CN207109463U - 一种人工颗粒阻尼耗能减振道砟 - Google Patents

一种人工颗粒阻尼耗能减振道砟 Download PDF

Info

Publication number
CN207109463U
CN207109463U CN201720962115.8U CN201720962115U CN207109463U CN 207109463 U CN207109463 U CN 207109463U CN 201720962115 U CN201720962115 U CN 201720962115U CN 207109463 U CN207109463 U CN 207109463U
Authority
CN
China
Prior art keywords
damping
energy dissipation
railway ballast
artificial grain
concrete block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201720962115.8U
Other languages
English (en)
Inventor
冯青松
李文滨
罗锟
雷晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Jiaotong University
Original Assignee
East China Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Jiaotong University filed Critical East China Jiaotong University
Priority to CN201720962115.8U priority Critical patent/CN207109463U/zh
Application granted granted Critical
Publication of CN207109463U publication Critical patent/CN207109463U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Railway Tracks (AREA)

Abstract

本实用新型公开了一种人工颗粒阻尼耗能减振道砟,所述人工颗粒阻尼耗能减振道砟包括混凝土块以及埋设在所述混凝土块内部的颗粒阻尼耗能元件;所述颗粒阻尼耗能元件包括壳体,所述壳体内部设置有阻尼颗粒;所述混凝土块内部埋设有金属骨架,所述壳体粘接在所述金属骨架上。本实用新型的优点是,将人工颗粒阻尼耗能减振道砟应用于轨道的过渡段,可有效地改善过渡段的动力特性,还可以有效地降低道砟传递到路基上的动载荷,降低路基沉降,使得列车高速通过过渡段时车辆与线路相互动力作用无明显变化,不会加速线路状态的恶化。

