CN207055992U - 一种等温双效浓缩机组 - Google Patents

一种等温双效浓缩机组 Download PDF

Info

Publication number
CN207055992U
CN207055992U CN201720928801.3U CN201720928801U CN207055992U CN 207055992 U CN207055992 U CN 207055992U CN 201720928801 U CN201720928801 U CN 201720928801U CN 207055992 U CN207055992 U CN 207055992U
Authority
CN
China
Prior art keywords
effect
concentration
tube side
pipeline
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201720928801.3U
Other languages
English (en)
Inventor
杨许作
杨雄辉
杨周
吴海滔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOSHAN DEZHONG PHARMACEUTICAL MACHINERY Co Ltd
Sinopharm Dezhong Foshan Pharmaceutical Co Ltd
Original Assignee
FOSHAN DEZHONG PHARMACEUTICAL MACHINERY Co Ltd
Sinopharm Dezhong Foshan Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOSHAN DEZHONG PHARMACEUTICAL MACHINERY Co Ltd, Sinopharm Dezhong Foshan Pharmaceutical Co Ltd filed Critical FOSHAN DEZHONG PHARMACEUTICAL MACHINERY Co Ltd
Priority to CN201720928801.3U priority Critical patent/CN207055992U/zh
Application granted granted Critical
Publication of CN207055992U publication Critical patent/CN207055992U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了一种等温双效浓缩机组,包括双效浓缩系统和二次蒸汽再压缩系统,所述双效浓缩系统从上游至下游依次包括原料罐、预热单元、等温浓缩塔体、同体双效加热器和收膏罐;所述等温浓缩塔体和同体双效加热器之间形成二次蒸汽集汽腔;所述Ⅰ效Ⅰ管程和Ⅰ效Ⅱ管程为降膜浓缩模块,所述Ⅱ效Ⅰ管程为强制循环浓缩模块。集成降膜浓缩模块和强制循环浓缩模块,区别于现有功能单一的浓缩机,无需设置降膜浓缩机和强制循环浓缩机两种浓缩机,节省投入成本和占用空间,无需设置分离罐,省去各效程间的输送管道;而且每个模块可独立调节各个管程的浓缩速度和浓缩量以适应不同的生产要求,提高使用灵活性。

