳布在使用前均经过预处理,其预处理方式均为先后在50±1℃恒温水浴下先后浸泡于30%H2O2、超纯水、0.5mol/L硫酸、超纯水各1小时。随后,阴极碳布上涂抹10%铂碳催化层0.50±0.02mg Pt/cm2促进阴极还原反应。
进一步地,所述反应器阳极电解液为所含碳源0.010±0.001mol/L乙酸钠的缓冲溶液,其初始pH为8.0±0.2,;阴极电解液为所含氮源400±15mg/L硫酸铵和528±20mg/L亚硝酸钠的高氮负荷培养液,其初始pH为7.0±0.5。
进一步地,所述反应器阳极液缓冲溶液每升含NaCl 5.88g、KCl 0.1g、NH4Cl0.25g、Na2HPO4·12H2O 33.92g、NaH2PO4·12H2O 0.827g;阴极培养液配方为(每升含)KH2PO40.1318g、CaCl2 0.18g、MgSO4 0.3g、NaHCO3 1g,误差范围小于±5%,不含有机碳源。
进一步地,所述反应器阳极接种电化学活性菌,取自污水处理厂厌氧池中具有脱氮功能的活性微生物,其菌落组成主要为Geobacter菌属;阴极接种厌氧氨氧化菌,取自使用Anammox技术的UASB反应器,其菌落组成主要为Anammoxaceae菌属。
进一步地,所述反应器全周期置于33±0.5℃恒温培养箱中,其阴、阳极室全周期保持严格厌氧环境。
进一步地,所述反应器使用批次间歇运行,每当电池输出电压低于10mV时更换阳极电解液,更换方式为取出原溶液的一半,随后补充独立培养的电化学活性菌溶液;每当阴极电解液总氮浓度低于30mg/L时更换阴极电解液,更换方式为取出所有原溶液,随后补充新配制的阴极电解液。
进一步地,本实用新型电压数据由Keithley M2700数据采集器采集,氨氮、亚硝态氮、硝态氮浓度测定遵循《水和废水监测分析方法》(第四版),细菌群落分析由16S rRNA技术获得。
与已有技术相比,本实用新型具有如下有益效果:
(1)本实用新型无需在阴极投加有机碳源即可实现同步脱氮除碳产电,避免了有机碳源造成的具有负面影响的群落演化和竞争。
(2)使用厌氧氨氧化技术可以大大提高阴极氮负荷能力,避免了普通硝化、反硝化细菌因为进水氨氮、亚硝态氮浓度过高导致的活性抑制。
(3)本实用新型氨氮、亚硝态氮、总氮去除率和去除速率均大大提高。
(4)厌氧密闭采样系统和气压稳定系统增强了反应器的气密性,提高反应器的性能以及测试结果的准确性;磁力搅拌系统的使用增强了阴、阳极液的均匀程度,避免了因浓度梯度影响反应进行的情况出现。
(5)与传统厌氧氨氧化技术相比,本实用新型使产生的NO3 -离子通过电化学方法去除,增强了总氮的去除率。
(6)通过电极预处理,菌落的充分驯化,本实用新型输出电压相比其他阴极脱氮型MFC有了明显的提高。
附图说明
图1为本实用新型一种耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池的结构示意图;
图2为使用本实用新型的微生物染料电池分别在1#、2#、3#、4#-MFC的阴极应用含有200mg/L N-NH4 +、264mg/L N-NO2 -;300mg/L N-NH4 +、396mg/L N-NO2 -;400mg/L N-NH4 +、528mg/L N-NO2 -;500mg/L N-NH4 +、660mg/L N-NO2 -四种浓度的高氮负荷废水对应的一周期产电示意图。
具体实施方式
下面结合附图对本实用新型的具体实施方式进行阐释,但本实用新型的实施及保护不限于此。
如图1,一种耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,主要包括阳极电化学活性菌除碳系统、阴极厌氧氨氧化菌脱氮系统、外电路及数据在线采集系统、厌氧密闭采样系统、气压稳定系统、磁力搅拌系统等六大主体。包括阳极电化学活性菌除碳系统、阴极厌氧氨氧化菌脱氮系统、外电路及数据在线采集系统、厌氧密闭采样系统、气压稳定系统、磁力搅拌系统;其中,阳极电化学活性菌除碳系统中各部件的结构关系为:在阳极室8左侧装第一配亚克力隔板3,在中间加入第一硅胶垫片4并使用螺钉铆紧进行密封,阳极室右侧内部嵌入阳极电极碳毡14,碳毡内部插入一根钛丝10,并引出至阳极室外以供外电路连线,阳极室内部填充满电化学活性菌和阳极电解液19;阴极厌氧氨氧化菌脱氮系统中各部件的结构关系为:在阴极室18右侧装配另第二亚克力隔板,在中间加入第二硅胶垫片并使用螺钉铆紧进行密封,阴极室左侧内部嵌入阴极电极碳布16,碳布右侧涂上一层铂碳催化层17,并在旁边紧密贴合另一根钛丝,并引出至阴极室外以供外电路连线,阴极室内部填充满厌氧氨氧化菌和阴极电解液19;外电