CN207083023U - 一种输出电压可调的高功率因数桥式同步整流电路 - Google Patents

一种输出电压可调的高功率因数桥式同步整流电路 Download PDF

Info

Publication number
CN207083023U
CN207083023U CN201720951338.4U CN201720951338U CN207083023U CN 207083023 U CN207083023 U CN 207083023U CN 201720951338 U CN201720951338 U CN 201720951338U CN 207083023 U CN207083023 U CN 207083023U
Authority
CN
China
Prior art keywords
power tube
circuit
drain electrode
rectification circuit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201720951338.4U
Other languages
English (en)
Inventor
胡方
汪邦照
王�琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECU ELECTRONICS INDUSTRIAL Co Ltd
Original Assignee
ECU ELECTRONICS INDUSTRIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECU ELECTRONICS INDUSTRIAL Co Ltd filed Critical ECU ELECTRONICS INDUSTRIAL Co Ltd
Priority to CN201720951338.4U priority Critical patent/CN207083023U/zh
Application granted granted Critical
Publication of CN207083023U publication Critical patent/CN207083023U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本实用新型涉及一种输出电压可调的高功率因数桥式同步整流电路,包括变压器、交流侧电容、PFC电感、整流电路、驱动控制电路和滤波电路,变压器进行一级降压隔离后输出到整流电路,桥式整流电路中由MOSFET替换二极管,并在每一个桥臂上增加了一个反向连接的MOSFET,驱动控制电路从变压器的原边采集输入电压、电流信号,从滤波电路的输出端采集输出电压、电流信号,从而产生MOSFET的控制信号,通过控制两个反向MOSFET的延时导通时间,实现输出电压的灵活调节;通过交流侧电容和PFC电感实现功率因数校正。本实用新型具有电路结构简单、可靠性高、功率因数高、效率高的优点,特别适用于交流输入、低压大电流输出的应用场合。

