CN207850319U - A kind of angle detection device - Google Patents
A kind of angle detection device Download PDFInfo
- Publication number
- CN207850319U CN207850319U CN201820154206.3U CN201820154206U CN207850319U CN 207850319 U CN207850319 U CN 207850319U CN 201820154206 U CN201820154206 U CN 201820154206U CN 207850319 U CN207850319 U CN 207850319U
- Authority
- CN
- China
- Prior art keywords
- photonic crystal
- reflected
- module
- light
- opal photonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 23
- 239000004038 photonic crystal Substances 0.000 claims abstract description 49
- 239000011022 opal Substances 0.000 claims abstract description 40
- 239000000835 fiber Substances 0.000 claims abstract description 25
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 8
- 239000013307 optical fiber Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本实用新型公开了一种角度检测装置,可对设备旋转轴的转动角度进行检测。其包括平行光管、半透半反镜、转动模块、凸透镜、收集光纤、光纤光谱仪、处理模块和显示模块;所述转动模块由相互垂直的人造蛋白石光子晶体和反光镜构成,使得进出转动模块的光束反向平行;所述人造蛋白石光子晶体反射的光的光强度随波长的变化存在峰值,且该反射峰值对应的波长值随射向人造蛋白石光子晶体的入射光的入射角度的变化而改变;所述处理模块是根据转动模块的转动角度与从人造蛋白石光子晶体反射的反射光的光强度峰值波长的对应关系,计算得到转动模块的转动角度。本实用新型同现有技术相比,可实现无接触式测量,不会对旋转轴的转动造成干扰。
The utility model discloses an angle detection device, which can detect the rotation angle of the equipment rotation shaft. It includes a collimator, a half-mirror, a rotating module, a convex lens, a collection fiber, a fiber optic spectrometer, a processing module, and a display module; the rotating module is composed of artificial opal photonic crystals and mirrors perpendicular to each other, making it possible to enter and exit the rotating module The light beams of the artificial opal photonic crystal are antiparallel; the light intensity of the light reflected by the artificial opal photonic crystal has a peak value with the change of wavelength, and the wavelength value corresponding to the reflection peak changes with the change of the incident angle of the incident light to the artificial opal photonic crystal The processing module calculates the rotation angle of the rotation module according to the corresponding relationship between the rotation angle of the rotation module and the peak wavelength of the light intensity of the reflected light reflected from the artificial opal photonic crystal. Compared with the prior art, the utility model can realize non-contact measurement without causing interference to the rotation of the rotating shaft.
Description
技术领域technical field
本实用新型属于检测技术领域,涉及对旋转轴转动角度的检测,特别涉及对机械设备中旋转轴转动角度的检测。The utility model belongs to the technical field of detection and relates to the detection of the rotation angle of the rotation shaft, in particular to the detection of the rotation angle of the rotation shaft in mechanical equipment.
背景技术Background technique
角度测量装置在工业、海事、军用、地理、钻井、机械等众多领域都有着广泛的应用。很多机械设备中都有旋转轴,而且需要对旋转轴的转动角度进行检测。现有的角度检测装置一般会与旋转轴直接或间接地连在一起,通过齿轮等连带装置实现转动角度的测量。然而,这种设计会影响到旋转轴的转动,增加摩擦损失,而且占据旋转轴所在位置的空间都比较大。因而需要一种新型角度检测装置,降低对旋转轴转动的影响。Angle measuring devices are widely used in many fields such as industry, maritime, military, geography, drilling, machinery and so on. There are rotating shafts in many mechanical devices, and it is necessary to detect the rotation angle of the rotating shaft. Existing angle detection devices are generally connected directly or indirectly to the rotating shaft, and the measurement of the rotation angle is realized through gears and other associated devices. However, this design will affect the rotation of the rotating shaft, increase friction loss, and occupy a relatively large space at the position of the rotating shaft. Therefore, a new type of angle detection device is required to reduce the influence on the rotation of the rotating shaft.
