CN207587399U - A kind of device that optical eddy is generated using coherent laser array - Google Patents
A kind of device that optical eddy is generated using coherent laser array Download PDFInfo
- Publication number
- CN207587399U CN207587399U CN201721665199.5U CN201721665199U CN207587399U CN 207587399 U CN207587399 U CN 207587399U CN 201721665199 U CN201721665199 U CN 201721665199U CN 207587399 U CN207587399 U CN 207587399U
- Authority
- CN
- China
- Prior art keywords
- spatial light
- light modulator
- microlens array
- array
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 23
- 230000001427 coherent effect Effects 0.000 title claims abstract description 7
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Landscapes
- Laser Surgery Devices (AREA)
Abstract
本实用新型涉及一种利用相干激光阵列产生光学涡旋的装置。该装置利用He‑Ne激光器产生强度稳定的高斯光束。所述高斯光束经反射镜反射后进入扩束器。扩束器将入射光束的半径扩展至r并进入微透镜阵列。入射光束在微透镜阵列的作用下分束成6在角向均匀分布的子光束并进入空间光调制器。所述空间光调制器由计算机A控制。入射子光束在空间光调制器的作用下获得不同的初始相位,相邻子光束的相位差为πm/3,m为拓扑荷数。从空间光调制器出射的光束阵列自由传输后汇聚在透镜焦平面处的CCD检测器。CCD检测器记录下出射光束的光强数据并传输至计算机B。本实用新型的优点:可实现拓扑荷数值动态可调的光学涡旋。在长距离传输环境下,仍具有较好的拓扑荷稳定性。
The utility model relates to a device for generating an optical vortex by using a coherent laser array. The device utilizes a He‑Ne laser to generate a Gaussian beam of stable intensity. The Gaussian beam enters the beam expander after being reflected by the mirror. The beam expander expands the radius of the incident beam to r and enters the microlens array. The incident beam is split into 6 sub-beams uniformly distributed in the angular direction under the action of the microlens array and enters the spatial light modulator. The spatial light modulator is controlled by computer A. The incident sub-beams obtain different initial phases under the action of the spatial light modulator, and the phase difference between adjacent sub-beams is πm/3, where m is the topological charge. The light beam array emitted from the spatial light modulator converges on the CCD detector at the focal plane of the lens after free transmission. The CCD detector records the light intensity data of the outgoing beam and transmits it to computer B. The utility model has the advantages that an optical vortex with dynamically adjustable topological charge values can be realized. In the long-distance transmission environment, it still has good topological charge stability.
Description
技术领域technical field
本实用新型提供了一种利用相干激光阵列产生光学涡旋的装置,属于光学信息调控领域。The utility model provides a device for generating an optical vortex by using a coherent laser array, which belongs to the field of optical information control.
背景技术Background technique
激光阵列由于其在高能武器和大气光通信中的潜在应用而得到了广泛研究。激光阵列中处于径向或矩形对称分布的子光束,在锁相和非锁相情况下进行相干叠加或非相干叠加。叠加后的光场,在远距离传输中可保持稳定的光强分布且具有高功率。目前对激光阵列的研究主要集中在光强操控,对其相位信息的研究还不够充分。Laser arrays have been extensively studied due to their potential applications in high-energy weapons and atmospheric optical communications. The sub-beams in the radial or rectangular symmetrical distribution in the laser array are coherently superimposed or non-coherently superimposed under phase-locked and non-phase-locked conditions. The superimposed light field can maintain stable light intensity distribution and high power in long-distance transmission. At present, the research on laser array is mainly focused on light intensity manipulation, and the research on its phase information is not enough.
