CN206901810U - 利用异质沉降结晶成核方式的冷冻海水淡化装置系统 - Google Patents

利用异质沉降结晶成核方式的冷冻海水淡化装置系统 Download PDF

Info

Publication number
CN206901810U
CN206901810U CN201720425325.3U CN201720425325U CN206901810U CN 206901810 U CN206901810 U CN 206901810U CN 201720425325 U CN201720425325 U CN 201720425325U CN 206901810 U CN206901810 U CN 206901810U
Authority
CN
China
Prior art keywords
seawater
ice
particle
refrigerant fluid
ice crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201720425325.3U
Other languages
English (en)
Inventor
袁瀚
黄贤坤
赵健
梅宁
孙坤元
孙朋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201720425325.3U priority Critical patent/CN206901810U/zh
Application granted granted Critical
Publication of CN206901810U publication Critical patent/CN206901810U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Physical Water Treatments (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本实用新型专利涉及冷冻海水淡化领域,尤其涉及一种利用异质沉降结晶成核方式的冷冻海水淡化装置系统。包括制冷机构、微粒储存器、海水冷冻结晶冰水分离装置、废海水微粒分离器和淡水微粒分离器,海水冷冻结晶冰水分离装置包括两个制冷剂流动换热壳、冰晶传送带和冰晶刮刀,制冷剂流动换热壳的内部设有凹槽,两制冷剂流动换热壳沿其轴线方向对称设置,冰晶传送带位于两制冷剂流动换热壳之间,且沿制冷剂流动换热壳的轴向设置,制冷剂流动换热壳内设有沿换热壳的轴线方向设置的冰晶刮刀,两制冷剂流动换热壳内的冰晶刮刀的转动方向相反。不仅能够有效抑制冰晶生长过程中“盐胞”的形成,而且进一步促进海水中冰晶的生长,实现海水冷冻结晶脱盐。