Description

一种等温双效浓缩机组
技术领域
本实用新型涉及浓缩蒸发设备技术领域,尤其涉及一种等温双效浓缩机组。
背景技术
目前,用于医药、食品的液体浓缩蒸发技术主要有降膜浓缩和强制循环浓缩两种。降膜浓缩是将料液自降膜蒸发器加热室上管箱加入,经液体分布及成膜装置,均匀分配到各换热管内,在重力及气流作用下,成均匀膜状自上而下流动;而强制循环浓缩则是利用循环泵使料液在设备内强制流动。降膜浓缩能耗小但易结垢,强制循环浓缩不易结垢但能耗大。因此在实际生产中,常常设置多个降膜蒸发器和多个强制循环蒸发器综合使用,但这样投入成本大,需要设置大量的分离罐和输送管道,占用空间大,不适用于小批量生产。而且,由于中草药提取液多含有一些大分子物质(如多糖、淀粉、胶质等)、带颗粒物污垢和生物污垢混合物等,因此中草药溶液极易凝结引起结垢,不适使用降膜浓缩,现业内对中草药提取液多使用能耗大的强制循环浓缩。
实用新型内容
本实用新型的目的在于提出一种集成降膜浓缩和强制循环浓缩为一体,节省投入成本和占用空间,使用灵活,适用于中草药提取液浓缩的等温双效浓缩机组。
为达此目的,本实用新型采用以下技术方案:
一种等温双效浓缩机组,包括双效浓缩系统和二次蒸汽再压缩系统,所述双效浓缩系统和二次蒸汽再压缩系统连接,所述双效浓缩系统从上游至下游依次包括原料罐、预热单元、等温浓缩塔体、同体双效加热器和收膏罐;
所述等温浓缩塔体套接于所述同体双效加热器的外部,所述等温浓缩塔体和同体双效加热器之间形成二次蒸汽集汽腔;
所述同体双效加热器包括主壳体、上封头、上管板、下管板和多根换热管,所述主壳体的上端设置所述上管板,所述主壳体的下端设置所述下管板,并且所述主壳体的上端和上封头密封连接;所述上管板和下管板分布设有多个换热管安装孔,多根换热管通过换热管安装孔呈阵列式竖直安装在上管板和下管板之间;
还包括上封挡板和下封挡板,所述上封挡板设置于上封头的内腔并将上封头的内腔划分成三个上密封腔,所述下封挡板设置于等温浓缩塔体的底部并将其划分成三个浓缩池,所述同体双效加热器设置于所述下封挡板的顶部;并且所述上封挡板和下封挡板上下相对设置从而将同体双效加热器的管程划分成Ⅰ效Ⅰ管程、Ⅰ效Ⅱ管程和Ⅱ效Ⅰ管程;
所述Ⅰ效Ⅰ管程和Ⅰ效Ⅱ管程的上密封腔均设有布水器,所述Ⅰ效Ⅰ管程和Ⅰ效Ⅱ管程为降膜浓缩模块,所述Ⅱ效Ⅰ管程为强制循环浓缩模块。
优选地,所述Ⅰ效Ⅰ管程的上密封腔通过管道和预热单元连通,所述Ⅰ效Ⅰ管程的浓缩池通过管道和Ⅰ效Ⅱ管程的上密封腔连通,所述Ⅰ效Ⅱ管程的浓缩池通过管道和Ⅱ效Ⅰ管程的上密封腔连通,所述Ⅱ效Ⅰ管程的浓缩池通过管道和收膏罐连通。
优选地,所述布水器包括储液箱和进液管,所述进液管和储液箱连通,并且所述进液管的密封端向储液箱的内部延伸,所述进液管的位于储液箱的一段设有多个进液孔;
所述储液箱的底部设有多根配液支管,多根所述配液支管和多根所述换热管一一对准并且所述配液支管插入对应的所述换热管中;所述配液支管的底部密封,所述配液支管的侧壁设有多个喷液孔。
优选地,所述双效浓缩系统还包括降膜循环泵、降膜调节阀、第一强制循环泵、第一强制循环调节阀和出液泵;
所述降膜循环泵的进液口通过管道和Ⅰ效Ⅰ管程的浓缩池连通,所述降膜循环泵的出液口通过管道和位于Ⅰ效Ⅱ管程的布水器的进液管的开口端连通,所述降膜调节阀的进液口通过管道和Ⅰ效Ⅱ管程的浓缩池连通,所述降膜调节阀的出液口通过管道和降膜循环泵的进液口连通;
所述第一强制循环泵的进液口通过管道和Ⅰ效Ⅱ管程的浓缩池连通,所述第一强制循环泵的出液口通过管道和Ⅱ效Ⅰ管程的上密封腔连通,所述第一强制循环调节阀的进液口通过管道和Ⅱ效Ⅰ管程的浓缩池连通,所述第一强制循环调节阀的出液口通过管道和第一强制循环泵的进液口连通;
所述出液泵的进液口通过管道和Ⅱ效Ⅰ管程的浓缩池连通,所述出液泵的出液口通过管道和收膏罐连通。
优选地,所述双效浓缩系统还包括降膜变频器和密度计,所述降膜变频器和降膜循环泵电连接,所述降膜变频器控制降膜循环泵的转速;
所述密度计的检测端和Ⅱ效Ⅰ管程的浓缩池连通。
优选地,所述二次蒸汽再压缩系统还包括离心压缩机、加温蒸汽输出管和二次蒸汽输入管,所述二次蒸汽输入管的一端和离心压缩机的输入口连通,所述二次蒸汽输入管的另一端和等温浓缩塔体连通,所述加温蒸汽输出管的一端和离心压缩机的输出口连通;
还包括加温外壳体,所述加温外壳体环绕设置于主壳体的上部的外侧从而形成加温密封腔,所述主壳体的与加温外壳体对应的侧壁设有多个二次蒸汽输入通孔,所述加温蒸汽输出管的另一端和加温外壳体连通;
所述下封挡板的中部设有承载凸面,所述同体双效加热器设置于所述承载凸面上。
优选地,所述预热单元包括进液泵、原料调节阀、输出三通控制阀、一级换热器、二级换热器、冷凝水储罐、净水罐、输入三通控制阀和净水控制阀,所述原料调节阀的进液口通过管道和原料罐连通,所述原料调节阀的出液口通过管道和进液泵的进液口连通,所述进液泵的出液口和输出三通控制阀的进液口连通,所述输出三通控制阀的第一出液口通过管道和位于Ⅰ效Ⅰ管程的布水器的进液管的开口端连通;
所述输入三通控制阀的第一进液口通过管道和净水罐连通,所述输入三通控制阀的第二进液口通过管道和原料调节阀的出液口连通,所述输入三通控制阀的出液口通过管道和进液泵的进液口连通;所述净水控制阀的进液口通过管道和Ⅱ效Ⅰ管程的浓缩池连通,所述净水控制阀的出液口通过管道和冷凝水储罐连通;
所述同体双效加热器还包括冷凝水输出管,所述冷凝水输出管的一端和主壳体连通,所述冷凝水输出管的另一端和一级换热器的工作介质入口连通,所述一级换热器的工作介质出口通过管道和冷凝水储罐连通,所述一级换热器的进液口通过管道和输出三通控制阀的第二出液口连通,所述二级换热器的进液口通过管道和一级换热器的出液口连通,所述二级换热器的出液口通过管道和所述输出三通控制阀的第一出液口连通,所述二级换热器的工作介质入口通过管道外接锅炉,所述二级换热器的工作介质出口外接蒸汽排放管。
优选地,所述同体双效加热器还包括不凝气体输出管和多个截流板,所述不凝气体输出管和主壳体连通;