光子晶体是由不同折射率的介质周期性排列而成的人工微结构材料,其介电常数在空间中存在周期性排列,使得光在其中传播时产生能带结构。某一频率范围的波不能在此周期性结构中传播,也就是说这种结构本身存在“禁带”。人们可以通过对光子晶体某些参数的改变实现对光子行为的控制。例如,在传感检测方面,专利CN102680429A提出了一种应用光子晶体的微腔气体传感器,能对气体折射率实现检测。专利CN102494816B提出了一种基于光子晶体光纤对压力进行检测的方法和装置。Photonic crystals are artificial microstructure materials formed by periodic arrangements of media with different refractive indices. The dielectric constants of photonic crystals are periodically arranged in space, so that light can generate energy band structures when propagating in them. Waves in a certain frequency range cannot propagate in this periodic structure, that is to say, there is a "gap band" in this structure itself. People can control the behavior of photons by changing some parameters of photonic crystals. For example, in terms of sensing and detection, patent CN102680429A proposes a microcavity gas sensor using photonic crystals, which can detect the refractive index of gas. Patent CN102494816B proposes a method and device for detecting pressure based on photonic crystal fiber.
发明内容Contents of the invention
本实用新型为了解决上述存在的问题,提供了一种角度检测装置,能够方便快捷地测得转轴转动角度,并避免对转轴的转动产生干扰。In order to solve the above existing problems, the utility model provides an angle detection device, which can conveniently and quickly measure the rotation angle of the rotating shaft and avoid interference to the rotation of the rotating shaft.
本实用新型采用以下技术方案:The utility model adopts the following technical solutions:
一种角度检测装置,其包括平行光管、半透半反镜、转动模块、凸透镜、收集光纤、光纤光谱仪、处理模块、显示模块;该转动模块进一步包括人造蛋白石光子晶体和反光镜;所述人造蛋白石光子晶体和反光镜相互垂直,并且其相接触部位位于待测物的旋转轴轴线位置;所述平行光管发出的平行光透过半透半反镜后进入转动模块,在转动模块中一部分光经人造蛋白石光子晶体反射后再由反光镜反射,另一部分光经反光镜反射后再由人造蛋白石光子晶体反射,这两部分光与人造蛋白石光子晶体表面形成的入射角相等,使得反射光的光强度随波长的变化情况相同;所述转动模块反射回来的平行光束与平行光管发出的平行光束相互平行,该反射回来的平行光束由半透半反镜反射至凸透镜,再由凸透镜聚焦至收集光纤的输入端;所述收集光纤将光信号输出给光纤光谱仪;所述光纤光谱仪将接受到的光信号转换成电信号,并将电信号输出给处理模块;所述处理模块对光纤光谱仪传来的电信号进行分析计算,通过显示模块显示计算结果。An angle detection device, which includes a collimator, a half-mirror, a rotating module, a convex lens, a collection fiber, a fiber optic spectrometer, a processing module, and a display module; the rotating module further includes an artificial opal photonic crystal and a mirror; the described The artificial opal photonic crystal and the mirror are perpendicular to each other, and their contact parts are located at the axis of the rotation axis of the object to be measured; the parallel light emitted by the collimator passes through the half-mirror and enters the rotating module, and a part of the rotating module The light is reflected by the artificial opal photonic crystal and then reflected by the reflector, and the other part of the light is reflected by the reflector and then reflected by the artificial opal photonic crystal. The change of light intensity with the wavelength is the same; the parallel light beam reflected by the rotating module is parallel to the parallel light beam emitted by the collimator, and the reflected parallel light beam is reflected by the half mirror to the convex lens, and then focused by the convex lens to Collecting the input end of optical fiber; Said collecting optical fiber outputs optical signal to fiber optic spectrometer; Said optical fiber spectrometer converts the received optical signal into electrical signal, and outputs electrical signal to processing module; Said processing module transmits optical signal to optical fiber spectrometer The incoming electrical signal is analyzed and calculated, and the calculation result is displayed through the display module.
