CN207833104U - 实现旋转对称三维光强分布自由曲面透镜 - Google Patents

实现旋转对称三维光强分布自由曲面透镜 Download PDF

Info

Publication number
CN207833104U
CN207833104U CN201721217998.6U CN201721217998U CN207833104U CN 207833104 U CN207833104 U CN 207833104U CN 201721217998 U CN201721217998 U CN 201721217998U CN 207833104 U CN207833104 U CN 207833104U
Authority
CN
China
Prior art keywords
dimensional
lens
light
contour line
light distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201721217998.6U
Other languages
English (en)
Inventor
葛鹏
王洪
李秀丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201721217998.6U priority Critical patent/CN207833104U/zh
Application granted granted Critical
Publication of CN207833104U publication Critical patent/CN207833104U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了实现旋转对称三维光强分布自由曲面透镜,本实用新型所提供实现旋转对称三维光强分布自由曲面透镜,结构上考虑二维上无损耗的光学系统,光源发出的能量等于经过透镜后出射光的总能量,由于透镜实体通过旋转二维的透镜轮廓线得到,通过三维转换函数得到在三维上光强分布与二维设计过程中的关系式,通过该关系式,修正二维光强分布,从而使得计算得到的二维透镜轮廓线经过旋转对称后形成的透镜实体。本实用新型可以使LED扩展光源发出的光线经过自由曲面透镜后,在空间上形成均匀光强分布的照明,而无需繁琐的反馈迭代优化,大大提高了设计效率。