多个所述截流板设置于主壳体的内部,且多个所述截流板的一侧均与主壳体的内壁连接,多个所述截流板的另一侧和主壳体之间形成的间隙呈S形排布。
所述等温双效浓缩机组设有所述双效浓缩系统以用于中草药溶液的浓缩,浓度较低的中草药原液储存在所述原料罐中,浓缩时中草药原液先经过预热单元进行加温以便于蒸发浓缩,然后高温的中草药原液进入同体双效加热器内,并依次经过Ⅰ效Ⅰ管程、Ⅰ效Ⅱ管程和Ⅱ效Ⅰ管程,先进行降膜浓缩后进行强制循环浓缩,制成浓度较高的中草药浆液并输送至收膏罐进行储存。集成降膜浓缩模块和强制循环浓缩模块,区别于现有功能单一的浓缩机,无需设置降膜浓缩机和强制循环浓缩机两种浓缩机,节省投入成本和占用空间,无需设置分离罐,省去各效程间的输送管道;而且每个模块可独立调节各个管程的浓缩速度和浓缩量以适应不同的生产要求,提高使用灵活性。
附图说明
附图对本实用新型做进一步说明,但附图中的内容不构成对本实用新型的任何限制。
图1是本实用新型其中一个实施例的等温双效浓缩机组结构示意图;
图2是本实用新型其中一个实施例的等温双效浓缩机组俯视图;
图3是本实用新型其中一个实施例的双效浓缩单元主视结构图;
图4是本实用新型其中一个实施例的双效浓缩单元俯视结构放大图;
图5是本实用新型其中一个实施例的布水器半剖结构图;
图6是本实用新型其中一个实施例的布水器仰视结构图;
图7是本实用新型其中一个实施例的布水器使用状态图;
图8是本实用新型其中一个实施例的配液支管结构图;
图9是本实用新型其中一个实施例的预热单元结构图。
其中:同体双效加热器1;原料罐2;收膏罐5;主壳体11;上封头12;等温浓缩塔体13;上管板14;下管板15;换热管16;上封挡板121;下封挡板132;Ⅰ效Ⅰ管程81;Ⅰ效Ⅱ管程82;Ⅱ效Ⅰ管程83;布水器122;储液箱123;进液管124;配液支管125;进液孔126;喷液孔127;降膜循环泵4;降膜调节阀41;第一强制循环泵51;第一强制循环调节阀52;出液泵53;降膜变频器42;密度计54;离心压缩机6;加温蒸汽输出管61;二次蒸汽输入管62;加温外壳体17;二次蒸汽集汽腔131;承载凸面133;进液泵21;原料调节阀22;输出三通控制阀31;一级换热器32;二级换热器33;冷凝水储罐34;冷凝水输出管111;净水罐7;输入三通控制阀71;净水控制阀72;不凝气体输出管112;截流板19。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本实用新型的技术方案。
本实施例的等温双效浓缩机组,如图1、图3所示,包括双效浓缩系统和二次蒸汽再压缩系统,所述双效浓缩系统和二次蒸汽再压缩系统连接,所述双效浓缩系统从上游至下游依次包括原料罐2、预热单元、等温浓缩塔体13、同体双效加热器1和收膏罐5;
如图3所示,所述等温浓缩塔体13套接于所述同体双效加热器1的外部,所述等温浓缩塔体13和同体双效加热器1之间形成二次蒸汽集汽腔131;
所述同体双效加热器1包括主壳体11、上封头12、上管板14、下管板15和多根换热管16,所述主壳体11的上端设置所述上管板14,所述主壳体11的下端设置所述下管板15,并且所述主壳体11的上端和上封头12密封连接;所述上管板14和下管板15分布设有多个换热管安装孔,多根换热管16通过换热管安装孔呈阵列式竖直安装在上管板14和下管板15之间;
还包括上封挡板121和下封挡板132,所述上封挡板121设置于上封头12的内腔并将上封头12的内腔划分成三个上密封腔,所述下封挡板132设置于等温浓缩塔体13的底部并将其划分成三个浓缩池,所述同体双效加热器1设置于所述下封挡板132的顶部;并且所述上封挡板121和下封挡板132上下相对设置从而将同体双效加热器1的管程划分成Ⅰ效Ⅰ管程81、Ⅰ效Ⅱ管程82和Ⅱ效Ⅰ管程83,如图2、图4所示;
如图3所示,所述Ⅰ效Ⅰ管程81和Ⅰ效Ⅱ管程82的上密封腔均设有布水器122,所述Ⅰ效Ⅰ管程81和Ⅰ效Ⅱ管程82为降膜浓缩模块,所述Ⅱ效Ⅰ管程83为强制循环浓缩模块。
优选地,如图2所示,所述Ⅰ效Ⅰ管程81的上密封腔通过管道和预热单元连通,所述Ⅰ效Ⅰ管程81的浓缩池通过管道和Ⅰ效Ⅱ管程82的上密封腔连通,所述Ⅰ效Ⅱ管程82的浓缩池通过管道和Ⅱ效Ⅰ管程83的上密封腔连通,所述Ⅱ效Ⅰ管程83的浓缩池通过管道和收膏罐5连通。
所述等温双效浓缩机组设有所述双效浓缩系统以用于中草药溶液的浓缩,浓度较低的中草药原液储存在所述原料罐2中,浓缩时中草药原液先经过预热单元进行加温以便于蒸发浓缩,然后高温的中草药原液进入同体双效加热器1内,并依次经过Ⅰ效Ⅰ管程81、Ⅰ效Ⅱ管程82和Ⅱ效Ⅰ管程83,先进行降膜浓缩后进行强制循环浓缩,制成浓度较高的中草药浆液并输送至收膏罐5进行储存。
所述同体双效加热器1的上封头12为中草药溶液的输入口,在上封头12的中草药溶液沿着上管板14流入各根换热管16中以进行蒸发浓缩,浓缩后的中草药溶液汇聚在下封箱13中。所述同体双效加热器1通过上下相对设置的上封挡板121和下封挡板132,将同体双效加热器1的管程划分成Ⅰ效Ⅰ管程81、Ⅰ效Ⅱ管程82和Ⅱ效Ⅰ管程83;每个管程从上到下包括一个上密封腔、一个浓缩池以及上密封腔和浓缩池之间对应那部分空间的换热管16,从而将主壳体11内的多根换热管16划分成三个区域,以便中草药溶液在同体双效加热器1进行多次循环蒸发浓缩,无需多个同体双效加热器1来延长中草药溶液的蒸发浓缩过程,节约成本和空间。
而且,由于中草药提取液多含有一些大分子物质(如多糖、淀粉、胶质等)、带颗粒物污垢和生物污垢混合物等,因此中草药溶液极易凝结引起结垢。因此,所述等温双效浓缩机组将易结垢的降膜浓缩设置在Ⅰ效Ⅰ管程81和Ⅰ效Ⅱ管程82,用于浓缩浓度较低的中草药原液,浓度较低的中草药原液不易结垢;所述布水器122可将中草药原液平均分配至各根换热管16,在换热管16的中草药原液在重力作用下以膜状流向浓缩池。降膜浓缩机的蒸发速率慢,为了浓度一次达标,换热管16较长;但强制循环浓缩机的蒸发速率快,换热管16较短;因此,所述同体双效加热器1将降膜浓缩模块设置为Ⅰ效Ⅰ管程81和Ⅰ效Ⅱ管程82这两个管程,强制循环浓缩模块仅需一个管程,从而既缩短换热管16的长度,避免强制循环浓缩模块能耗大,又能保证降膜浓缩模块的浓缩质量。