上述技术方案中,所述的人造蛋白石光子晶体由聚合物或二氧化硅材料组成。In the above technical solution, the artificial opal photonic crystal is composed of polymer or silicon dioxide material.
上述技术方案中,所述的转动模块反射回来的光的光强度随波长的变化存在峰值,且该反射峰值对应的波长值随射向人造蛋白石光子晶体的入射光的入射角度的变化而改变。In the above technical solution, the light intensity of the light reflected by the rotating module has a peak with the change of the wavelength, and the wavelength value corresponding to the reflection peak changes with the change of the incident angle of the incident light to the artificial opal photonic crystal.
上述技术方案中,所述的处理模块是根据转动模块的转动角度与从人造蛋白石光子晶体反射的反射光的光强度峰值波长的对应关系,计算得到转动模块的转动角度。In the above technical solution, the processing module calculates the rotation angle of the rotation module according to the corresponding relationship between the rotation angle of the rotation module and the peak wavelength of the light intensity of the reflected light reflected from the artificial opal photonic crystal.
与目前的技术相比,本实用新型利用了光子晶体的特点,当一束白光从不同的角度入射时,光子晶体对不同波长的光的反射能力不同,因此,固定入射光方向,对光子晶体进行旋转操作,即可相对地改变入射光的入射方向,接受光子晶体反射回来的光并分析其光强度峰值对应光波长就可以计算得到旋转的角度。Compared with the current technology, the utility model utilizes the characteristics of photonic crystals. When a beam of white light is incident from different angles, the photonic crystals have different reflection abilities to light of different wavelengths. Therefore, the direction of the incident light is fixed, and the photonic crystals Performing the rotation operation can relatively change the incident direction of the incident light, accept the light reflected by the photonic crystal and analyze the peak light intensity corresponding to the light wavelength to calculate the angle of rotation.
本实用新型具有以下特点和有益技术效果:The utility model has the following characteristics and beneficial technical effects:
1、本实用新型的角度检测装置,由于其是基于从转动模块反射回来的光进行处理和分析,实现无接触式测量,不会对旋转轴的转动造成干扰。1. The angle detection device of the present invention, because it processes and analyzes based on the light reflected from the rotating module, realizes non-contact measurement without causing interference to the rotation of the rotating shaft.
2、人造蛋白石光子晶体的结构可调,因此可实现对不同波长范围的反射光进行监测,可在一定程度上避开外围光的干扰。2. The structure of the artificial opal photonic crystal can be adjusted, so it can realize the monitoring of reflected light in different wavelength ranges, and can avoid the interference of peripheral light to a certain extent.
附图说明Description of drawings
图1是本实用新型角度检测装置的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the angle detection device of the present utility model;
图2是本实用新型实施例一中不同入射角的入射光在人造蛋白石光子晶体上的反射光谱;Fig. 2 is the reflection spectrum of the incident light of different incident angles on the artificial opal photonic crystal in the utility model embodiment one;
图中,1-平行光管,2-半透半反镜,3-转动模块,4-凸透镜,5-收集光纤,6-光纤光谱仪,7-处理模块,8-显示模块,9-人造蛋白石光子晶体,10-反光镜。In the figure, 1-collimator, 2-half mirror, 3-rotation module, 4-convex lens, 5-collection fiber, 6-fiber spectrometer, 7-processing module, 8-display module, 9-artificial opal Photonic crystal, 10-mirror.
具体实施方式Detailed ways
为使本使用新型的技术方案更加清楚,以下结合附图和并用具体实例对本实用新型做进一步说明,但本实用新型的保护范围并不限于此。In order to make the technical solution of the utility model clearer, the utility model will be further described below in conjunction with the accompanying drawings and specific examples, but the protection scope of the utility model is not limited thereto.