Description

利用异质沉降结晶成核方式的冷冻海水淡化装置系统
技术领域
本实用新型专利涉及冷冻海水淡化领域,尤其涉及一种利用微粒沉降方式的冰晶成核冷冻海水淡化装置系统。
背景技术
淡水资源短缺使得海水冷冻淡化成为制备淡水的重要途径。冰是单矿岩,不能和其他物质共处,所以水在结晶过程中,会自动排除杂质,以保持其纯净,冷冻法海水淡化正是利用这一原理。冰晶经过洗涤、分离、融化后即得到淡水。冻结海水时,盐分被排除在冰晶以外,冰晶形成时间越长,盐分就越少,这是由于海水冻结的过程中会使一些盐分以盐胞的方式夹杂在冰晶之间,冰层中的“盐胞”是海水冷冻法的成冰盐度较高的直接原因。因此,如何抑制冰晶生长过程中“盐胞”的形成,是实现海水冷冻结晶脱盐的一项关键问题。
成核是指气相(或液相)介质中的某些组分一定机制作用下转变为固相(或液相)的过程,实现介质从气相(或液相)向固相(或液相)的质量迁移。同质成核(或自身成核)的发生是由于过饱和体系中分子团吸附气体分子而使得自身尺度超过临界成核尺度;异质成核是由外部因素诱导形成,在体系的某些区域择优、不均匀地形成晶核。异质形核一般是发生在容器、管道等表面或者悬浮杂质的表面。在溶液实际结晶过程中,多数异质成核发生时,过冷度明显比同质成核预测值小。溶液接触的冷壁面或微小粒子等,在一定程度上为冰晶成核提供了必需的晶核表面,起到催化成核的作用。成核发生过程,晶核体积与面积的比值将增加,晶核固相与液相界面将部分被晶核与异质界面代替。
实用新型内容
本实用新型的目的在于解决现有技术中存在海水冷冻法成冰盐度较高的问题,提出了一种利用异质沉降结晶成核方式的冷冻海水淡化装置系统,不仅能够有效抑制冰晶生长过程中“盐胞”的形成,而且进一步促进海水中冰晶的生长,实现海水冷冻结晶脱盐。
本实用新型的技术方案是:一种利用异质沉降结晶成核方式的冷冻海水淡化装置系统,包括制冷机构,制冷机构包括节流阀、辅助冷凝器、主冷凝器和压缩机,压缩机、主冷凝器、辅助冷凝器和节流阀依次连接,节流阀与海水冷冻结晶冰水分离装置连通,其中,还包括微粒储存器、海水冷冻结晶冰水分离装置、废海水微粒分离器和淡水微粒分离器;
所述海水冷冻结晶冰水分离装置包括两个制冷剂流动换热壳、冰晶传送带和冰晶刮刀,制冷剂流动换热壳的内部设有凹槽,两制冷剂流动换热壳沿其轴线方向对称设置,冰晶传送带位于两制冷剂流动换热壳之间,且沿制冷剂流动换热壳的轴向设置,制冷剂流动换热壳内设有沿换热壳的轴线方向设置的冰晶刮刀,冰晶刮刀固定在冰晶刮刀旋转轴上,冰晶刮刀旋转轴的两端分别设置在制冷剂流动换热壳上,两制冷剂流动换热壳内的冰晶刮刀的转动方向相反,均向冰晶传送带方向转动;
所述制冷剂流动换热壳的外侧边顶部设有数个沿轴向间隔设置的微粒添加口,制冷剂流动换热壳上还设有海水入口、冰晶排出口、制冷剂排出口、废海水排出口Ⅱ和制冷剂入口,制冷剂入口与节流阀的出口连通;
废海水排出口Ⅱ与废海水微粒分离器的入口连通,废海水微粒分离器上设有废海水排出口Ⅰ和颗粒出口,颗粒出口与颗粒储存器的入口连通;
冰晶排出口与主冷凝器的冰晶入口连通,主冷凝器的液体出口与淡水微粒分离器的入口连通,淡水微粒分离器上设有淡水排出口和颗粒出口,淡水微粒分离器的颗粒出口与颗粒储存器的入口连通;
所述颗粒储存器的出口与海水冷冻结晶冰水分离装置的颗粒添加口连通;
所述制冷剂排出口与压缩机的进气口连通。
所述制冷剂流动换热壳沿其轴向呈倾斜设置,其外侧边高于内侧边。目的是便于将冰晶刮至传送带上。
所述制冷剂流动换热壳呈圆弧形,制冷剂流动换热壳内的凹槽为弧形槽。
所述颗粒可以采用微米级铜颗粒、微米级金颗粒或者微米级银颗粒。
本实用新型的有益效果是:
(1)采用独特的冷冻海水淡化装置,不仅能使微粒与海水充分混合沉降结晶,而且完成冰晶与废海水的有效分离:海水与微粒注入海水冷冻结晶冰水分离装置中,通过与外壳中制冷剂换热结晶,利用冰晶刮刀旋转把冰晶推至传送带,使得冰晶与废海水分离。
(2)装置中异质沉降成核冷冻海水结晶方式的应用,不仅能够有效抑制冰晶生长过程中“盐胞”的形成,而且进一步促进海水中冰晶的生长,实现海水冷冻结晶脱盐。
(3)整体循环系统连续制冰,增加淡水产量。通过水路循环与制冷循环,以及微粒分离与供给装置的组合,使得整体循环装置能够连续生成淡水。
附图说明
图1是本实用新型的连接结构示意图;
图2是海水冷冻结晶冰水分离装置的主视图;
图3是海水冷冻结晶冰水分离装置的左视图;
图4是海水冷冻结晶冰水分离装置的俯视图;
图5是图4的A-A向剖视图。
图中:1微粒储存器;2海水入口;3废海水排出口Ⅰ;4废海水微粒分离器;5海水冷冻结晶冰水分离装置;6节流阀;7辅助冷凝器;8主冷凝器;9压缩机;10淡水微粒分离器;11淡水排出口;12冰晶排出口;13制冷剂排出口;15微粒添加口;16冰晶刮刀旋转轴;17冰晶传送带;18制冷剂流动换热壳;19废海水排出口Ⅱ;20制冷剂入口;21冰晶刮刀;22微粒;23带有微粒的冰晶。