而将防垢能力强的强制循环浓缩设置在Ⅱ效Ⅰ管程83,用于浓缩浓度较高又易结垢的中草药溶液,满管的中草药溶液在换热管16内自由下落,下落过程中部分中草药溶液受热汽化,从而中草药溶液在膨胀的饱和气体推动下高速喷向浓缩池。所述同体双效加热器1集成降膜浓缩模块和强制循环浓缩模块,区别于现有功能单一的浓缩机,无需设置降膜浓缩机和强制循环浓缩机两种浓缩机,节省投入成本和占用空间,无需设置分离罐,省去各效程间的输送管道;而且每个模块可独立调节各个管程的浓缩速度和浓缩量以适应不同的生产要求,提高使用灵活性。
优选地,如图5所示,所述布水器122包括储液箱123和进液管124,所述进液管124和储液箱123连通,并且所述进液管124的密封端向储液箱123的内部延伸,所述进液管124的位于储液箱123的一段设有多个进液孔126;
如图6所示,所述储液箱123的底部设有多根配液支管125,多根所述配液支管125和多根所述换热管16一一对准并且所述配液支管125插入对应的所述换热管16中,如图7所示;所述配液支管125的底部密封,所述配液支管125的侧壁设有多个喷液孔127,如图5所示。
所述布水器122为一个密闭箱体,中草药溶液从所述进液管124输入,并通过进液孔126流入所述储液箱123的内部,然后通过配液支管125流向各根所述换热管16。可通过调节所述进液管124的进液量来调节所述储液箱123内中草药溶液的压力,从而改变配液支管125的喷液量,进而达到控制所述换热管16的润湿量,即控制在换热管16内的液膜的初始厚度,使液膜从换热管16的顶端流至底端的过程中,虽然液膜的厚度因蒸发变薄,但流至底端时仍存在薄薄的一层,既提高液膜的蒸发率,又避免干壁现象和结垢的发生。
所述进液管124的位于储液箱123内的一端密封,并且其位于储液箱123的一段设有多个进液孔126,从而中草药溶液可均匀地流向整个储液箱123内,避免所述储液箱123的中草药溶液分布不均而导致流向各根换热管16的中草药溶液不均等,而且可起到二次加压的作用,扩大中草药溶液的喷射范围。所述配液支管125的底部密封,所述配液支管125的侧面设有多个喷液孔127,中草药溶液从配液支管125的侧面喷向换热管16的侧壁,这样更有利于在换热管16的顶端形成液膜;若中草药溶液直接从配液支管125的底部喷向换热管16内,则成膜处的位置降低,导致换热管16的顶端发生干壁现象。
优选地,如图8所示,所述配液支管125的侧壁垂直设置多个所述喷液孔127,从而中草药溶液沿配液支管125侧壁的切线喷出,并在换热管16的内壁呈螺旋状汇流成膜,既确保换热管16的顶端完全湿润,又能确保形成的液膜厚度均匀,液膜内部不易形成气泡。
优选地,如图2至图4所示,所述双效浓缩系统还包括降膜循环泵4、降膜调节阀41、第一强制循环泵51、第一强制循环调节阀52和出液泵53;
所述降膜循环泵4的进液口通过管道和Ⅰ效Ⅰ管程81的浓缩池连通,所述降膜循环泵4的出液口通过管道和位于Ⅰ效Ⅱ管程82的布水器122的进液管124的开口端连通,所述降膜调节阀41的进液口通过管道和Ⅰ效Ⅱ管程82的浓缩池连通,所述降膜调节阀41的出液口通过管道和降膜循环泵4的进液口连通;
所述第一强制循环泵51的进液口通过管道和Ⅰ效Ⅱ管程82的浓缩池连通,所述第一强制循环泵51的出液口通过管道和Ⅱ效Ⅰ管程83的上密封腔连通,所述第一强制循环调节阀52的进液口通过管道和Ⅱ效Ⅰ管程83的浓缩池连通,所述第一强制循环调节阀52的出液口通过管道和第一强制循环泵51的进液口连通;
所述出液泵53的进液口通过管道和Ⅱ效Ⅰ管程83的浓缩池连通,所述出液泵53的出液口通过管道和收膏罐5连通。
中草药原液在Ⅰ效Ⅰ管程81经过初步降膜浓缩后成浓度较低的中草药溶液,所述降膜循环泵4抽取在Ⅰ效Ⅰ管程81的浓缩池的中草药溶液并输送至Ⅰ效Ⅱ管程82的上密封腔以进一步降膜浓缩。优选地,Ⅰ效Ⅱ管程82的浓缩池设有液位计,用于检测Ⅰ效Ⅱ管程82的浓缩池的中草药溶液储量。当中草药溶液的液面处于低位时,降膜调节阀41处于关闭状态,所述降膜循环泵4抽取在Ⅰ效Ⅰ管程81的浓缩池的中草药溶液;当中草药溶液的液面处于高位时,降膜调节阀41打开,所述降膜循环泵4抽取Ⅰ效Ⅱ管程82的浓缩池的中草药溶液至Ⅰ效Ⅱ管程82的上密封腔以进一步降膜浓缩,避免Ⅰ效Ⅱ管程82的浓缩池的中草药溶液储量过大时影响二次蒸汽排出,和防止过满时中草药溶液越过下封挡板132流向别的浓缩池中。
所述第一强制循环泵51抽取在Ⅰ效Ⅱ管程82的浓缩池的中草药溶液并输送至Ⅱ效Ⅰ管程83的上密封腔以进行初步强制循环浓缩。优选地,Ⅱ效Ⅰ管程83的浓缩池设有液位计,用于检测Ⅱ效Ⅰ管程83的浓缩池的中草药溶液储量。当中草药溶液的液面处于低位时,第一强制循环调节阀52处于关闭状态,所述第一强制循环泵51抽取在Ⅰ效Ⅱ管程82的浓缩池的中草药溶液;当中草药溶液的液面处于高位时,第一强制循环调节阀52打开,所述第一强制循环泵51同时抽取Ⅱ效Ⅰ管程83的浓缩池的中草药溶液至Ⅱ效Ⅰ管程83的上密封腔以进一步强制循环浓缩,避免Ⅱ效Ⅰ管程83的浓缩池的中草药溶液储量过大时影响二次蒸汽排出,和防止过满时中草药溶液越过下封挡板132流向别的浓缩池中。
当Ⅱ效Ⅰ管程83的浓缩池的中草药溶液达到出液要求浓度时,所述出液泵53抽取Ⅱ效Ⅰ管程83的浓缩池的中草药溶液至收膏罐5进行储存。
优选地,三个浓缩池的底部均设有排渣口,用于排出沉积在所述浓缩池的底部的药渣,避免药渣堵塞管道。
优选地,如图3所示,所述双效浓缩系统还包括降膜变频器42和密度计54,所述降膜变频器42和降膜循环泵4电连接,所述降膜变频器42控制降膜循环泵4的转速;所述密度计54的检测端和Ⅱ效Ⅰ管程83的浓缩池连通。所述降膜变频器42控制降膜循环泵4的转速,使降膜循环泵4的流量控制在18-36t/h的范围内,继而控制膜的厚度,使换热管16的润湿量适当,避免干壁现象发生。所述密度计54用于检测在Ⅱ效Ⅰ管程83的浓缩池的中草药溶液密度,判断是否达到出液要求,提高浓缩的准确可靠性。若中草药溶液的密度低于出液要求密度则在同体双效加热器1的Ⅱ效Ⅰ管程83继续强制循环浓缩,若中草药溶液的密度等于或高于出液要求密度则输送至收膏罐5进行储存。