如图1所示,本实用新型角度检测装置,可用于对机器旋转轴的转动角度进行检测。其包括平行光管1,半透半反镜2,转动模块3,凸透镜4,收集光纤5,光纤光谱仪6,处理模块7,显示模块8;所述转动模块3进一步包括人造蛋白石光子晶体9和反光镜10;所述人造蛋白石光子晶体9和反光镜10相互垂直,并且其相接触部位固定于待测物的旋转轴轴线位置A;所述平行光管1发出的平行光透过半透半反镜2后进入转动模块3,一部分光经人造蛋白石光子晶体9反射后再由反光镜10反射,另一部分光经反光镜10反射后再由人造蛋白石光子晶体9反射;所述转动模块3反射回来的光束由半透半反镜2反射至凸透镜4,再由凸透镜4聚焦至收集光纤5的输入端;所述收集光纤5将光信号输出给光纤光谱仪6;所述光纤光谱仪6将接收到的光信号转换成电信号,并将电信号输出给处理模块7;所述处理模块7对光纤光谱仪6传来的电信号进行分析计算,通过显示模块8显示计算结果。As shown in FIG. 1 , the angle detection device of the present invention can be used to detect the rotation angle of the rotating shaft of the machine. It includes a collimator 1, a half mirror 2, a rotating module 3, a convex lens 4, a collection fiber 5, a fiber optic spectrometer 6, a processing module 7, and a display module 8; the rotating module 3 further includes an artificial opal photonic crystal 9 and Reflective mirror 10; the artificial opal photonic crystal 9 and reflective mirror 10 are perpendicular to each other, and its contact position is fixed at the axis position A of the axis of rotation of the object to be measured; the parallel light emitted by the collimator 1 passes through the semi-transparent and semi-reflective After the mirror 2 enters the rotating module 3, a part of the light is reflected by the artificial opal photonic crystal 9 and then reflected by the reflector 10, and the other part of the light is reflected by the artificial opal photonic crystal 9 after being reflected by the reflector 10; the rotating module 3 reflects back The light beam is reflected by the half-mirror 2 to the convex lens 4, and then focused to the input end of the collection fiber 5 by the convex lens 4; the collection fiber 5 outputs the optical signal to the fiber optic spectrometer 6; the fiber optic spectrometer 6 receives the received The optical signal is converted into an electrical signal, and the electrical signal is output to the processing module 7; the processing module 7 analyzes and calculates the electrical signal transmitted from the fiber optic spectrometer 6, and displays the calculation result through the display module 8.
实施例一Embodiment one
本实施例按照图1所示的角度检测装置连接好各个部件。In this embodiment, each component is connected according to the angle detection device shown in FIG. 1 .
首先对旋转轴的转动角度进行规定:当转动模块3中反光镜10与平行光管1发出光束相互垂直时,并且该光束射向反光镜10的正面,认为此时旋转轴转动的角度为0度;当转动模块3中人造蛋白石光子晶体9与平行光管1发出的光束相互垂直时,并且该光束射向人造蛋白石光子晶体9的正面,认为此时旋转轴转动的角度为90度。该装置对角度的检测范围是0~90度。Firstly, the rotation angle of the rotation axis is stipulated: when the light beam emitted by the reflector 10 in the rotation module 3 and the collimator 1 are perpendicular to each other, and the light beam shoots to the front of the reflector 10, it is considered that the rotation angle of the rotation axis at this time is 0 degree; when the light beams emitted by the artificial opal photonic crystal 9 in the rotating module 3 and the collimator 1 are perpendicular to each other, and the light beam shoots to the front of the artificial opal photonic crystal 9, it is considered that the rotation angle of the rotation axis is 90 degrees. The angle detection range of the device is 0-90 degrees.