Description

一种输出电压可调的高功率因数桥式同步整流电路
技术领域
本实用新型涉及电源设计领域,具体涉及一种输出电压可调的高功率因数桥式同步整流电路。
背景技术
普通的二极管整流技术被广泛运用,但是也具有明显的缺点:一是输出电压不稳定,当市电处于低端或者高端电压时,相应的整流输出电压往往会超出使用范围,会造成后级设备因输入欠压而不能启动或者因输入过压而损坏;二是损耗大,二极管的导通压降大,在输出电流大的情况下,增加了产品热设计的成本和难度;三是可控性差,二极管整流在发生故障的情况下(如输入过欠压、输出过流或短路等),不能控制整流电路关闭输出,会造成设备损坏。将二极管不可控整流替换为高效率的N沟道MOSFET同步整流,利用MOSFET导通电阻低的优点,可以有效的减少损耗和提高效率。在工频交流输入的情况下,MOSFET的开关频率低,产生的开关干扰也较小。全桥同步整流电路前级的工频变压器将输入电压降低到合适的交流输入,通过全桥同步整流电路将输入的交流电压整流为直流输出。由于MOSFET一般具有寄生的体二极管,因此即使在MOSFET没有驱动信号的情况下,电流仍然可以通过MOSFET的体二极管形成回路,所以输出电压不可控,而且在负载电流大的情况下,由于体二极管的通流能力有限,会损坏体二极管甚至MOSFET。
实用新型内容
为解决上述技术问题,本实用新型的目的在于提供一种输出电压可调的高功率因数桥式同步整流电路,能够灵活调节输出电压,实现同步整流,且具有高功率因素。
为了实现上述目的,本实用新型提供一种输出电压可调的高功率因数桥式同步整流电路,包括用于降压隔离的变压器T、电容C0、电感L1、整流电路1、驱动控制电路以及滤波电路2,所述整流电路1输出端经滤波电路2与负载相连,整流电路1包括功率管Q1、Q2、Q3、Q4、Q5、Q6,所述功率管Q1的源极与功率管Q3的漏极连接,功率管Q3的源极与功率管Q5的源极连接,所述功率管Q2的源极与功率管Q4的漏极连接,功率管Q4的源极与功率管Q6的源极连接,所述功率管Q1的漏极与功率管Q2的漏极连接,所述功率管Q5的漏极与功率管Q6的漏极连接,功率管Q2和Q6的漏极分别为整流电路1的输出正端和输出负端;变压器T的原边绕组的一端连接交流输入的L线,其另一端连接交流输入的N线,副边绕组的一端连接到功率管Q1和Q3之间的节点,其另一端连接到功率管Q2和Q4之间的节点;所述驱动控制电路用于采集变压器T的原边及滤波电路2输出端的电压及电流信号,通过相互隔离的驱动信号控制功率管Q1、Q2、Q3、Q4、Q5、Q6的导通与关断,使功率管Q1与功率管Q4的驱动信号一致,功率管Q2与功率管Q3的驱动信号一致,功率管Q1与功率管Q3的驱动信号互补,功率管Q2与功率管Q4的驱动信号互补,功率管Q5的驱动信号延迟于功率管Q2、 Q3的驱动信号,功率管Q6的驱动信号延迟于功率管Q1、Q4的驱动信号;所述电容C0连接于交流输入的L线和N线之间,所述电感L1的一端与功率管Q1和Q2的漏极相连,其另一端连接滤波电路2的输入端。
具体地说,所述滤波电路2是由电感L2和电容C1、C2组成,电感L2一端连接电感L1,其另一端连接负载;电容C1一端连接电感L2与L1之间的节点,其另一端连接Q5和Q6的漏极,电容C2一端连接电感L2与负载之间的节点,其另一端连接Q5和Q6的漏极。
具体地说,所述功率管Q1、Q2、Q3、Q4、Q5、Q6均为N沟道MOSFET。
由以上技术方案可知,本实用新型提供一种输出电压可调节的高功率因数的桥式同步整流电路,在交流输入侧设计了工频变压器,实现了原副边的隔离和一级调压,方便后级MOSFET的选型;使用MOSFET替代传统的桥式同步整流电路中的二极管,并在每一个桥臂上增加了一个反向连接的MOSFET,驱动控制电路通过控制两个反向连接的MOSFET的延时导通时间,实现输出电压的灵活调节;整流电路可实现同步整流,降低干扰;通过在交流侧的输入电容C0和直流侧的PFC电感L1实现功率因数校正。所有的功率管均为N沟道MOSFET,造价低廉。本实用新型具有电路结构简单、可靠性高、功率因数高、效率高的优点,特别适用于交流输入、低压大电流输出的应用场合。
附图说明
图1是本实用新型的电路框图。
图2是本实用新型电路的MOSFET的驱动波形图。
图3为本实用新型推广应用于三相输入的电路框图。
具体实施方式
如图1所示的本实用新型的电路图,本实用新型提供的一种输出电压可调的高功率因数桥式同步整流电路,包括用于降压隔离的变压器T、电容C0、PFC电感L1、整流电路1、驱动控制电路以及滤波电路2。整流电路1输出端经滤波电路2与负载相连,整流电路1包括功率管Q1、Q2、Q3、Q4、Q5、Q6,所有功率管均为导通损耗小的N沟道MOSFET。两个反向功率管Q5、Q6,可以在没有驱动信号的情况下阻断电流流通路径,避免通过功率管寄生的体二极管产生电流回路。
功率管Q1的源极与功率管Q3的漏极连接,功率管Q3的源极和Q5的源极连接;功率管Q2的源极与功率管Q4的漏极连接,功率管Q4的源极和Q6的源极连接;功率管Q1的漏极和Q2的漏极连接,功率管Q5的漏极和Q6的漏极连接,功率管Q2和Q6的漏极分别为整流电路1的输出正端和输出负端;工频变压器T将原副边隔离,并将输入的工频交流电压通过匝比降低为成比例的低电压的交流电压,实现了一级调压,也方便后级的MOSFET的选型;工频变压器T原边绕组的一端连接交流输入的L线,其另一端连接交流输入的N线;副边绕组的一端连接到功率管Q1和Q3之间的节点,其另一端连接到功率管Q2和Q4之间的节点;电容C0连接于交流输入的L线和N线之间,PFC电感L1一端连接功率管Q1和Q2的漏极,其另一端连接滤波电路2的输入端,设置于交流侧的输入电容C0和直流侧的PFC电感L1,可以提高电路的功率因数。
驱动控制电路从工频变压器T的原边采集输入电压及电流信号,从滤波电路2的输出端采集输出电压及电流信号,产生桥式同步整流MOSFET和一对反向MOSFET的驱动控制信号,驱动控制信号通过光耦隔离后再通过驱动芯片驱动对应的MOSFET,6组驱动芯片的供电相互隔离,对应的6组驱动控制信号相互隔离。其中,功率管Q1与功率管Q4的驱动控制信号一致,功率管Q2和Q3的驱动控制信号一致,功率管Q1和Q3的驱动控制信号互补,功率管Q2和Q4的驱动控制信号互补,中间的间隔时间即为死区时间,功率管Q5的驱动控制信号延迟于功率管Q2与Q3的驱动控制信号,功率管Q6的驱动控制信号延迟于功率管Q1与Q4的驱动控制信号,通过调节功率管Q5、功率管Q6驱动控制信号的延迟时间实现对输出电压的调节,如图2所示。驱动控制电路还加入了输入过欠压、输出过流、短路保护功能,在发生故障时可以快速响应,关闭电源输出。具体地说,采集输入电压来进行输入过欠压保护,采集输入电流可以进行过零点和峰值判断,从滤波电路2的输出端采集输出电压形成反馈,控制两个反向连接的MOSFET的延时导通时间,调节输出电压,实现输出过压保护功能,通过对输出电流进行采集,可以实现输出过流和短路保护功能。
滤波电路2优选由电感L2和电容C1、C2组成的π型滤波电路,电感L2一端连接电感L1,其另一端连接负载;电容C1一端连接电感L2与L1之间的节点,其另一端连接Q5和Q6的漏极,电容C2一端连接电感L2与负载之间的节点,其另一端连接Q5和Q6的漏极。π型滤波电路可以有效降低输出电压的纹波,保证负载的供电平稳。
如图3所示,本实用新型提供的输出电压可调的高功率因数桥式同步整流电路,也可以扩充推广应用到三相输入的场合。
以上所述的实施例仅仅是对本实用新型的优选实施方式进行描述,并非对本实用新型的范围进行限定,在不脱离本实用新型设计精神的前提下,本领域普通技术人员对本实用新型的技术方案作出的各种变形和改进,均应落入本实用新型权利要求书确定的保护范围内。