优选地,如图1、图2所示,所述二次蒸汽再压缩系统还包括离心压缩机6、加温蒸汽输出管61和二次蒸汽输入管62,所述二次蒸汽输入管62的一端和离心压缩机6的输入口连通,所述二次蒸汽输入管62的另一端和等温浓缩塔体13连通,所述加温蒸汽输出管61的一端和离心压缩机6的输出口连通;
如图3所示,还包括加温外壳体17,所述加温外壳体17环绕设置于主壳体11的上部的外侧从而形成加温密封腔,所述主壳体11的与加温外壳体17对应的侧壁设有多个二次蒸汽输入通孔,所述加温蒸汽输出管61的另一端和加温外壳体17连通;所述下封挡板132的中部设有承载凸面133,所述同体双效加热器1设置于所述承载凸面133上。
所述二次蒸汽再压缩系统用于收集再利用浓缩产生的二次蒸汽。所述离心压缩机6通过压缩加热空气向加温蒸汽输出管61输送加热蒸汽,这些加热蒸汽随着加温蒸汽输出管61进入加温外壳体17,并通过二次蒸汽输入通孔进入主壳体11内部,加热各根换热管16内的中草药溶液,使得换热管16内的部分中草药溶液加热汽化,在换热管16内产生二次蒸汽,推动中草药溶液沿管壁下落,二次蒸汽从换热管16的底部排出至所述等温浓缩塔体13的二次蒸汽集汽腔131。
所述下封挡板132的中部设有承载凸面133,所述同体双效加热器1设置于所述承载凸面133上,从而使所述同体双效加热器1的底部和浓缩池的中草药溶液隔开,防止浓缩池的中草药溶液过满时封住所述同体双效加热器1的底部而使二次蒸汽无法排出,便于二次蒸汽的扩散,以及溶液和二次蒸汽间的分离。
排出的二次蒸汽依次流向所述二次蒸汽集汽腔131和二次蒸汽输入管62,最后进入离心压缩机6进行分离和压缩加热,再经加温蒸汽输出管61输送至加温外壳体17,参与换热循环。当二次蒸汽足够多时离心压缩机6不再压缩空气,由二次蒸汽代替加热蒸汽,减少对外界能源的需求,降低运行成本。在所述等温浓缩塔体13内收集的二次蒸汽均为等温蒸汽,便于压缩处理;而且排出的二次蒸汽收集再利用,减少对外排放,减少热能浪费。所述下封箱13的顶部设有下封凸管132,换热管16排出的二次蒸汽需经过下封凸管132才能进入集汽外壳体18,便于二次蒸汽的扩散,以及溶液和二次蒸汽间的分离。
优选地,如图2、图9所示,所述预热单元包括进液泵21、原料调节阀22、输出三通控制阀31、一级换热器32、二级换热器33、冷凝水储罐34、净水罐7、输入三通控制阀71和净水控制阀72,所述原料调节阀22的进液口通过管道和原料罐2连通,所述原料调节阀22的出液口通过管道和进液泵21的进液口连通,所述进液泵21的出液口和输出三通控制阀31的进液口连通,所述输出三通控制阀31的第一出液口通过管道和位于Ⅰ效Ⅰ管程81的布水器122的进液管124的开口端连通;
所述输入三通控制阀71的第一进液口通过管道和净水罐7连通,所述输入三通控制阀71的第二进液口通过管道和原料调节阀22的出液口连通,所述输入三通控制阀71的出液口通过管道和进液泵21的进液口连通;所述净水控制阀72的进液口通过管道和Ⅱ效Ⅰ管程83的浓缩池连通,所述净水控制阀72的出液口通过管道和冷凝水储罐34连通;
所述同体双效加热器1还包括冷凝水输出管111,所述冷凝水输出管111的一端和主壳体11连通,所述冷凝水输出管111的另一端和一级换热器32的工作介质入口连通,所述一级换热器32的工作介质出口通过管道和冷凝水储罐34连通,所述一级换热器32的进液口通过管道和输出三通控制阀31的第二出液口连通,所述二级换热器33的进液口通过管道和一级换热器32的出液口连通,所述二级换热器33的出液口通过管道和所述输出三通控制阀31的第一出液口连通,所述二级换热器33的工作介质入口通过管道外接锅炉,所述二级换热器33的工作介质出口外接蒸汽排放管。
所述冷凝水输出管111用于输出主壳体11的冷凝水,这些冷凝水为二次蒸汽和换热管16进行换热冷凝而成,这些冷凝水仍处于较高温度。因此,可将这些温度高的冷凝水作为一级换热器32的工作介质,和中草药原液进行换热,加热中草药原液,但加热效果不强。所述一级换热器32为板框式换热器,适用于低温热源的利用,两种换热介质的最小温差可达到1℃。所述二级换热器33外接锅炉蒸汽作为工作介质,和中草药原液进行换热,加热中草药原液,加热效果强。所述二级换热器33为列管式换热器,适用于高温热源的利用,换热温度范围大。
进液泵21抽取原料罐2中的中草药原液,可在进液泵21的进液口和一级换热器32的出液口设置温度计,检测中草药原液的温度,以控制输出三通控制阀31的两个出液口的开关和二级换热器33的工作状态。当中草药原液的温度高于80℃,则输出三通控制阀31的第一出液口打开并且第二出液口关闭,中草药原液无需预热,直接输送至Ⅰ效Ⅰ管程81的上密封腔进行降膜浓缩;当中草药原液的温度低于80℃,则输出三通控制阀31的第一出液口关闭并且第二出液口打开,首先一级换热器32对中草药原液进行一次预热,再判断一次预热后的中草药原液的温度是否达到80℃:若一次预热后的中草药原液的温度达到80℃,则二级换热器33不工作,中草药原液直接输送至Ⅰ效Ⅰ管程81的上密封腔进行降膜浓缩;若一次预热后的中草药原液的温度仍低于80℃,启动二级换热器33以对中草药原液进行二次预热,再输送至Ⅰ效Ⅰ管程81的上密封腔。所述预热单元设置一级换热器32和二级换热器33,根据中草药原液的温度选择预热方式,既充分利用冷凝水的余热,又减少对外界热源的使用,降低投入成本。所述原料调节阀22用于控制中草药原液输出量和输出速度,继而控制中草药原液的蒸发量和蒸发速度,优选将蒸发速度控制在10.5t/h。
位于Ⅰ效Ⅰ管程81的布水器122的进液量由进液泵21控制,可设置进液变频器以调节进液泵21的转速,即可控制进液泵21的出液速率,从而控制Ⅰ效Ⅰ管程81的液膜厚度。位于Ⅰ效Ⅱ管程82的布水器122的进液量由降膜循环泵4控制,所述降膜变频器42控制降膜循环泵4的转速,从而控制Ⅰ效Ⅱ管程82的液膜厚度。