光学涡旋是指具有螺旋相位结构的相干光场。该螺旋相位结构使得光场的光子具有轨道角动量。涡旋光场所携带的轨道角动量,由涡旋相位的拓扑荷数值来进行定量描述。光学涡旋的拓扑荷数值是整数,不同拓扑荷数值表征不同的轨道角动量。其中,轨道角动量在传输过程中遵循动量守恒原则。采用涡旋光作为光信号的载体,除了可以利用振幅、偏振、频率等传统方法来携带信息,还可以采用拓扑荷数值来描述信息。因此,涡旋光具有更大的信息带宽。正因如此,光学涡旋的产生方法和装置具有现实意义。目前产生光学涡旋的方法和装置,主要利用螺旋相位板或空间光调制器对入射光场的相位进行直接调制,以达到出射光场具有涡旋相位的目的。但采用这种方法所产生的光学涡旋,拓扑荷数值的动态变化范围较窄,且出射光场的光强较小,对扰动不稳定。An optical vortex refers to a coherent light field with a helical phase structure. The helical phase structure makes the photons of the light field have orbital angular momentum. The orbital angular momentum carried by the vortex light field is quantitatively described by the topological charge value of the vortex phase. The value of the topological charge of the optical vortex is an integer, and different values of the topological charge represent different orbital angular momentums. Among them, the orbital angular momentum follows the principle of momentum conservation during the transmission process. Using vortex light as the carrier of optical signals, in addition to using traditional methods such as amplitude, polarization, and frequency to carry information, it can also use topological charge values to describe information. Therefore, vortex light has a larger information bandwidth. For this reason, the generation method and device of the optical vortex have practical significance. The current methods and devices for generating optical vortices mainly use a spiral phase plate or a spatial light modulator to directly modulate the phase of the incident light field, so as to achieve the purpose of having a vortex phase in the outgoing light field. However, the optical vortex produced by this method has a narrow dynamic range of topological charge values, and the light intensity of the outgoing light field is small, so it is unstable to disturbances.
为了解决上述存在的技术问题,本实用新型利用微透镜阵列形成激光阵列光源,控制阵列中每个子束的空间分布以及初始相位,实现拓扑荷数值动态可调的光学涡旋。本实用新型,具有拓扑荷调制范围大,输出光强稳定的特点。本实用新型产生的光学涡旋,在长距离传输环境下,具有较好的拓扑荷稳定性。In order to solve the above-mentioned technical problems, the utility model uses a microlens array to form a laser array light source, controls the spatial distribution and initial phase of each sub-beam in the array, and realizes an optical vortex with dynamically adjustable topological charge values. The utility model has the characteristics of large modulation range of topological charges and stable output light intensity. The optical vortex produced by the utility model has better topological charge stability in the long-distance transmission environment.
发明内容Contents of the invention
本实用新型提供了一种拓扑荷调制范围大,输出光强稳定的光学涡旋产生装置。该装置利用He-Ne激光器产生强度稳定的高斯光束,所述高斯光束经反射镜反射进入扩束器。在扩束器的作用下扩大成半径为r的光斑,并进入微透镜阵列。微透镜阵列将入射光分束成6个在角向均匀分布的子光束。出射光束进入与所述微透镜阵列共轴靠近的空间光调制器。所述空间光调制器与计算机A连接,并由其控制。在所述空间光调制器的作用下,从微透镜阵列出射的子光束获得不同的初始相位,其中,相邻光束之间的相位差为πm/3, m为拓扑荷数。从所述空间光调制器出射的光束阵列自由传输后在透镜焦平面处汇聚。放置在透镜焦平面处的CCD检测器检测光学涡旋的光强信息并传输至计算机B。本实用新型利用微透镜阵列形成激光阵列光源,控制阵列中每个子光束的空间分布和初始相位,经由空间光调制器作用,实现拓扑荷数值动态可调的光学涡旋。本实用新型产生的光学涡旋,拓扑荷调制范围大,输出光强稳定,在长距离传输环境下,具有较好的拓扑荷稳定性。The utility model provides an optical vortex generating device with a large modulation range of topological charge and stable output light intensity. The device uses a He-Ne laser to generate a Gaussian beam with stable intensity, and the Gaussian beam is reflected by a mirror and enters a beam expander. Under the action of the beam expander, it expands into a light spot with a radius of r, and enters the microlens array. The microlens array splits the incident light into six sub-beams that are uniformly distributed in the angular direction. The outgoing light beam enters a spatial light modulator coaxially close to the microlens array. The spatial light modulator is connected to and controlled by computer A. Under the action of the spatial light modulator, the sub-beams emitted from the microlens array obtain different initial phases, wherein the phase difference between adjacent beams is πm/3, and m is a topological charge. The light beam array emitted from the spatial light modulator converges at the focal plane of the lens after free transmission. The CCD detector placed at the focal plane of the lens detects the light intensity information of the optical vortex and transmits it to the computer B. The utility model uses a microlens array to form a laser array light source, controls the spatial distribution and initial phase of each sub-beam in the array, and realizes an optical vortex with dynamically adjustable topological charge values through the action of a spatial light modulator. The optical vortex produced by the utility model has a large modulation range of topological charge, stable output light intensity, and better stability of topological charge in a long-distance transmission environment.