Description

实现旋转对称三维光强分布自由曲面透镜
技术领域
本实用新型涉及光学器件领域,特别涉及一种用于LED扩展光源快速实现特定旋转对称三维光强分布的自由曲面透镜。
背景技术
作为新一代光源,LED具有寿命长、功率低、结构紧凑等优点被广泛地应用在不同的照明场所,并逐步取代传统光源。针对LED点光源的自由曲面透镜设计方法也逐步成熟完善。但随着大功率LED光源的需求,需要多个LED芯片阵列排布在基板上集成封装,以达到大功率输出。传统的LED点光源透镜设计方法已经难以在LED扩展光源中应用。针对LED扩展光源,要想在三维空间中实现特定的光强分布,设计者根据边缘光线法,在二维上计算透镜轮廓线,并通过旋转对称得到三维实体透镜。但是,二维设计上的光强分布与三维上的光强分布往往是不同的,这使得在二维的设计过程中需要通过繁琐的迭代反馈优化以在三维上实现特定的旋转对称光强分布,这大大减低了光学设计效率。
实用新型内容
本实用新型的目的是为了克服现有技术的不足,提供一种快速实现特定旋转对称三维光强分布自由曲面透镜的设计方法,提高设计效率。
本实用新型的目的采用如下技术方案实现。
实现旋转对称三维光强分布自由曲面透镜,其出光面形状为自由曲面,自由曲面的形状限定如下:
二维上无损耗的光学系统,光源发出的能量等于经过透镜后出射光的总能量,则有:
其中,表示光源光线的出射角和最大出射角,β和βmax表示光线经过透镜后出射光的出射角和最大出射角;L2D和D是二维LED扩展光源的照度和直径,光源沉浸在折射率为n的透镜材料中;I2D(β)表示二维中出射光的光强分布,
在三维上,由能量守恒可得:
式中,L3D表示三维LED扩展光源的照度,I3D(β)表示三维出射光的光强分布;
由于透镜实体通过旋转二维的透镜轮廓线得到,所以二维上的角度和β与在三维上的相等,结合以上两式的微分形式,即可得到三维光强分布I3D(β)与二维光强分布I2D(β)的关系为:
其中,k1是一个常数,由光源的参数决定;根据三维上的能量守恒关系式,可得和β的关系为:
这里,k2也是一个与光源参数有关的常数;由此,可以定义三维转换函数为:
三维光强分布I3D(β)与二维光强分布I2D(β)的关系可表示为:
I2D(β)=k1k2I3D(β)η(β)
对于朗伯型线光源,光强分布与光照度的关系可表示为:
I2D(β)=L2D·W(β)
其中,W(β)表示在二维设计中,角度为β的出射光在β方向上的投影宽度,联合以上两式,可得:
其中,W(0)表示在光轴方向上的投影宽度,它可由式πL3D(W(0)/2)2=I3D(0)具体求解,同时,常数k1和k2已被消去;至此,通过三维转换函数得到在三维上光强分布I3D(β)与二维设计过程中W(β)的关系式,通过该关系式,修正二维光强分布I2D(β),从而使得计算得到的二维透镜轮廓线经过旋转对称后形成的透镜实体能快速实现特定光强分布照明;
所述的二维透镜轮廓线的形状限定如下:
首先确定透镜中心部分的出射曲线,选取初始点坐标C1和C2,C1与C2是关于光轴对称的两点,并形成透镜轮廓线的中心部分,它们的距离满足|C1C2|=W(0);S1和S2是光源的两个边界点;两条边界光线S1C1和S2C2经初始曲线折射后平行于光轴出射,从而求得C1和C2的切线斜率;为了求出初始曲线C1C2其他部分点的坐标,沿着x轴方向将C1C2和S1S2均匀划分为N等份,并使入射光线QiPi(i=0,1,...,N)经过透镜折射后都平行于光轴出射,从而通过斜线迭代法求解出初始曲线C1C2
所述的二维透镜轮廓线其他部分也可通过斜线迭代法求得;考虑边缘光线S1P1,该入射光线经过透镜折射后的出射光线ray3的方向β可由Snell’s定律求得;而边缘光线S2PN+1经透镜折射后的出射光ray4方向也应为β,且ray3与ray4的距离为于是,二维透镜轮廓线新的一点PN+1可由前一点PN处的斜线与ray4的交点确定,同时也可通过Snell定律取得PN+1点出的法向量,从而确定其斜率;通过重复以上步骤计算直到β=βmax,即可迭代求得完整的透镜轮廓线;通过三维旋转即可得到透镜实体。
与现有技术相比,本实用新型具有如下优点和技术效果:本实用新型所提供的面向LED扩展光源快速实现均匀光强分布照明自由曲面透镜采用上述技术方案后,结构简单紧凑,同时可以使LED扩展光源发出的光线经过自由曲面透镜后,在空间上形成均匀光强分布的照明。
附图说明
图1a和图1b分别为实施方式中二维和三维情况下入射光和出射光的能量守恒示意图。
图2为实施方式中二维光强分布与平行光线投影宽度关系示意图。
图3为实施方式中透镜中心轮廓线的计算示意图。
图4为实施方式中透镜轮廓线计算示意图。
图5为实施方式中透镜的轮廓线。
图6为实施方式中透镜的三维立体图。
图7为实施方式中仿真结果对比图。
具体实施方式
下面结合附图和实施例对本实用新型的实施作进一步说明,但本实用新型的实施和保护不限于此,需指出的是,本实用新型的关键在于对最后确定的自由曲面透镜形状提出的技术方案,以下若有涉及软件部分,均是本领域技术人员可参照现有技术实现的。
本例中,假设三维上的光强为均匀分布,表示为:
I3D(β)=K,-35°≤β≤35°
首先,考虑二维上无损耗的光学系统,如图1a所示,光源发出的能量等于经过透镜后出射光的总能量,则有:
其中,表示光源光线的出射角和最大出射角,β和βmax表示光线经过透镜后出射光的出射角和最大出射角。L2D和D是二维LED扩展光源的照度和直径,光源沉浸在折射率为n的透镜材料中。I2D(β)表示二维中出射光的光强分布。
同理,在三维上,如图1b所示,由能量守恒可得:
式中,L3D表示三维LED扩展光源的照度。由于透镜实体是通过旋转二维的透镜轮廓线得到了,所以二维上的角度和β与在三维上的相等,结合以上两式的微分形式,即可得到三维光强分布I3D(β)与二维光强分布I2D(β)的关系为:
其中,k1是一个常数,由光源的参数决定。因为在后面的推导中k1会消去,所以在这里不需要详细表示出k1的具体表达式。
根据三维上的能量守恒关系式,可得和β的关系为:
这里,k2也是一个与光源参数有关的常数,在后面的推导过程中能被消去。由此,可以定义三维转换函数为:
进一步的,三维光强分布I3D(β)与二维光强分布I2D(β)的关系可表示为:
I2D(β)=k1k2·K·η(β)
对于朗伯型线光源,光强分布与光照度的关系可表示为:
I2D(β)=L2D·W(β)
其中,W(β)表示在二维设计中,角度为β的出射光在β方向上的投影宽度,如图2所示。联立以上三式,可得:
其中,W(0)表示在光轴方向上的投影宽度,它可由式πL3D(W(0)/2)2=K具体求解。同时,由该等式我们可以发现,常数k1和k2已被消去。至此,通过三维转换函数推导出了由三维上均匀光强分布I3D(β)=K与二维设计过程中W(β)的关系式,通过该关系式,可以修正二维设计过程中的二维光强分布I2D(β),从而使得计算得到的透镜轮廓线经过旋转对称后形成的透镜实体能快速实现特定光强分布照明,省去繁琐的迭代反馈优化过程。
本实例的透镜轮廓线计算如下:
首先计算中心部分初始曲线,如图3所示。选取初始点坐标C1和C2,C1与C2是关于光轴对称的两点,并形成透镜轮廓线的中心部分,它们的距离应满足|C1C2|=W(0)。S1和S2是光源的两个边界点。两条边界光线S1C1和S2C2经初始曲线折射后平行于光轴出射,从而求得C1和C2的切线斜率。为了求出初始曲线C1C2其他部分点的坐标,沿着x轴方向将C1C2和S1S2均匀划分为N等份,并使入射光线QiPi(i=0,1,...,N)经过透镜折射后都平行于光轴出射,从而通过斜线迭代法求解出初始曲线C1C2
所述的二维透镜轮廓线的其他部分也可通过斜线迭代法求得。如图4所示,考虑边缘光线S1P1,该入射光线经过透镜折射后的出射光线ray3的方向β可由Snell’s定律求得。而边缘光线S2PN+1经透镜折射后的出射光ray4方向也应为β,且ray3与ray4的距离为于是,轮廓线新的一点PN+1可由前一点PN处的斜线与ray4的交点确定,同时也可通过Snell定律取得PN+1点出的法向量,从而确定其斜率。通过重复以上步骤计算直到β=35°,即可迭代求得完整的透镜轮廓线,如图5所示。通过三维旋转即可得到透镜实体,如图6所示。将该自由曲面透镜导入光学仿真软件,采用100万条光线进行追迹,在空间中的光强分布如图7所示,并与不使用三维转换函数方法相比,该透镜可以在35°范围内快速实现均匀光强分布照明。
本实用新型实施例的结构参数如表1所示。
表1
D x(C1) z(C1) N
10mm ‐8.3mm 23mm 500
其中,x(C1)为C1点在x方向上的坐标值,z(C1)为C1点在z方向上的坐标值。
以上对本实用新型所提供的面向LED扩展光源快速实现均匀光强分布照明自由曲面透镜进行了详细介绍,采用上述技术方案后,可以使LED扩展光源发出的光线经过自由曲面透镜后,在空间上形成均匀光强分布的照明,而无需繁琐的反馈迭代优化,大大提高了设计效率。本实用新型中应用了各种模型图对具体实施方式进行了阐述,以上所述仅为本实用新型较佳可行的实施例子而已。对于本领域技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有所改善之处。综上所述,本实用新型书内容不应理解为对本实用新型的限制。