所述净水罐7储存纯水,用于清洗同体双效加热器1;所述输入三通控制阀71用于控制是否进行清洗。浓缩时,输入三通控制阀71的第一进液口关闭且第二进液口打开,向进液泵21输送中草药原液;清洗时,输入三通控制阀71的第一进液口打开且第二进液口关闭,向进液泵21输送纯水,对同体双效加热器1进行清洗,而且清洗后打开净水控制阀72,废水输送至冷凝水储罐34储存。
优选地,如图3所示,所述同体双效加热器1还包括不凝气体输出管112和多个截流板19,所述不凝气体输出管112和主壳体11连通;多个所述截流板19设置于主壳体11的内部,且多个所述截流板19的一侧均与主壳体11的内壁连接,多个所述截流板19的另一侧和主壳体11之间形成的间隙呈S形排布。在主壳体11内的二次蒸汽部分冷凝成水并经冷凝水输出管111排出,而未冷凝成水的二次蒸汽则经不凝气体输出管112排出。所述主壳体11的内部设有呈S形排布的截流板19,用于引导二次蒸汽在主壳体11内自上而下呈S形流动,从而延长二次蒸汽在主壳体11的流动时间,继而延长换热时间,提高浓缩质量。
优选地,所述等温双效浓缩机组的浓缩方法,包括溶液浓缩过程和二次蒸汽循环过程:
所述溶液浓缩过程包括以下步骤:
步骤A,储存在原料罐2中的低温溶液通过预热单元加温成高温溶液后,进入同体双效加热器1的Ⅰ效Ⅰ管程81;
步骤B,高温溶液进入Ⅰ效Ⅰ管程81的上密封腔后,Ⅰ效Ⅰ管程81的布水器122将高温溶液平均分配到Ⅰ效Ⅰ管程81的各根换热管16中,在换热管16的高温溶液在重力作用下,以膜状流向Ⅰ效Ⅰ管程81的浓缩池,进行降膜浓缩;
步骤C,降膜循环泵4抽取在Ⅰ效Ⅰ管程81的浓缩池中的高温溶液并将其输送至Ⅰ效Ⅱ管程82的上密封腔,Ⅰ效Ⅱ管程82的布水器122将高温溶液平均分配到Ⅰ效Ⅱ管程82的各根换热管16中,在换热管16的高温溶液在重力作用下,以膜状流向Ⅰ效Ⅱ管程82的浓缩池,进行降膜浓缩;
当Ⅰ效Ⅱ管程82的浓缩池中的高温溶液未达到降膜要求浓度时,降膜调节阀41打开,降膜循环泵4将Ⅰ效Ⅱ管程82的浓缩池中的高温溶液输送回Ⅰ效Ⅱ管程82的上密封腔进行降膜浓缩,直至Ⅰ效Ⅱ管程82的浓缩池中的高温溶液达到降膜要求浓度为止;
步骤D,第一强制循环泵51将达到降膜要求浓度的高温溶液输送至Ⅱ效Ⅰ管程83的上密封腔,然后在Ⅱ效Ⅰ管程83的换热管16中进行强制循环浓缩,浓缩后的高温液体汇聚在Ⅱ效Ⅰ管程83的浓缩池;
当Ⅱ效Ⅰ管程83的浓缩池中的高温溶液未达到强制要求浓度时,第一强制循环调节阀52打开,第一强制循环泵51将Ⅱ效Ⅰ管程83的浓缩池中的高温溶液输送回Ⅱ效Ⅰ管程83的上密封腔进行强制循环浓缩,直至Ⅱ效Ⅰ管程83的浓缩池中的高温溶液达到出液要求浓度为止;
步骤E,出液泵53将达到出液要求浓度的高温溶液输送至收膏罐5进行储存;
所述二次蒸汽循环过程包括:
首先,在等温浓缩塔体13内的二次蒸汽通过二次蒸汽输入管62进入离心压缩机6压缩加温后,再通过加温蒸汽输出管61进入主壳体11,与主壳体11内的换热管16进行热交换;
然后,进行热交换后的二次蒸汽冷凝成液体,经冷凝水输出管111输送至冷凝水储罐34,而不凝气体则经不凝气体输出管112排出。
所述溶液浓缩过程先在Ⅰ效Ⅰ管程81和Ⅰ效Ⅱ管程82进行易结垢的降膜浓缩,用于浓缩浓度较低的中草药原液,浓度较低的中草药原液不易结垢;所述布水器122可将中草药原液平均分配至各根换热管16,在换热管16的中草药原液在重力作用下以膜状流向下封箱13;然后在Ⅱ效Ⅰ管程83进行防垢能力强的强制循环浓缩,用于浓缩浓度较高又易结垢的中草药溶液,满管的中草药溶液在换热管16内自由下落,下落过程中部分中草药溶液受热汽化,从而中草药溶液在膨胀的饱和气体推动下高速喷向下封箱13。而且,所述溶液浓缩过程还使中草药溶液在每一个管程中均进行多次循环浓缩直至达到预定值才进入下一级管程,提高浓缩质量。所述二次蒸汽循环过程同时收集三个管程排出的二次蒸汽,以代替加热蒸汽参与换热循环,减少对外界能源的需求,降低运行成本。二次蒸汽收集再利用,减少对外排放,减少热能浪费。
优选地,还包括清洁过程:
当高温溶液从Ⅰ效Ⅰ管程81全部输送至Ⅰ效Ⅱ管程82时,即Ⅰ效Ⅰ管程81的浓缩池无高温溶液时,储存在净水罐7的纯水输送至Ⅰ效Ⅰ管程81的上密封腔,对Ⅰ效Ⅰ管程81的上密封腔、换热管16和浓缩池进行冲洗;
当高温溶液从Ⅰ效Ⅱ管程82全部输送至Ⅱ效Ⅰ管程83时,即Ⅰ效Ⅱ管程82的浓缩池无高温溶液时,降膜循环泵4抽取在Ⅰ效Ⅰ管程81的浓缩池中的纯水并将其输送至Ⅰ效Ⅱ管程82的上密封腔,对Ⅰ效Ⅱ管程82的上密封腔、换热管16和浓缩池进行冲洗;
当高温溶液从Ⅱ效Ⅰ管程83全部输送至收膏罐5时,即Ⅱ效Ⅰ管程83的浓缩池无高温溶液时,第一强制循环泵51抽取在Ⅰ效Ⅱ管程82的浓缩池中的纯水并将其输送至Ⅱ效Ⅰ管程83的上密封腔,对Ⅱ效Ⅰ管程83的上密封腔、换热管16和浓缩池进行冲洗;
Ⅱ效Ⅰ管程83冲洗完毕后,净水控制阀72打开,在Ⅱ效Ⅰ管程83的浓缩池的纯水输送至冷凝水储罐34中储存。
所述清洁过程采用逐级各个管程清洗的方式,可在上一级管程进行清洗的同时,后级的管程仍在继续进行浓缩工作,互不影响,当出液后仅剩下Ⅱ效Ⅰ管程83需要清洗,大大缩短浓缩-清洗的轮换周期,提高生产效率。而且,在浓缩过程中进行清洁,既可以使完成浓缩的管程保持湿润,防止完成浓缩的管程的换热管16发生干壁;又可以在纯水清洁换热管16时产生二次蒸汽,确保整个浓缩过程中所述等温浓缩塔体13的二次蒸汽量均匀稳定,以使所述离心压缩机6工作稳定,防止压缩的二次蒸汽量不稳定而对所述离心压缩机6造成损坏。
以上结合具体实施例描述了本实用新型的技术原理。这些描述只是为了解释本实用新型的原理,而不能以任何方式解释为对本实用新型保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本实用新型的其它具体实施方式,这些方式都将落入本实用新型的保护范围之内。