附图说明Description of drawings
下面结合附图及实施方式对该实用新型作进一步说明。Below in conjunction with accompanying drawing and embodiment this utility model is described further.
图1是一种利用相干激光阵列产生光学涡旋的装置示意图。Fig. 1 is a schematic diagram of a device for generating an optical vortex using a coherent laser array.
图中:1.He-Ne激光器,2.反射镜,3.扩束器,4.微透镜阵列,5.空间光调制器,6.计算机A,7.透镜,8.CCD检测器,9.计算机BIn the figure: 1. He-Ne laser, 2. Mirror, 3. Beam expander, 4. Microlens array, 5. Spatial light modulator, 6. Computer A, 7. Lens, 8. CCD detector, 9 .Computer B
图2是微透镜阵列的排列简图。Figure 2 is a schematic diagram of the arrangement of the microlens array.
图中:1-6.微透镜。In the figure: 1-6. Microlens.
具体实施方式Detailed ways
下面结合附图与具体实施方式对本实用新型作进一步详细描述:Below in conjunction with accompanying drawing and specific embodiment the utility model is described in further detail:
图1所示装置的工作步骤如下:The working steps of the device shown in Figure 1 are as follows:
1、He-Ne激光器(1)产生强度稳定的高斯光束,并进入反射镜(2);所述反射镜(2)的反射光束进入扩束器(3);所述扩束器(3)将入射光束的半径扩展至r;从所述扩束器(3)出射的光束,进入微透镜阵列(4);所述微透镜阵列(4)将入射光分束成6个在角向均匀分布的子光束;从所述微透镜阵列(4)出射的6个子光束进入与微透镜阵列(4)共轴靠近放置的空间光调制器(5);所述空间光调制器(5)与计算机A(6)连接;并由计算机A(6)控制;在空间光调制器(5)的作用下,从微透镜阵列(4)出射的子光束获得不同的初始相位,相邻子光束的初始相位差为πm/3,m为非零整数;从空间光调制器(5)出射的光束阵列经自由传输后由透镜(7)汇聚于焦平面处的CCD检测器(8);所述CCD检测器(8)处的入射光具有拓扑荷为m的光涡旋;CCD检测器(8)记录下入射光束的光强数据并传输至计算机B(9);1. The He-Ne laser (1) produces a Gaussian beam with stable intensity and enters the mirror (2); the reflected beam of the mirror (2) enters the beam expander (3); the beam expander (3) Expand the radius of the incident beam to r; the beam emitted from the beam expander (3) enters the microlens array (4); the microlens array (4) splits the incident beam into 6 uniform beams in the angular direction distributed sub-beams; the 6 sub-beams emitted from the microlens array (4) enter the spatial light modulator (5) coaxially placed close to the microlens array (4); the spatial light modulator (5) and The computer A (6) is connected; and controlled by the computer A (6); under the action of the spatial light modulator (5), the sub-beams emitted from the microlens array (4) obtain different initial phases, and the adjacent sub-beams The initial phase difference is πm/3, m is a non-zero integer; the beam array emitted from the spatial light modulator (5) is freely transmitted and then converged by the lens (7) to the CCD detector (8) at the focal plane; the The incident light at the CCD detector (8) has an optical vortex with a topological charge of m; the CCD detector (8) records the light intensity data of the incident beam and transmits it to the computer B (9);
图2所示为微透镜阵列(4)简图:Figure 2 shows a schematic diagram of the microlens array (4):
1、图2中微透镜(1)-(6)完全相同,每个微透镜半径为0.33r;微透镜(1)-(6)以共面相邻相切的方式排列成闭合圆环状。1. The microlenses (1)-(6) in Figure 2 are exactly the same, and the radius of each microlens is 0.33r; the microlenses (1)-(6) are arranged in a closed circular ring in a coplanar, adjacent and tangent manner .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721665199.5U CN207587399U (en) | 2017-12-04 | 2017-12-04 | A kind of device that optical eddy is generated using coherent laser array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201721665199.5U CN207587399U (en) | 2017-12-04 | 2017-12-04 | A kind of device that optical eddy is generated using coherent laser array |
Publications (1)
Publication Number | Publication Date |
---|---|
CN207587399U true CN207587399U (en) | 2018-07-06 |
Family
ID=62735443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201721665199.5U Expired - Fee Related CN207587399U (en) | 2017-12-04 | 2017-12-04 | A kind of device that optical eddy is generated using coherent laser array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN207587399U (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109637557A (en) * | 2018-11-20 | 2019-04-16 | 暨南大学 | Sextuple high density data storage method |