其具体的检测过程是:平行光管1发出的平行光透过半透半反镜2后进入转动模块3,一部分光经人造蛋白石光子晶体9反射后再由反光镜10反射,另一部分光经反光镜10反射后再由人造蛋白石光子晶体9反射,这两部分光向人造蛋白石光子晶体9入射的入射光的入射角度相等,使得反射峰对应的波长相同;转动模块3反射回来的光由半透半反镜2反射至凸透镜4,再由凸透镜4聚焦至收集光纤5的输入端;收集光纤5将光信号输出给光纤光谱仪6;光纤光谱仪6对光信号进行分析得到反射峰波长,并将该波长电信号输出给处理模块7;处理模块7根据转动模块3的转动角度与从人造蛋白石光子晶体9反射的反射光的反射峰波长的对应关系而计算得到转动模块3的转动角度,并通过显示模块8显示计算结果。The specific detection process is: the parallel light emitted by the collimator 1 passes through the half-mirror 2 and then enters the rotating module 3, part of the light is reflected by the artificial opal photonic crystal 9 and then reflected by the reflector 10, and the other part of the light is reflected After being reflected by the mirror 10, it is reflected by the artificial opal photonic crystal 9. The incident angles of these two parts of light to the incident light of the artificial opal photonic crystal 9 are equal, so that the wavelengths corresponding to the reflection peaks are the same; The half mirror 2 is reflected to the convex lens 4, and then focused to the input end of the collection fiber 5 by the convex lens 4; the collection fiber 5 outputs the optical signal to the fiber optic spectrometer 6; the fiber optic spectrometer 6 analyzes the light signal to obtain the reflection peak wavelength, and the The wavelength electrical signal is output to the processing module 7; the processing module 7 calculates the rotation angle of the rotation module 3 according to the corresponding relationship between the rotation angle of the rotation module 3 and the reflection peak wavelength of the reflected light reflected from the artificial opal photonic crystal 9, and displays the Module 8 displays the calculation results.
所述处理模块7为单片机;The processing module 7 is a single-chip microcomputer;
所述显示模块8为液晶显示器;The display module 8 is a liquid crystal display;
所述人造蛋白石光子晶体9由聚合物组成;The artificial opal photonic crystal 9 is made up of polymer;
所述人造蛋白石光子晶体9反射的光强度存在反射峰,且该反射峰对应的波长随向人造蛋白石光子晶体9入射的入射光的入射角度的改变而改变。The light intensity reflected by the artificial opal photonic crystal 9 has a reflection peak, and the wavelength corresponding to the reflection peak changes with the change of the incident angle of the incident light incident on the artificial opal photonic crystal 9 .
所述显示模块8的液晶显示器显示单片机的计算结果。The liquid crystal display of the display module 8 displays the calculation result of the single-chip microcomputer.
如图2所示,实施例一中的人造蛋白石光子晶体9反射的反射光的反射峰随入射光的入射角度的增加而向短波方向移动。当转动模块3转动时,从转动模块3中人造蛋白石光子晶体9反射回来的反射光的反射峰就会发生变化,即对于不同的转角对应不同的反射峰波长。处理模块7根据反射峰波长的对应关系而计算得到转动模块3的转动角度。最后通过显示模块8显示出来。As shown in FIG. 2 , the reflection peak of the reflected light reflected by the artificial opal photonic crystal 9 in the first embodiment moves to the short-wave direction as the incident angle of the incident light increases. When the rotating module 3 rotates, the reflection peak of the reflected light reflected from the artificial opal photonic crystal 9 in the rotating module 3 will change, that is, different rotation angles correspond to different reflection peak wavelengths. The processing module 7 calculates the rotation angle of the rotation module 3 according to the corresponding relation of reflection peak wavelength. Finally, it is displayed by the display module 8 .
本实用新型不会对旋转轴的转动造成干扰,检测简单,可广泛用于对机械设备中旋转轴转动角度的检测。The utility model does not cause interference to the rotation of the rotating shaft, has simple detection, and can be widely used for detecting the rotating angle of the rotating shaft in mechanical equipment.