Claims (3)

1.一种输出电压可调的高功率因数桥式同步整流电路,其特征在于:包括用于降压隔离的变压器T、电容C0、电感L1、整流电路(1)、驱动控制电路以及滤波电路(2),所述整流电路(1)输出端经滤波电路(2)与负载相连,整流电路(1)包括功率管Q1、Q2、Q3、Q4、Q5、Q6,所述功率管Q1的源极与功率管Q3的漏极连接,功率管Q3的源极与功率管Q5的源极连接,所述功率管Q2的源极与功率管Q4的漏极连接,功率管Q4的源极与功率管Q6的源极连接,所述功率管Q1的漏极与功率管Q2的漏极连接,所述功率管Q5的漏极与功率管Q6的漏极连接,功率管Q2和Q6的漏极分别为整流电路(1)的输出正端和输出负端;变压器T的原边绕组的一端连接交流输入的L线,其另一端连接交流输入的N线,副边绕组的一端连接到功率管Q1和Q3之间的节点,其另一端连接到功率管Q2和Q4之间的节点;所述驱动控制电路用于采集变压器T的原边及滤波电路(2)输出端的电压及电流信号,通过相互隔离的驱动信号控制功率管Q1、Q2、Q3、Q4、Q5、Q6的导通与关断,使功率管Q1与功率管Q4的驱动信号一致,功率管Q2与功率管Q3的驱动信号一致,功率管Q1与功率管Q3的驱动信号互补,功率管Q2与功率管Q4的驱动信号互补,功率管Q5的驱动信号延迟于功率管Q2、 Q3的驱动信号,功率管Q6的驱动信号延迟于功率管Q1、Q4的驱动信号;所述电容C0连接于交流输入的L线和N线之间,所述电感L1的一端与功率管Q1和Q2的漏极相连,其另一端连接滤波电路(2)的输入端。
2.根据权利要求1所述的一种输出电压可调的高功率因数桥式同步整流电路,其特征在于:所述滤波电路(2)是由电感L2和电容C1、C2组成,电感L2一端连接电感L1,其另一端连接负载;电容C1一端连接电感L2与L1之间的节点,其另一端连接Q5和Q6的漏极,电容C2一端连接电感L2与负载之间的节点,其另一端连接Q5和Q6的漏极。
3.根据权利要求1所述的一种输出电压可调的高功率因数桥式同步整流电路,其特征在于:所述功率管Q1、Q2、Q3、Q4、Q5、Q6均为N沟道MOSFET。
CN201720951338.4U 2017-08-01 2017-08-01 一种输出电压可调的高功率因数桥式同步整流电路 Expired - Fee Related CN207083023U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720951338.4U CN207083023U (zh) 2017-08-01 2017-08-01 一种输出电压可调的高功率因数桥式同步整流电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720951338.4U CN207083023U (zh) 2017-08-01 2017-08-01 一种输出电压可调的高功率因数桥式同步整流电路