路及数据在线采集系统中各部件的结构关系为:将阳极电化学活性菌除碳系统和阴极厌氧氨氧化菌脱氮系统进行拼合,中间夹入质子交换膜15,质子交换膜15的两侧均设有硅胶垫片,使用螺钉铆紧进行密封构成一个耦合整体,随后使用铜制导线13连接至两根所述钛丝,并联接入电阻箱11,再连至数据采集器12进行数据采集,全周期不间断运行;所述厌氧密闭采样系统中各部件的结构关系为:在阳极室8左侧、阴极室18右侧分别打孔并插入亚克力管6,使用亚克力胶粘牢后各自连接一个医用三通阀2,并接入一次性注射器1;所述气压稳定系统中各部件的结构关系为:在阳极室8、阴极室18顶部分别打孔并插入亚克力管,使用亚克力胶粘牢后各自连接一个医用三通阀,并接入蓝玻璃注射器5;磁力搅拌系统中各部件的结构关系为:在阳极室8、阴极室18内部均加入磁力搅拌子7,底部放置磁力搅拌器9。
上述耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池在启动过程中外接电阻2000Ω,阴、阳极室每2天同时更换一次电解液,更换方式为抽取一半体积的旧阳极电解液,补充新的阳极电解液至满,抽取全部的旧阴极电解液,补充新的阴极电解液至满,阴、阳极液均经过氮气曝气10分钟。
驯化约3周后形成稳定电压输出,视为驯化完成,更换外接电阻为1000Ω,此时耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池工作过程如下:(1)每当电池输出电压低于10mV时更换阳极电解液,具体步骤包括关闭阳极侧磁力搅拌器;打开阳极侧厌氧密闭采样系统和气压稳定系统对应的2个医用三通阀;使用5mL一次性注射器将一半的旧阳极液抽出;随后使用新的注射器加入新配制的氮气曝气后的阳极模拟废水;溶液充满阳极室后关闭2个医用三通阀;拔出阳极侧5mL蓝玻璃注射器,在排出内部气体后插回;打开磁力搅拌器。(2)每当阴极电解液总氮浓度低于30mg/L时更换阴极电解液,具体步骤包括关闭阴极侧磁力搅拌器;打开阴极侧厌氧密闭采样系统和气压稳定系统对应的2个医用三通阀;使用5mL一次性注射器将全部的旧阴极液抽出;随后使用新的注射器加入新配制的氮气曝气后的阴极模拟废水;溶液充满阴极室后关闭2个医用三通阀;拔出阴极侧5mL蓝玻璃注射器,在排出内部气体后插回;打开磁力搅拌器。
阳极电解液含NaAc、NaCl、KCl、NH4Cl、Na2HPO4·12H2O、NaH2PO4·12H2O,以及微量元素MgSO4、MnSO4、FeSO4、CaCl2、CoCl2、ZnCl2、CuSO4、AlK(SO4)2·12H2O、H3BO3、Na2MoO4、NiCl2、Na2WO4·2H2O,和维生素H、叶酸、维生素B6、核黄素B2、盐酸硫胺B1、烟酸B3、D-泛酸钙B5、钴胺素B12、对氨基苯甲酸、硫辛酸。
阴极电解液含KH2PO4、CaCl2、MgSO4、NaHCO3,微量元素Ⅰ包括EDTA、FeSO4,以及微量元素Ⅱ包括ZnSO4·7H2O、CuSO4·5H2O、MnCl2·4H2O、Na2MoO4·2H2O、NiCl2·6H2O、CoCl2·6H2O、H3BO3
图2为实施例中,使用含有200mg/L N-NH4 +、264mg/L N-NO2 -;300mg/L N-NH4 +、396mg/L N-NO2 -;400mg/L N-NH4 +、528mg/L N-NO2 -;500mg/L N-NH4 +、660mg/L N-NO2 -四种浓度的高氮负荷废水(其浓度误差范围小于5%)作为1#、2#、3#、4#-MFC的阴极电解液,进水后运行一周期的产电示意图,其浓度误差范围小于5%。
可以看出4组MFC在稳定运行时达到的最高电压分别为322.90、351.53、360.84和247.41mV。
表1为上述4组反应器对应的氨氮、亚硝态氮、总氮去除结果展示。
表1
表1为实施例中,上述对应的4组MFC反应器脱氮性能展示,可以看出1#、2#、3#-MFC的氨氮、亚硝态氮、总氮的去除率均分别超过93%、83%和77%,其中3-MFC的氨氮去除率超过了98%,4#-MFC的脱氮性能相对较弱。
从上数实验数据可以看出,以不同氮浓度废水作为阴极电解液运行本实用新型MFC时,产电和脱氮能力不会出现很大差距,但如果氮浓度超过一定限值,如进水500mg/LN-NH4 +、660mg/L N-NO2时,其输出电压和脱氮能力均受到较大影响。
最后声明,以上举例仅是使用本实用新型应用的若干实际事例之一,本实用新型尚可存在许多优化和变形,本领域的普通技术人员从本实用新型公开的内容所联想到的各种优化和变形,如与本实用新型无本质上的区别,均应认为是本实用新型的保护范围。