Description

一种人工颗粒阻尼耗能减振道砟
技术领域
本实用新型属于轨道交通领域,具体涉及一种人工颗粒阻尼耗能减振道砟。
背景技术
进入二十一世纪以来我国的轨道交通领域发展飞速,尤其是高速铁路的发展。在不断地修建高速铁路的过程中和为了满足铁路大提速的需求,铁路线路过渡段问题(路基和桥梁的过度,路基和隧道的过度)开始凸显出来,并得到施工和设计单位的不断重视。对于过渡段问题处理的合适与否在一定程度上决定了高速铁路的运营速度与旅客的舒适度。
过渡段的主要问题表现在轨道的几何不平顺和刚度不平顺。传统的过渡段处理方法分路基处理方法和轨道处理方法。路基处理方法有:台后填土的加筋土法、碎石类优质材料填筑、使用强度高,变形小的优质材料填筑(如低强度等级混凝土)。轨道处理方法有:在过渡段较软一侧增大轨道竖向刚度、过渡段较硬一侧减小轨道竖向刚度、设置辅助轨提高轨道结构框架刚度。这些处理方法都有自己的适用情况以及缺点,例如路基处理方法会带来运营过程中潜在的路基病害风险。同时在路桥过度段由于桥台和路基之间施工的原因,过渡段路基无法充分压实,导致过渡段更易发生沉降。而且我国的地质情况特殊没有大量的优质路基填料也为传统的处理方法带来了困难。
发明内容
本实用新型的目的是根据上述现有技术的不足之处,提供一种人工颗粒阻尼耗能减振道砟,该人工颗粒阻尼耗能减振道砟通过将颗粒阻尼耗能元件埋设在道砟中,有效地提高了道砟的阻尼,从而达到改善过渡段的动力特性的目的。
本实用新型目的实现由以下技术方案完成:
一种人工颗粒阻尼耗能减振道砟,其特征在于:所述人工颗粒阻尼耗能减振道砟包括混凝土块以及埋设在所述混凝土块内部的颗粒阻尼耗能元件;所述颗粒阻尼耗能元件包括壳体,所述壳体内部设置有阻尼颗粒;所述混凝土块内部埋设有金属骨架,所述壳体粘接在所述金属骨架上。
所述壳体为六面体,其边长在1.3~1.5cm之间。
所述阻尼颗粒的材质为钨粉、铅粉、铜粉以及铁粉中的任意一种或多种的组合。
所述阻尼颗粒的粒径为0.001~0.5mm。
所述阻尼颗粒在所述壳体内部的填充率为50%~90%。
所述阻尼颗粒的粒径、所述阻尼颗粒的填充率以及所述阻尼颗粒的材质密度均与所述混凝土块在工作过程中的振动幅度呈正比。
所述混凝土块为正四面体;所述混凝土块的尖端呈圆形倒角结构。
所述金属骨架是由直径为2mm钢丝制成的四面体框架。
本实用新型的优点是,人工颗粒阻尼耗能减振道砟具有更大的阻尼、更好的减振效果;将人工颗粒阻尼耗能减振道砟应用于轨道的过渡段,可有效地改善过渡段的动力特性,还可以有效地降低道砟传递到路基上的动载荷,降低路基沉降,使得列车高速通过过渡段时车辆与线路相互动力作用无明显变化,不会加速线路状态的恶化;此外人工颗粒阻尼耗能减振道砟不影响正常线路维护的捣固和清筛。
附图说明
图1为本实用新型中颗粒阻尼耗能减振道砟的立体视图;
图2为本实用新型中颗粒阻尼耗能元件在混凝土块中的分布示意图;
图3为本实用新型中颗粒阻尼耗能元件的结构示意图;
图4为本实用新型中金属骨架的结构示意图。
具体实施方式
以下结合附图通过实施例对本实用新型的特征及其它相关特征作进一步详细说明,以便于同行业技术人员的理解:
如图1-4,图中标记1-8分别为:人工颗粒阻尼耗能减振道砟1、混凝土块2、颗粒阻尼耗能元件3、壳体4、阻尼颗粒5、金属骨架8。
实施例:如图1、2所示,本实施例具体涉及一种人工颗粒阻尼耗能减振道砟1,该人工颗粒阻尼耗能减振道砟1包括混凝土块2以及埋设在混凝土块2内部的颗粒阻尼耗能元件3。
如图1、2所示,本实施例的混凝土块2为正四面体,其边长为6cm;为了避免在使用过程中混凝土块2的尖端处的混凝土破碎进而引起道砟的板结,需要对混凝土块2的尖端处进行圆形倒角处理;倒角处理过程中,对距离混凝土块2尖角的尖端1cm区域内的混凝土进行圆角处理;处理后混凝土块的各边的直线长度为4cm;混凝土块2中水泥和砂的体积比为1:1;混凝土块2采用的水泥是强度等级为52.5的硅酸盐水泥。
如图2、3所示,埋设在混凝土块2内部的颗粒阻尼耗能元件3主要用于吸收人工颗粒阻尼耗能减振道砟1在工作过程中的振动能量;颗粒阻尼耗能元件3包括壳体4,壳体4内部设置有阻尼颗粒5。
如图1至3所示,颗粒阻尼耗能元件3是一种被动振动控制技术;当人工颗粒阻尼耗能减振道砟1处于工作状态时,人工颗粒阻尼耗能减振道砟1的振动通过混凝土块2传递至颗粒阻尼耗能元件3,使得颗粒阻尼耗能元件3中的阻尼颗粒5发生振动;在阻尼颗粒5的振动过程中,阻尼颗粒5之间也会发生碰撞和摩擦;碰撞和摩擦会消耗振动能量,将振动能量转换成热量,从而实现耗散振动能量的效果;将颗粒阻尼耗能元件3埋设在混凝土块2内部,可有效地增强本实施例的人工颗粒阻尼耗能减振道砟1的阻尼以及耗散振动能量的能力。
如图3所示,本实施例中,颗粒阻尼耗能元件3的壳体4是由厚度为2mm的Q195薄钢板制成的正六面体,其边长在1.3~1.5cm之间;壳体4的薄钢板拼接处采用以氰基丙烯酸乙酯为主要原料的金属胶粘接而成。
如图1、3所示,本实施例中,阻尼颗粒5的材质为钨粉、铅粉、铜粉以及铁粉中的任意一种或多种的组合,通过调节各种材质的阻尼颗粒5的比例,可以调节阻尼颗粒5的总体密度;阻尼颗粒5的粒径为0.001mm至0.5mm;壳体4内部阻尼颗粒5的填充率在50%至90%之间;为了达到更好的减振效果,阻尼颗粒5的粒径、壳体4中阻尼颗粒5的填充率以及阻尼颗粒5的材质密度均与人工颗粒阻尼耗能减振道砟1在工作过程中的振动幅度成正比。
如图2、4所示,本实施例中,混凝土块2内部设置有金属骨架8;金属骨架8是由直径为2mm钢丝制成的四面体框架。在金属骨架8的四角各粘接有一个颗粒阻尼耗能元件3;在本实施例中,金属骨架8仅仅作为颗粒阻尼耗能元件3的制成结构,而不是作为混凝土块2内部的受力构件;金属骨架8的边长为4cm,这样的尺寸可以为颗粒阻尼耗能元件3预留一定的保护层。
本实施例的人工颗粒阻尼耗能减振道砟1的生产过程具体包括以下步骤:
1)根据图1所示的混凝土块2的形状,制作边长为6cm且带有圆角的等边四面体模板,并放置在工厂的地面上;
2)如图4所示,制作颗粒阻尼耗能元件3以及金属骨架8,并将颗粒阻尼耗能元件3通过金属胶粘接至金属骨架8的指定位置;
3)如图2、4所示,将粘接有颗粒阻尼耗能元件3的金属骨架8放到模板中,向模板中浇入砂浆;砂浆中水泥和砂的体积比为1:1;水泥采用强度等级为52.5的硅酸盐水泥;振捣密实后进行养护,28天后脱模,人工颗粒阻尼耗能减振道砟1的生产结束。
如图1、2所示,在应用过程中,可以使用本实施例的人工颗粒阻尼耗能减振道砟1替换现有技术中的石质道砟;本实施例的人工颗粒阻尼耗能减振道砟1中预埋有颗粒阻尼耗能元件3,颗粒阻尼耗能元件3可以有效地耗散人工颗粒阻尼耗能减振道砟1在工作过程中的振动能量,相当于提高了人工颗粒阻尼耗能减振道砟1的阻尼。
与现有技术中的石质道砟相比,本实施例的人工颗粒阻尼耗能减振道砟具有更大的阻尼、更好的减振效果。将本实施例的人工颗粒阻尼耗能减振道砟应用于轨道的过渡段,可有效地改善过渡段的动力特性,还可以有效地降低道砟传递到路基上的动载荷,降低路基沉降,使得列车高速通过过渡段时车辆与线路相互动力作用无明显变化,不会加速线路状态的恶化;此外本实施例的人工颗粒阻尼耗能减振道砟不影响正常线路维护的捣固和清筛。