Publications (1)

Publication Number Publication Date
CN207083023U true CN207083023U (zh) 2018-03-09

Family

ID=61425038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720951338.4U Expired - Fee Related CN207083023U (zh) 2017-08-01 2017-08-01 一种输出电压可调的高功率因数桥式同步整流电路

Country Status (1)

Country Link
CN (1) CN207083023U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107395037A (zh) * 2017-08-01 2017-11-24 合肥华耀电子工业有限公司 一种输出电压可调的高功率因数桥式同步整流电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107395037A (zh) * 2017-08-01 2017-11-24 合肥华耀电子工业有限公司 一种输出电压可调的高功率因数桥式同步整流电路
CN107395037B (zh) * 2017-08-01 2023-09-08 合肥华耀电子工业有限公司 一种输出电压可调的高功率因数桥式同步整流电路

Similar Documents

Publication Publication Date Title
CN101854120B (zh) 一种高效率多功能反激变换器
CN106685231B (zh) 一种原边钳位型软开关全桥变换器及其不对称控制方法
CN203911762U (zh) 一种llc谐振变换装置
CN103441683B (zh) 一种有源钳位正激电源电路
CN205283423U (zh) 三相pfc整流电路
CN203445790U (zh) 一种高压dc/dc开关电源
WO2021238140A1 (zh) 一种双端输出充电电路及其辅路开关控制方法
CN211018677U (zh) 一种数控短电弧直流叠加脉冲电源
CN205725513U (zh) 一种单相ac‑dc/dc‑ac双用电路及三相ac‑dc/dc‑ac双用电路
CN106849683A (zh) 一种输入并联输出串联的基于推挽拓扑结构的变换器
CN107395037A (zh) 一种输出电压可调的高功率因数桥式同步整流电路
CN105048850B (zh) 一种单级zvs型推挽式高频环节dc/ac变换器
CN202750023U (zh) 一种无ac/dc整流桥电流型单级隔离高频开关电源
CN101854122B (zh) 高压逆变低压斩波式焊接电源
CN203859684U (zh) 一种大电流半桥电路
CN100459395C (zh) 可调稳频稳压变频变压电源
CN102183683B (zh) 基于开关电源的单相低功耗费控智能电能表
CN207083023U (zh) 一种输出电压可调的高功率因数桥式同步整流电路
CN201750342U (zh) 高压逆变低压斩波式焊接电源
CN101127482B (zh) 直流变换器的原边箝位电路
CN209233731U (zh) 一种全对称型双向llc谐振直流-直流变换器
CN107070196A (zh) 一种带中线的三相pfc整流电路
CN204290762U (zh) 机内辅助隔离电源
CN103475241A (zh) 自驱动的全桥同步整流电路
CN204171514U (zh) 一种高性能高频逆变tig焊机

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180309