Claims (8)

1.一种等温双效浓缩机组,包括双效浓缩系统和二次蒸汽再压缩系统,所述双效浓缩系统和二次蒸汽再压缩系统连接,所述双效浓缩系统从上游至下游依次包括原料罐、预热单元、等温浓缩塔体、同体双效加热器和收膏罐,其特征在于:
所述等温浓缩塔体套接于所述同体双效加热器的外部,所述等温浓缩塔体和同体双效加热器之间形成二次蒸汽集汽腔;
所述同体双效加热器包括主壳体、上封头、上管板、下管板和多根换热管,所述主壳体的上端设置所述上管板,所述主壳体的下端设置所述下管板,并且所述主壳体的上端和上封头密封连接;所述上管板和下管板分布设有多个换热管安装孔,多根换热管通过换热管安装孔呈阵列式竖直安装在上管板和下管板之间;
还包括上封挡板和下封挡板,所述上封挡板设置于上封头的内腔并将上封头的内腔划分成三个上密封腔,所述下封挡板设置于等温浓缩塔体的底部并将其划分成三个浓缩池,所述同体双效加热器设置于所述下封挡板的顶部;并且所述上封挡板和下封挡板上下相对设置从而将同体双效加热器的管程划分成Ⅰ效Ⅰ管程、Ⅰ效Ⅱ管程和Ⅱ效Ⅰ管程;
所述Ⅰ效Ⅰ管程和Ⅰ效Ⅱ管程的上密封腔均设有布水器,所述Ⅰ效Ⅰ管程和Ⅰ效Ⅱ管程为降膜浓缩模块,所述Ⅱ效Ⅰ管程为强制循环浓缩模块。
2.根据权利要求1所述的等温双效浓缩机组,其特征在于:所述Ⅰ效Ⅰ管程的上密封腔通过管道和预热单元连通,所述Ⅰ效Ⅰ管程的浓缩池通过管道和Ⅰ效Ⅱ管程的上密封腔连通,所述Ⅰ效Ⅱ管程的浓缩池通过管道和Ⅱ效Ⅰ管程的上密封腔连通,所述Ⅱ效Ⅰ管程的浓缩池通过管道和收膏罐连通。
3.根据权利要求1所述的等温双效浓缩机组,其特征在于:所述布水器包括储液箱和进液管,所述进液管和储液箱连通,并且所述进液管的密封端向储液箱的内部延伸,所述进液管的位于储液箱的一段设有多个进液孔;
所述储液箱的底部设有多根配液支管,多根所述配液支管和多根所述换热管一一对准并且所述配液支管插入对应的所述换热管中;所述配液支管的底部密封,所述配液支管的侧壁设有多个喷液孔。
4.根据权利要求3所述的等温双效浓缩机组,其特征在于:所述双效浓缩系统还包括降膜循环泵、降膜调节阀、第一强制循环泵、第一强制循环调节阀和出液泵;
所述降膜循环泵的进液口通过管道和Ⅰ效Ⅰ管程的浓缩池连通,所述降膜循环泵的出液口通过管道和位于Ⅰ效Ⅱ管程的布水器的进液管的开口端连通,所述降膜调节阀的进液口通过管道和Ⅰ效Ⅱ管程的浓缩池连通,所述降膜调节阀的出液口通过管道和降膜循环泵的进液口连通;
所述第一强制循环泵的进液口通过管道和Ⅰ效Ⅱ管程的浓缩池连通,所述第一强制循环泵的出液口通过管道和Ⅱ效Ⅰ管程的上密封腔连通,所述第一强制循环调节阀的进液口通过管道和Ⅱ效Ⅰ管程的浓缩池连通,所述第一强制循环调节阀的出液口通过管道和第一强制循环泵的进液口连通;
所述出液泵的进液口通过管道和Ⅱ效Ⅰ管程的浓缩池连通,所述出液泵的出液口通过管道和收膏罐连通。
5.根据权利要求4所述的等温双效浓缩机组,其特征在于:所述双效浓缩系统还包括降膜变频器和密度计,所述降膜变频器和降膜循环泵电连接,所述降膜变频器控制降膜循环泵的转速;
所述密度计的检测端和Ⅱ效Ⅰ管程的浓缩池连通。
6.根据权利要求4所述的等温双效浓缩机组,其特征在于:所述二次蒸汽再压缩系统还包括离心压缩机、加温蒸汽输出管和二次蒸汽输入管,所述二次蒸汽输入管的一端和离心压缩机的输入口连通,所述二次蒸汽输入管的另一端和等温浓缩塔体连通,所述加温蒸汽输出管的一端和离心压缩机的输出口连通;
还包括加温外壳体,所述加温外壳体环绕设置于主壳体的上部的外侧从而形成加温密封腔,所述主壳体的与加温外壳体对应的侧壁设有多个二次蒸汽输入通孔,所述加温蒸汽输出管的另一端和加温外壳体连通;
所述下封挡板的中部设有承载凸面,所述同体双效加热器设置于所述承载凸面上。
7.根据权利要求6所述的等温双效浓缩机组,其特征在于:所述预热单元包括进液泵、原料调节阀、输出三通控制阀、一级换热器、二级换热器、冷凝水储罐、净水罐、输入三通控制阀和净水控制阀,所述原料调节阀的进液口通过管道和原料罐连通,所述原料调节阀的出液口通过管道和进液泵的进液口连通,所述进液泵的出液口和输出三通控制阀的进液口连通,所述输出三通控制阀的第一出液口通过管道和位于Ⅰ效Ⅰ管程的布水器的进液管的开口端连通;
所述输入三通控制阀的第一进液口通过管道和净水罐连通,所述输入三通控制阀的第二进液口通过管道和原料调节阀的出液口连通,所述输入三通控制阀的出液口通过管道和进液泵的进液口连通;所述净水控制阀的进液口通过管道和Ⅱ效Ⅰ管程的浓缩池连通,所述净水控制阀的出液口通过管道和冷凝水储罐连通;
所述同体双效加热器还包括冷凝水输出管,所述冷凝水输出管的一端和主壳体连通,所述冷凝水输出管的另一端和一级换热器的工作介质入口连通,所述一级换热器的工作介质出口通过管道和冷凝水储罐连通,所述一级换热器的进液口通过管道和输出三通控制阀的第二出液口连通,所述二级换热器的进液口通过管道和一级换热器的出液口连通,所述二级换热器的出液口通过管道和所述输出三通控制阀的第一出液口连通,所述二级换热器的工作介质入口通过管道外接锅炉,所述二级换热器的工作介质出口外接蒸汽排放管。
8.根据权利要求7所述的等温双效浓缩机组,其特征在于:所述同体双效加热器还包括不凝气体输出管和多个截流板,所述不凝气体输出管和主壳体连通;
多个所述截流板设置于主壳体的内部,且多个所述截流板的一侧均与主壳体的内壁连接,多个所述截流板的另一侧和主壳体之间形成的间隙呈S形排布。
CN201720928801.3U 2017-07-28 2017-07-28 一种等温双效浓缩机组 Withdrawn - After Issue CN207055992U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720928801.3U CN207055992U (zh) 2017-07-28 2017-07-28 一种等温双效浓缩机组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720928801.3U CN207055992U (zh) 2017-07-28 2017-07-28 一种等温双效浓缩机组