具体实施方式
下面结合附图和实施例对本实用新型作进一步的说明。
如图1所示,利用异质沉降结晶成核方式的冷冻海水淡化装置系统包括微粒储存器1、海水冷冻结晶冰水分离装置5、废海水微粒分离器4、淡水微粒分离器10和制冷机构。制冷机构包括节流阀6、辅助冷凝器7、主冷凝器8和压缩机9,压缩机9、主冷凝器8、辅助冷凝器7和节流阀6依次连接,节流阀6与海水冷冻结晶冰水分离装置5连通,形成制冷循环,通过制冷剂换热为海水冷冻结晶冰水分离装置5中的海水结晶提供冷量。
如图2至图5所示,海水冷冻结晶冰水分离装置5包括两个制冷剂流动换热壳18、冰晶传送带17和冰晶刮刀21。本实施例中,制冷剂流动换热壳18呈半圆柱形,其内部设有半圆形凹槽,两制冷剂流动换热壳18沿其轴线方向对称设置。冰晶传送带17位于两制冷剂流动换热壳18之间,且沿制冷剂流动换热壳18的轴向设置。制冷剂流动换热壳18沿其轴向呈倾斜设置,其外侧边高于内侧边,目的是便于将冰晶刮至传送带17上。制冷剂流动换热壳18内设有沿换热壳的轴线方向设置的冰晶刮刀21,冰晶刮刀21固定在冰晶刮刀旋转轴16上,冰晶刮刀旋转轴16的两端分别设置在制冷剂流动换热壳18上。两冰晶刮刀21的转动方向相反,均向冰晶传送带17方向转动。冰晶刮刀旋转轴16旋转,带动冰晶刮刀21旋转,通过冰晶冰刀21刮取冰晶23,使得冰晶23移至冰晶传送带17。当冰晶刮刀21将带有微粒的冰晶23刮至传送带17的过程中,可以不断地向制冷剂流动换热壳18内通入颗粒和海水,当冰晶刮刀21将冰晶挂送至传送带17上后并且继续转动的过程中,颗粒和海水在低温作用下结晶,当冰晶刮刀21再次转动至制冷剂流动换热壳18的底部时,则可继续将结晶后形成的冰晶刮至输送带上。
制冷剂流动换热壳18的外侧边顶部设有多个微粒添加口15,微粒添加口15沿换热壳的轴向间隔设置,微粒22通过微粒添加口15进入制冷剂流动换热壳18内。同时制冷剂流动换热壳18上还设有海水入口2、冰晶排出口12、制冷剂排出口13、废海水排出口Ⅱ19和制冷剂入口20。海水通过海水入口2进入制冷剂流动换热壳18内,制冷剂入口20与节流阀6的出口连通,制冷剂通过制冷剂入口20进入制冷剂流动换热壳18内,制冷结束后,制冷剂通过制冷剂排出口13排出。海水和颗粒22在制冷剂流动换热壳18内混合,同时在制冷剂的降温作用下,通过异质沉降成核方式进行结晶,在冰晶生长过程中,针状冰晶谷底盐浓度高于海水主体浓度,盐分的传质效率较低,使得谷底不易结晶,利用微粒沉降至冰晶谷底排出高浓度盐水,并通过微粒表面为冰晶成核提供了必需的晶核表面,起到催化成核的作用,不仅能够有效抑制冰晶生长过程中“盐胞”的形成,而且进一步促进海水中冰晶的生长,实现了海水冷冻结晶脱盐方式。结晶过程结束后,带有颗粒的冰晶23通过冰晶排出口12排出,剩余的海水通过废海水排出口19排出。
海水冷冻结晶冰水分离装置5的废海水排出口Ⅱ19与废海水微粒分离器4的入口连通,废海水微粒分离器4上设有废海水排出口Ⅰ3和颗粒出口,颗粒出口与颗粒储存器1的入口连通,经废海水微粒分离器4分离后得到的海水通过废海水排出口Ⅰ3排出,颗粒则直接进入颗粒储存器1内。
海水冷冻结晶冰水分离装置5的冰晶排出口12与主冷凝器8的冰晶入口连通,主冷凝器8的液体出口与淡水微粒分离器10的入口连通,淡水微粒分离器10上设有淡水排出口11和颗粒出口,淡水微粒分离器10的颗粒出口与颗粒储存器1的入口连通。带有颗粒的冰晶23沿冰晶排出口12流出,进入主冷凝器8内,主冷凝器8的工作过程中会放热,带有颗粒的冰晶23吸热融化,并和颗粒一起从主冷凝器8流出,并进入淡水颗粒分离器10内,经淡水颗粒分离器10分离后的淡水沿淡水排出口11排出,颗粒则进入颗粒储存器1内。
本实用新型中,颗粒储存器1的出口与海水冷冻结晶冰水分离装置5的颗粒添加口15连通,从而实现了颗粒在整个系统中的循环使用。本实用新型中的颗粒为微米级、可沉降、可分离、可异质成核的颗粒,一般可以采用微米级铜颗粒、微米级金颗粒或者微米级银颗粒等。
制冷剂流动换热壳18的制冷剂排出口13与压缩机9的进气口连通,从而实现了制冷剂在该系统内的循环使用。
本实用新型的工作过程如下所述:将颗粒16和海水注入制冷剂流动换热壳18内,在制冷机构的制冷作用下通过异质沉降成核方式进行结晶,在冰晶的生长过程中,利用微粒沉降至冰晶谷底排出高浓度盐水,并通过微粒表面为冰晶成核提供了必需的晶核表面,起到催化成核的作用,不仅能够有效抑制冰晶生长过程中“盐胞”的形成,而且进一步促进海水中冰晶的生长,实现了海水冷冻结晶脱盐方式。结晶过程结束后,带有颗粒的冰晶23通过冰晶排出口12排出,经过主冷凝器9的加热和淡水微粒分离器10的分离,回收淡水,剩余的颗粒回收至微粒储存器1内;剩余的海水和颗粒通过废海水排出口Ⅱ19排出,经废海水微粒分离器4分离后,废海水被排出,剩余的颗粒回收至微粒储存器1内;剩余的制冷剂则被输送至压缩机9内,继续参与循环制冷。