Claims (1)

1.实现旋转对称三维光强分布自由曲面透镜,其特征在于其出光面形状为自由曲面,自由曲面的形状限定如下:
二维上无损耗的光学系统,光源发出的能量等于经过透镜后出射光的总能量,则有:
其中,表示光源光线的出射角和最大出射角,β和βmax表示光线经过透镜后出射光的出射角和最大出射角;L2D和D是二维LED扩展光源的照度和直径,光源沉浸在折射率为n的透镜材料中;I2D(β)表示二维中出射光的光强分布,
在三维上,由能量守恒可得:
式中,L3D表示三维LED扩展光源的照度,I3D(β)表示三维出射光的光强分布;
由于透镜实体通过旋转二维的透镜轮廓线得到,所以二维上的角度和β与在三维上的相等,结合以上两式的微分形式,即可得到三维光强分布I3D(β)与二维光强分布I2D(β)的关系为:
其中,k1是一个常数,由光源的参数决定;根据三维上的能量守恒关系式,可得和β的关系为:
这里,k2也是一个与光源参数有关的常数;由此,可以定义三维转换函数为:
三维光强分布I3D(β)与二维光强分布I2D(β)的关系可表示为:
I2D(β)=k1k2I3D(β)η(β)
对于朗伯型线光源,光强分布与光照度的关系可表示为:
I2D(β)=L2D·W(β)
其中,W(β)表示在二维设计中,角度为β的出射光在β方向上的投影宽度,联合以上两式,可得:
其中,W(0)表示在光轴方向上的投影宽度,它可由式πL3D(W(0)/2)2=I3D(0)具体求解,同时,常数k1和k2已被消去;至此,通过三维转换函数得到在三维上光强分布I3D(β)与二维设计过程中W(β)的关系式,通过该关系式,修正二维光强分布I2D(β),从而使得计算得到的二维透镜轮廓线经过旋转对称后形成的透镜实体能快速实现特定光强分布照明;
所述的二维透镜轮廓线的形状限定如下:
首先确定透镜中心部分的出射曲线,选取初始点坐标C1和C2,C1与C2是关于光轴对称的两点,并形成透镜轮廓线的中心部分,它们的距离满足|C1C2|=W(0);S1和S2是光源的两个边界点;两条边界光线S1C1和S2C2经初始曲线折射后平行于光轴出射,从而求得C1和C2的切线斜率;为了求出初始曲线C1C2其他部分点的坐标,沿着x轴方向将C1C2和S1S2均匀划分为N等份,并使入射光线QiPi(i=0,1,...,N)经过透镜折射后都平行于光轴出射,从而通过斜线迭代法求解出初始曲线C1C2
所述的二维透镜轮廓线其他部分也可通过斜线迭代法求得;考虑边缘光线S1P1,该入射光线经过透镜折射后的出射光线ray3的方向β可由Snell’s定律求得;而边缘光线S2PN+1经透镜折射后的出射光ray4方向也应为β,且ray3与ray4的距离为于是,二维透镜轮廓线新的一点PN+1可由前一点PN处的斜线与ray4的交点确定,同时也可通过Snell定律取得PN+1点出的法向量,从而确定其斜率;通过重复以上步骤计算直到β=βmax,即可迭代求得完整的透镜轮廓线;通过三维旋转即可得到透镜实体。
CN201721217998.6U 2017-09-21 2017-09-21 实现旋转对称三维光强分布自由曲面透镜 Expired - Fee Related CN207833104U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721217998.6U CN207833104U (zh) 2017-09-21 2017-09-21 实现旋转对称三维光强分布自由曲面透镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721217998.6U CN207833104U (zh) 2017-09-21 2017-09-21 实现旋转对称三维光强分布自由曲面透镜