CN111121961A (en) * | 2020-01-03 | 2020-05-08 | 中国计量大学 | A device for simultaneous generation and detection of digital correlated vortex light |
CN111323925A (en) * | 2020-01-14 | 2020-06-23 | 电子科技大学 | An optical system for generating a controllable converging vortex beam |
CN111473872A (en) * | 2020-04-16 | 2020-07-31 | 中国科学院光电技术研究所 | Method and device for measuring multimode perfect vortex beam |
CN112198668A (en) * | 2020-10-19 | 2021-01-08 | 中国人民解放军国防科技大学 | Optical field reconstruction system and method for generating vortex light beam by coherent synthesis of fiber laser |
CN112803228A (en) * | 2021-01-26 | 2021-05-14 | 中国人民解放军国防科技大学 | Vortex light beam generation method based on spiral line arrangement phase-locked fiber laser array |
CN114624895A (en) * | 2022-02-21 | 2022-06-14 | 苏州大学 | A system and method for generating partially coherent vector power exponential vortex beams |
CN114675416A (en) * | 2022-03-29 | 2022-06-28 | 中国计量大学 | Method for generating anti-turbulence-disturbance multimode high-order vortex rotation by using distortion disturbance |
CN115276817A (en) * | 2022-07-20 | 2022-11-01 | 陕西师范大学 | A two-dimensional multi-mode communication method and system based on vector vortex light |
CN115657322A (en) * | 2022-10-17 | 2023-01-31 | 中国科学院光电技术研究所 | A method and device for generating a vortex beam array |
CN118567117A (en) * | 2024-08-05 | 2024-08-30 | 济南大学 | A device and method for generating a high-purity, non-diffraction, high-topological charge optical vortex array using quasi-symmetric multi-beam interference |
CN118567116A (en) * | 2024-08-05 | 2024-08-30 | 济南大学 | A device and method for generating a multi-spiral beam array by superimposing overlapping diffraction invariant optical vortex arrays |
-
2017
- 2017-12-04 CN CN201721665199.5U patent/CN207587399U/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109637557A (en) * | 2018-11-20 | 2019-04-16 | 暨南大学 | Sextuple high density data storage method |
CN111121961A (en) * | 2020-01-03 | 2020-05-08 | 中国计量大学 | A device for simultaneous generation and detection of digital correlated vortex light |
CN111323925A (en) * | 2020-01-14 | 2020-06-23 | 电子科技大学 | An optical system for generating a controllable converging vortex beam |
CN111473872B (en) * | 2020-04-16 | 2022-08-02 | 中国科学院光电技术研究所 | A method and apparatus for measuring multimode perfect vortex beams |
CN111473872A (en) * | 2020-04-16 | 2020-07-31 | 中国科学院光电技术研究所 | Method and device for measuring multimode perfect vortex beam |
CN112198668A (en) * | 2020-10-19 | 2021-01-08 | 中国人民解放军国防科技大学 | Optical field reconstruction system and method for generating vortex light beam by coherent synthesis of fiber laser |
CN112803228A (en) * | 2021-01-26 | 2021-05-14 | 中国人民解放军国防科技大学 | Vortex light beam generation method based on spiral line arrangement phase-locked fiber laser array |
CN112803228B (en) * | 2021-01-26 | 2021-12-17 | 中国人民解放军国防科技大学 | Vortex beam generation method based on helical phase-locked fiber laser array |
CN114624895A (en) * | 2022-02-21 | 2022-06-14 | 苏州大学 | A system and method for generating partially coherent vector power exponential vortex beams |
CN114675416A (en) * | 2022-03-29 | 2022-06-28 | 中国计量大学 | Method for generating anti-turbulence-disturbance multimode high-order vortex rotation by using distortion disturbance |
CN114675416B (en) * | 2022-03-29 | 2023-12-29 | 中国计量大学 | Method for generating multimode Gao Jieguo optical rotation resisting turbulence disturbance by utilizing torsion disturbance |
CN115276817A (en) * | 2022-07-20 | 2022-11-01 | 陕西师范大学 | A two-dimensional multi-mode communication method and system based on vector vortex light |