Claims (4)

1.一种利用异质沉降结晶成核方式的冷冻海水淡化装置系统,包括制冷机构,制冷机构包括节流阀(6)、辅助冷凝器(7)、主冷凝器(8)和压缩机(9),压缩机(9)、主冷凝器(8)、辅助冷凝器(7)和节流阀(6)依次连接,其特征在于:还包括微粒储存器(1)、海水冷冻结晶冰水分离装置(5)、废海水微粒分离器(4)和淡水微粒分离器(10),节流阀(6)与海水冷冻结晶冰水分离装置(5)连通;
所述海水冷冻结晶冰水分离装置(5)包括两个制冷剂流动换热壳(18)、冰晶传送带(17)和冰晶刮刀(21),制冷剂流动换热壳(18)的内部设有凹槽,两制冷剂流动换热壳(18)沿其轴线方向对称设置,冰晶传送带(17)位于两制冷剂流动换热壳(18)之间,且沿制冷剂流动换热壳(18)的轴向设置,制冷剂流动换热壳(18)内设有沿换热壳的轴线方向设置的冰晶刮刀(21),冰晶刮刀(21)固定在冰晶刮刀旋转轴(16)上,冰晶刮刀旋转轴(16)的两端分别设置在制冷剂流动换热壳(18)上,两制冷剂流动换热壳(18)内的冰晶刮刀(21)的转动方向相反,均向冰晶传送带(17)方向转动;
所述制冷剂流动换热壳(18)的外侧边顶部设有数个沿轴向间隔设置的微粒添加口(15),制冷剂流动换热壳(18)上还设有海水入口(2)、冰晶排出口(12)、制冷剂排出口(13)、废海水排出口Ⅱ(19)和制冷剂入口(20),制冷剂入口(20)与节流阀(6)的出口连通;
废海水排出口Ⅱ(19)与废海水微粒分离器(4)的入口连通,废海水微粒分离器(4)上设有废海水排出口Ⅰ(3)和颗粒出口,颗粒出口与颗粒储存器(1)的入口连通;
冰晶排出口(12)与主冷凝器(8)的冰晶入口连通,主冷凝器(8)的液体出口与淡水微粒分离器(10)的入口连通,淡水微粒分离器(10)上设有淡水排出口(11)和颗粒出口,淡水微粒分离器(10)的颗粒出口与颗粒储存器(1)的入口连通;
所述颗粒储存器(1)的出口与海水冷冻结晶冰水分离装置(5)的颗粒添加口(15)连通;
所述制冷剂排出口(13)与压缩机(9)的进气口连通。
2.根据权利要求1所述的利用异质沉降结晶成核方式的冷冻海水淡化装置系统,其特征在于:所述制冷剂流动换热壳(18)沿其轴向呈倾斜设置,其外侧边高于内侧边。
3.根据权利要求1所述的利用异质沉降结晶成核方式的冷冻海水淡化装置系统,其特征在于:所述制冷剂流动换热壳(18)呈圆弧形,制冷剂流动换热壳(18)内的凹槽为弧形槽。
4.根据权利要求1所述的利用异质沉降结晶成核方式的冷冻海水淡化装置系统,其特征在于:所述颗粒采用微米级铜颗粒、微米级金颗粒或者微米级银颗粒。
CN201720425325.3U 2017-04-21 2017-04-21 利用异质沉降结晶成核方式的冷冻海水淡化装置系统 Withdrawn - After Issue CN206901810U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720425325.3U CN206901810U (zh) 2017-04-21 2017-04-21 利用异质沉降结晶成核方式的冷冻海水淡化装置系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720425325.3U CN206901810U (zh) 2017-04-21 2017-04-21 利用异质沉降结晶成核方式的冷冻海水淡化装置系统