Publications (1)

Publication Number Publication Date
CN207055992U true CN207055992U (zh) 2018-03-02

Family

ID=61516781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720928801.3U Withdrawn - After Issue CN207055992U (zh) 2017-07-28 2017-07-28 一种等温双效浓缩机组

Country Status (1)

Country Link
CN (1) CN207055992U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107308667A (zh) * 2017-07-28 2017-11-03 佛山德众制药机械有限公司 一种等温双效浓缩机组及其浓缩方法
CN108939598A (zh) * 2018-07-14 2018-12-07 河北诺达化工设备有限公司 熔融结晶器
CN113342096A (zh) * 2021-06-01 2021-09-03 北京市水文地质工程地质大队(北京市地质环境监测总站) 一种实验室样品源浓液提取设备及使用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107308667A (zh) * 2017-07-28 2017-11-03 佛山德众制药机械有限公司 一种等温双效浓缩机组及其浓缩方法
CN107308667B (zh) * 2017-07-28 2022-08-05 佛山德众制药机械有限公司 一种等温双效浓缩机组及其浓缩方法
CN108939598A (zh) * 2018-07-14 2018-12-07 河北诺达化工设备有限公司 熔融结晶器
CN113342096A (zh) * 2021-06-01 2021-09-03 北京市水文地质工程地质大队(北京市地质环境监测总站) 一种实验室样品源浓液提取设备及使用方法

Similar Documents

Publication Publication Date Title
CN207055992U (zh) 一种等温双效浓缩机组
CN104759108B (zh) 带机械蒸汽再压缩的三级连续降膜循环蒸发浓缩系统
CN107032429A (zh) 一种反渗透浓水处理系统及处理工艺
CN204522328U (zh) 带机械蒸汽再压缩的三级连续降膜循环蒸发浓缩系统
CN104922921B (zh) 一种自循环mvr热泵蒸发系统
CN207055997U (zh) 一种可控布水器及使用其的降膜浓缩机
CN206837530U (zh) 一种用于回收全热和潜热的真空蒸发浓缩装置
CN205974481U (zh) 一种循环利用酒汽热能的酒液加热蒸发系统
CN108651932A (zh) 一种蜂蜜生产装置及其使用方法
CN106621425B (zh) 一种高沸点高粘度热敏性物料的蒸发装置
CN110425508A (zh) 一种纯蒸汽发生器及其工作方法
CN216571566U (zh) 一种降膜蒸发器
CN208711077U (zh) 多程多效mvr蒸发系统
CN107308667A (zh) 一种等温双效浓缩机组及其浓缩方法
CN204734971U (zh) Mvr双效强制外循环蒸发系统
CN105903216A (zh) 中药浓缩装置及工艺
CN207532811U (zh) 一种液体加热蒸发浓缩装置
CN206338780U (zh) 一种蒸汽发生器及蒸汽烤箱
CN101653664B (zh) 板式降膜蒸发器
CN107638708A (zh) 一种串并联一体式多效蒸发器
CN206642385U (zh) 多效降膜真空蒸发冷凝器设备
CN207153133U (zh) 一种降膜蒸发器
CN209519551U (zh) 一种黏胶纤维闪蒸装置酸浴用的常温循环水降膜冷凝装置
CN206642386U (zh) 一种具有高稳定性的多效降膜真空蒸发冷凝器设备
CN207153134U (zh) 一种降膜蒸发塔

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20180302

Effective date of abandoning: 20220805

AV01 Patent right actively abandoned

Granted publication date: 20180302

Effective date of abandoning: 20220805