Publications (1)

Publication Number Publication Date
CN207833104U true CN207833104U (zh) 2018-09-07

Family

ID=63384996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721217998.6U Expired - Fee Related CN207833104U (zh) 2017-09-21 2017-09-21 实现旋转对称三维光强分布自由曲面透镜

Country Status (1)

Country Link
CN (1) CN207833104U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613699A (zh) * 2019-02-19 2019-04-12 中国科学院长春光学精密机械与物理研究所 一种基于目标到光源映射的自由曲面照明系统设计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613699A (zh) * 2019-02-19 2019-04-12 中国科学院长春光学精密机械与物理研究所 一种基于目标到光源映射的自由曲面照明系统设计方法

Similar Documents

Publication Publication Date Title
Wu et al. Double freeform surfaces lens design for LED uniform illumination with high distance–height ratio
CN104864278B (zh) Led自由曲面照明系统
CN109633899B (zh) 一种自由曲面照明光学系统设计方法
CN103592702A (zh) 用于激光光束整形的双自由曲面透镜及其设计方法
CN103927421B (zh) 三维光学系统的实现方法
CN110543013B (zh) 一种调控光分布自由曲面光学系统的简化构建方法
CN104864279A (zh) Led自由曲面照明系统设计
Fournier A review of beam shaping strategies for LED lighting
CN104696884A (zh) 一种双自由曲面的led准直透镜设计方法
Wang et al. Freeform optics for LED packages and applications
CN207833104U (zh) 实现旋转对称三维光强分布自由曲面透镜
CN104566217A (zh) 用于超薄直下式led背光系统的双自由曲面光学透镜
CN111487769A (zh) 一种用于定制照明的全内反射透镜设计方法
CN107561693A (zh) 实现旋转对称三维光强分布的自由曲面透镜设计方法
Bruneton et al. Freeform lens for an efficient wall washer
CN107678152A (zh) 用于光学显微镜反射式照明系统的led自由曲面透镜
CN112347597B (zh) 基于改进粒子群算法提升led照明均匀性的方法
CN109613699B (zh) 一种基于目标到光源映射的自由曲面照明系统设计方法
CN109324410B (zh) 一种用于非平面均匀照明的led透镜设计方法
Kravchenko et al. Design of axisymmetric double-surface refractive optical elements generating required illuminance distributions
CN103047607A (zh) 一种用于led准直的自由曲面透镜的制作方法
CN103901509B (zh) 一种产生单个局域空心光束的led透镜
TWI642976B (zh) 自由曲面照明系統
CN113419340B (zh) 一种用于激光光束整形的自由曲面构建方法
CN204062851U (zh) 超薄直下式的led自由曲面光学透镜背光模组

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180907

Termination date: 20210921

CF01 Termination of patent right due to non-payment of annual fee