Claims (5)

1.耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,其特征在于包括阳极电化学活性菌除碳系统、阴极厌氧氨氧化菌脱氮系统、外电路及数据在线采集系统、厌氧密闭采样系统、气压稳定系统、磁力搅拌系统;其中,阳极电化学活性菌除碳系统中各部件的结构关系为:在阳极室(8)左侧装第一配亚克力隔板(3),在中间加入第一硅胶垫片(4)并使用螺钉铆紧进行密封,阳极室右侧内部嵌入阳极电极碳毡(14),碳毡内部插入一根钛丝(10),并引出至阳极室外以供外电路连线,阳极室内部填充满电化学活性菌和阳极电解液(19);阴极厌氧氨氧化菌脱氮系统中各部件的结构关系为:在阴极室(18)右侧装配另第二亚克力隔板,在中间加入第二硅胶垫片并使用螺钉铆紧进行密封,阴极室左侧内部嵌入阴极电极碳布(16),碳布右侧涂上一层铂碳催化层(17),并在旁边紧密贴合另一根钛丝,并引出至阴极室外以供外电路连线,阴极室内部填充满厌氧氨氧化菌和阴极电解液(19);外电路及数据在线采集系统中各部件的结构关系为:将阳极电化学活性菌除碳系统和阴极厌氧氨氧化菌脱氮系统进行拼合,中间夹入质子交换膜(15),质子交换膜(15)的两侧均设有硅胶垫片,使用螺钉铆紧进行密封构成一个耦合整体,随后使用铜制导线(13)连接至两根所述钛丝,并联接入电阻箱(11),再连至数据采集器(12)进行数据采集,全周期不间断运行;所述厌氧密闭采样系统中各部件的结构关系为:在阳极室(8)左侧、阴极室(18)右侧分别打孔并插入亚克力管(6),使用亚克力胶粘牢后各自连接一个医用三通阀(2),并接入一次性注射器(1);所述气压稳定系统中各部件的结构关系为:在阳极室(8)、阴极室(18)顶部分别打孔并插入亚克力管,使用亚克力胶粘牢后各自连接一个医用三通阀,并接入蓝玻璃注射器(5);磁力搅拌系统中各部件的结构关系为:在阳极室(8)、阴极室(18)内部均加入磁力搅拌子(7),底部放置磁力搅拌器(9)。
2.根据权利要求1所述的耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,其特征在于阳极室和阴极室构型大小完全相同,进样口和取样口位于两极室侧边。
3.根据权利要求1所述的耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,其特征在于所述气压稳定系统,采用阻力最小的蓝玻璃注射器收集产生的气体,主要包括阳极产生的CO2和阴极产生的N2,通过医用三通阀保证换气过程中双室的严格厌氧。
4.根据权利要求1所述的耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,其特征在于阴、阳极室均使用磁力搅拌系统。
5.根据权利要求1所述的耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池,其特征在于阳极使用碳毡作为电极,阴极使用碳布作为电极,碳毡和碳布均为直径3.0 ±0.1 cm的圆形,碳毡厚度为0.50 ±0.05 cm。
CN201820259417.3U 2017-05-13 2018-02-15 耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池 Expired - Fee Related CN207925585U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720528945 2017-05-13
CN201720528945X 2017-05-13