以上所述仅是本实用新型的一个实施例,在本实用新型的精神和原理之内所作的任何修改、改进、等同替换等,均应包含在本实用新型所述权利要求的保护范围。本行业的技术人员应该了解,本实用新型还有各种变化和改进,例如:若增加转动模块3中人造蛋白石光子晶体9和反光镜数量,或将两者进行延伸,即可增大角度检测范围,这些变化和改进都落入本实用新型要求保护的范围内。The above is only an embodiment of the utility model, and any modification, improvement, equivalent replacement, etc. made within the spirit and principle of the utility model shall be included in the protection scope of the claims of the utility model. Those skilled in the art should understand that the utility model also has various changes and improvements. For example, if the number of artificial opal photonic crystals 9 and reflectors in the rotating module 3 is increased, or the two are extended, the angle detection can be increased. These changes and improvements all fall within the protection scope of the utility model.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820154206.3U CN207850319U (en) | 2018-01-30 | 2018-01-30 | A kind of angle detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820154206.3U CN207850319U (en) | 2018-01-30 | 2018-01-30 | A kind of angle detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207850319U true CN207850319U (en) | 2018-09-11 |
Family
ID=63413627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201820154206.3U Expired - Fee Related CN207850319U (en) | 2018-01-30 | 2018-01-30 | A kind of angle detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207850319U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108317971A (en) * | 2018-01-30 | 2018-07-24 | 河南理工大学 | A kind of angle detection device |
-
2018
- 2018-01-30 CN CN201820154206.3U patent/CN207850319U/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108317971A (en) * | 2018-01-30 | 2018-07-24 | 河南理工大学 | A kind of angle detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104089682B (en) | A kind of liquid level detection device and its detection method | |
CN101922919B (en) | Non-contact measurement method for geometric parameters of optical part and measuring device thereof | |
CN105092536A (en) | Multimode-single- fiber surface plasma mode structured optical resonance sensor and detection method thereof | |
CN106197492B (en) | Fa-Po cavity length and refractive index computational methods based on optical fiber composite algorithm amber cavity configuration | |
CN108398244B (en) | A real-time measurement device for fiber laser parameters based on tilted fiber grating | |
CN209821048U (en) | An optional dual-channel fiber optic sensor | |
CN108445362A (en) | Shelf depreciation ultrasonic signal detecting system based on optical fiber sensing technology and method | |
CN108317971B (en) | An angle detection device | |
CN106017519A (en) | Optical fiber Fabry-Perot sensor demodulation system and method | |
CN102027346B (en) | Devices for spatially resolved temperature measurements | |
CN110308115A (en) | An Interferometric Optical Fiber SPR Sensor | |
CN207850319U (en) | A kind of angle detection device | |
CN104792732B (en) | A self-referencing refractometer for light source distribution | |
CN103454034B (en) | Optical fiber micrometric displacement air pressure measuring apparatus | |
CN104819769A (en) | Vibration measurement apparatus based on laser speckle of polarized singular-point light beam | |
CN102323238B (en) | Device and method for measuring refractive index of intermediate infrared multi-wavelength material | |
CN101819062A (en) | Off-axis reflection-based import optical system | |
CN111928880B (en) | Mach-Zehnder Interferometric Fiber and Its Sensor Based on Surface Plasmon Effect | |
CN105466808B (en) | A kind of liquid refractivity fibre optical sensor based on image analysis and surface plasma body resonant vibration | |
CN107478604A (en) | The measurement apparatus and measuring method of refractive index of transparent materials | |
CN103697920B (en) | A kind of optical fiber sensor head and based on this sensing head measure the optical fiber sensing system of liquid refractivity and method | |
CN202748008U (en) | Measurement apparatus for non-contact measurement of thickness of optical lens center | |
CN1782695B (en) | Device for measuring bandgap characteristics of reflective periodic micro-nano structures | |
CN101819143A (en) | Gas refractive index sensing element and sensing device | |
CN109781157A (en) | A kind of Fabry-Perot (FP) array interferometer based in optical fiber cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180911 Termination date: 20220130 |
|
CF01 | Termination of patent right due to non-payment of annual fee |