Claims (7)

1.一种人工颗粒阻尼耗能减振道砟,其特征在于:所述人工颗粒阻尼耗能减振道砟包括混凝土块以及埋设在所述混凝土块内部的颗粒阻尼耗能元件;所述颗粒阻尼耗能元件包括壳体,所述壳体内部设置有阻尼颗粒;所述混凝土块内部埋设有金属骨架,所述壳体粘接在所述金属骨架上。
2.根据权利要求1所述的一种人工颗粒阻尼耗能减振道砟,其特征在于:所述壳体为六面体,其边长在1.3~1.5cm之间。
3.根据权利要求1所述的一种人工颗粒阻尼耗能减振道砟,其特征在于:所述阻尼颗粒的粒径为0.001~0.5mm。
4.根据权利要求1所述的一种人工颗粒阻尼耗能减振道砟,其特征在于:所述阻尼颗粒在所述壳体内部的填充率为50%~90%。
5.根据权利要求1所述的一种人工颗粒阻尼耗能减振道砟,其特征在于:所述阻尼颗粒的粒径、所述阻尼颗粒的填充率以及所述阻尼颗粒的材质密度均与所述混凝土块在工作过程中的振动幅度成正比。
6.根据权利要求1所述的一种人工颗粒阻尼耗能减振道砟,其特征在于:所述混凝土块为正四面体;所述混凝土块的尖端呈圆形倒角结构。
7.根据权利要求1所述的一种人工颗粒阻尼耗能减振道砟,其特征在于:所述金属骨架是由直径为2mm钢丝制成的四面体框架。
CN201720962115.8U 2017-08-03 2017-08-03 一种人工颗粒阻尼耗能减振道砟 Expired - Fee Related CN207109463U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720962115.8U CN207109463U (zh) 2017-08-03 2017-08-03 一种人工颗粒阻尼耗能减振道砟

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720962115.8U CN207109463U (zh) 2017-08-03 2017-08-03 一种人工颗粒阻尼耗能减振道砟

Publications (1)

Publication Number Publication Date
CN207109463U true CN207109463U (zh) 2018-03-16

Family

ID=61572522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720962115.8U Expired - Fee Related CN207109463U (zh) 2017-08-03 2017-08-03 一种人工颗粒阻尼耗能减振道砟

Country Status (1)

Country Link
CN (1) CN207109463U (zh)

Similar Documents

Publication Publication Date Title
CN107503246B (zh) 一种活塞式颗粒阻尼耗能减振道砟
CN109680586B (zh) 一种路面沥青铺设方法
CN207017080U (zh) 一种活塞式颗粒阻尼耗能减振道砟
CN204343108U (zh) 一种分体式连续支撑道床系统
CN102383343A (zh) 地铁减震隔振复合道床及其施工方法
CN107151960A (zh) 软基区临时便道铺设结构及铺设方法
CN106835887A (zh) 预制板临时道路及其施工方法
CN206815127U (zh) 软基区临时便道铺设结构
CN101289826B (zh) 玻璃钢轨枕及其制造方法
CN104878873B (zh) 一种钢丝网增强的超高性能混凝土盖板及其制备方法
CN207109463U (zh) 一种人工颗粒阻尼耗能减振道砟
CN107366544A (zh) 一种活塞式颗粒阻尼耗能减振地铁管片
CN107366197A (zh) 一种活塞式颗粒阻尼耗能减振轨道板
CN107503247A (zh) 一种活塞式颗粒阻尼耗能减振轨枕
CN207111110U (zh) 一种颗粒阻尼耗能减振地铁管片
CN207244351U (zh) 一种颗粒阻尼耗能减振轨道板
CN107354826A (zh) 隧道内嵌入式轨道系统的快速施工方法
CN207111111U (zh) 一种活塞式颗粒阻尼耗能减振地铁管片
CN107059574A (zh) 一种混凝土结构及其调平预制装配式砼路面板的方法
CN208167420U (zh) 高速铁路路基结构体
CN207633142U (zh) 一种活塞式颗粒阻尼耗能减振轨道板
CN203795460U (zh) 一种压重式塔式起重机基础结构
CN207633141U (zh) 一种活塞式颗粒阻尼耗能减振轨枕
CN207109464U (zh) 一种颗粒阻尼耗能减振轨枕
CN203783600U (zh) 一种公路隧道衬砌表面粘钢加固装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180316

Termination date: 20200803