Publications (1)

Publication Number Publication Date
CN207925585U true CN207925585U (zh) 2018-09-28

Family

ID=63600080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820259417.3U Expired - Fee Related CN207925585U (zh) 2017-05-13 2018-02-15 耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池

Country Status (1)

Country Link
CN (1) CN207925585U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180987A (zh) * 2017-05-13 2017-09-19 华南理工大学 耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池
CN109638327A (zh) * 2018-12-19 2019-04-16 大连理工大学 一种用单室厌氧氨氧化污泥-微生物燃料电池装置进行脱氮产电的工艺
CN114628707A (zh) * 2022-04-01 2022-06-14 河南师范大学 一种微生物电芬顿燃料电池用改性碳刷阴极材料及其制备方法和应用
CN116239213A (zh) * 2023-02-23 2023-06-09 北京工业大学 一种电化学-厌氧氨氧化装置及其运行方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180987A (zh) * 2017-05-13 2017-09-19 华南理工大学 耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池
CN109638327A (zh) * 2018-12-19 2019-04-16 大连理工大学 一种用单室厌氧氨氧化污泥-微生物燃料电池装置进行脱氮产电的工艺
CN109638327B (zh) * 2018-12-19 2021-05-18 大连理工大学 一种用单室厌氧氨氧化污泥-微生物燃料电池装置进行脱氮产电的工艺
CN114628707A (zh) * 2022-04-01 2022-06-14 河南师范大学 一种微生物电芬顿燃料电池用改性碳刷阴极材料及其制备方法和应用
CN116239213A (zh) * 2023-02-23 2023-06-09 北京工业大学 一种电化学-厌氧氨氧化装置及其运行方法
CN116239213B (zh) * 2023-02-23 2023-10-24 北京工业大学 一种电化学-厌氧氨氧化装置及其运行方法

Similar Documents

Publication Publication Date Title
CN107180987A (zh) 耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池
CN207925585U (zh) 耦合厌氧氨氧化技术的阴极高效脱氮型微生物燃料电池
Wang et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
Lu et al. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells
CN101270368B (zh) 有机废水梯级利用生物产氢的方法
Kim et al. Evaluation of procedures to acclimate a microbial fuel cell for electricity production
Zhou et al. Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode
CN108183251B (zh) 一种处理低c/n废水的微生物燃料电池bcs1-mfc系统及其处理废水的方法
Li et al. Simultaneous desalination and nutrient recovery during municipal wastewater treatment using microbial electrolysis desalination cell
CN101958424B (zh) 用于制氢的套筒型无膜微生物电解电池
CN108569757B (zh) 一种利用电化学装置处理磺胺类废水并同步制氢的方法
CN101570731A (zh) 一种电化学驯化、分离产电微生物的方法
CN108178328B (zh) 一种处理低c/n比污废水的生物阴极电化学系统及其处理废水的方法
CN109179860A (zh) 一种同步催化氧化二级出水中难降解污染物与降解剩余污泥的方法
KR20080020012A (ko) 생물전기화학 시스템을 이용한 탈질 방법
CN101710626B (zh) 一种单室微生物燃料电池及其在废水处理中的应用
CN201134469Y (zh) 从废水处理中回收电能的微生物燃料电池
CN106848360A (zh) 一种三阳极共用单阴极型脱氮微生物燃料电池
CN104762635A (zh) 电辅助将乙醇转化为乙酸的同时产甲烷的方法与装置
CN206451764U (zh) 一种同步硝化短程反硝化的mfc反应器
CN215161331U (zh) 一种利用微生物燃料电池连续供能处理有机废水装置
Poggi-Varaldo et al. Effect of inoculum type on the performance of a microbial fuel cell fed with spent organic extracts from hydrogenogenic fermentation of organic solid wastes
Liu et al. Introducing electrolysis to enhance anaerobic digestion resistance to acidification
CN109678254A (zh) 一种微生物燃料电池
CN109574201A (zh) 有机和脱硫废水微生物燃料电池协同处理方法及系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180928

Termination date: 20200215

CF01 Termination of patent right due to non-payment of annual fee