Publications (1)

Publication Number Publication Date
CN206901810U true CN206901810U (zh) 2018-01-19

Family

ID=61290855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720425325.3U Withdrawn - After Issue CN206901810U (zh) 2017-04-21 2017-04-21 利用异质沉降结晶成核方式的冷冻海水淡化装置系统

Country Status (1)

Country Link
CN (1) CN206901810U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865670A (zh) * 2017-04-21 2017-06-20 中国海洋大学 利用异质沉降结晶成核方式的冷冻海水淡化装置系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865670A (zh) * 2017-04-21 2017-06-20 中国海洋大学 利用异质沉降结晶成核方式的冷冻海水淡化装置系统
CN106865670B (zh) * 2017-04-21 2022-11-08 中国海洋大学 利用异质沉降结晶成核方式的冷冻海水淡化装置系统

Similar Documents

Publication Publication Date Title
CN106865670A (zh) 利用异质沉降结晶成核方式的冷冻海水淡化装置系统
CN104803433B (zh) 一种冷冻浓缩处理含盐废水的方法
CN1219565C (zh) 用于通过冷冻进行液体连续结晶的方法和装置
JP4062374B2 (ja) 製氷器
CN1837050A (zh) 一种冷冻法无水硝生产新工艺
CN202263415U (zh) 一种富硝盐水冷冻结晶除硝装置
CN105884107A (zh) 一种冰冻法水处理设备及其运行方法
CN101129206B (zh) 冰晶分离装置
CN206901810U (zh) 利用异质沉降结晶成核方式的冷冻海水淡化装置系统
CN102531261B (zh) 液化天然气冷能驱动的汽化与冷冻双作用海水淡化装置及方法
CN113697898B (zh) 一种海水淡化与冰蓄冷耦合系统
CN205773859U (zh) 一种冰冻法水处理设备
CN109574334B (zh) 一种对浓盐水进行深度浓缩及固液分离的方法
CN108421277A (zh) 一种富集盐湖卤水的系统及其富集盐湖卤水的方法
JP2003056951A (ja) 氷スラリ連続製氷方法とその連続製氷蓄熱システム
JP3728519B2 (ja) 凍結濃縮方法及びその装置
CN202415309U (zh) 液化天然气冷能驱动的汽化与冷冻双作用海水淡化装置
CN207871592U (zh) 一种实现结晶工艺过程能量梯级利用的装置
CN201101110Y (zh) 冰晶分离装置
JP4274499B2 (ja) 粒氷製造方法及び製造装置
KR100513219B1 (ko) 슬러리 아이스 제빙기
CN115925040B (zh) 一种基于旋流强化的高盐水处理工艺及系统
CN203857723U (zh) 淡水/海水两用的管状冰制冰机
CN202361723U (zh) 循环式二元冰制冷器
CN116672797B (zh) 一种聚苯硫醚熔体的纯化过滤装置及方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20180119

Effective date of abandoning: 20221108

AV01 Patent right actively abandoned

Granted publication date: 20180119

Effective date of abandoning: 20221108