CN115276817B (en) * | 2022-07-20 | 2024-01-16 | 陕西师范大学 | A two-dimensional multi-mode communication method and system based on vector vortex light |
CN115657322A (en) * | 2022-10-17 | 2023-01-31 | 中国科学院光电技术研究所 | A method and device for generating a vortex beam array |
CN118567117A (en) * | 2024-08-05 | 2024-08-30 | 济南大学 | A device and method for generating a high-purity, non-diffraction, high-topological charge optical vortex array using quasi-symmetric multi-beam interference |
CN118567116A (en) * | 2024-08-05 | 2024-08-30 | 济南大学 | A device and method for generating a multi-spiral beam array by superimposing overlapping diffraction invariant optical vortex arrays |
CN118567116B (en) * | 2024-08-05 | 2025-01-14 | 济南大学 | Device and method for generating multi-spiral light beam array by overlapping overlapped diffraction invariant optical vortex array |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207587399U (en) | A kind of device that optical eddy is generated using coherent laser array | |
Zhi et al. | Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology | |
Qiao et al. | Generating High‐Charge Optical Vortices Directly from Laser Up to 288th Order | |
CN101794962B (en) | Self-adaptive high-order transverse mode laser coherent synthesis device | |
CN107329275B (en) | Method and system for generating high-quality quasi-Bessel array beam | |
CN113937609B (en) | Active phase locking method for fiber laser coherent synthesis based on Dammann vortex grating and fiber laser coherent synthesis system | |
CN103048791A (en) | Method for producing partially coherent Airy beams | |
CN107591666A (en) | A kind of system and method that THz wave is produced using special laser beam | |
CN111856766B (en) | A Self-Focusing Vortex Beam Generation Method for Suppressing Turbulence Effects | |
CN112198668A (en) | Optical field reconstruction system and method for generating vortex light beam by coherent synthesis of fiber laser | |
CN107329274A (en) | The devices and methods therefor of Airy beam is produced based on G S algorithms | |
CN107065046B (en) | A Bessel-Gaussian Beam Mask Based on Mittag-Leffler Function | |
CN106569340A (en) | Light beam intensity, phase distribution and polarization modulation device | |
CN106526837B (en) | The arbitrarily mobile device and method of multifocal three-dimensional is realized using column vector beam | |
CN109031674A (en) | The intracavitary method for directly generating more vortex beams | |
CN207530293U (en) | A kind of system that THz wave is generated using special laser beam | |
Neuville et al. | Spatial and transient effects during the amplification of a picosecond pulse beam by a nanosecond pump | |
CN107643596A (en) | The diffraction axis axicon lens system and its Diode laser imaging method of a kind of binary zone plate form | |
CN112164973B (en) | Phase control system and method for realizing orbital angular momentum light beam mode switching | |
CN110579882B (en) | Device and method for efficiently generating square array vortex beams using binary phase plates | |
CN109387990B (en) | Method for improving nonlinear efficiency of high-dimensional orbital angular momentum light beam | |
Xie et al. | Mode conversion via reflected stepped phase plate in relativistic systems | |
Long et al. | High-power mode-programmable orbital angular momentum beam emitter with an internally sensed optical phased array | |
CN111697414A (en) | System and method for generating terahertz waves by exciting air plasma through three-color field laser | |
CN112180613B (en) | Radial and angular order switchable orbital angular momentum beam generation system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180706 Termination date: 20181204 |
|
CF01 | Termination of patent right due to non-payment of annual fee |