CN206270286U - 高稳定性的氢气传感器 - Google Patents

高稳定性的氢气传感器 Download PDF

Info

Publication number
CN206270286U
CN206270286U CN201621313127.XU CN201621313127U CN206270286U CN 206270286 U CN206270286 U CN 206270286U CN 201621313127 U CN201621313127 U CN 201621313127U CN 206270286 U CN206270286 U CN 206270286U
Authority
CN
China
Prior art keywords
housing
film
hydrogen gas
gas sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201621313127.XU
Other languages
English (en)
Inventor
廖晓霞
赵旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN ASENSOR SENSING TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN ASENSOR SENSING TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN ASENSOR SENSING TECHNOLOGY Co Ltd filed Critical SHENZHEN ASENSOR SENSING TECHNOLOGY Co Ltd
Priority to CN201621313127.XU priority Critical patent/CN206270286U/zh
Application granted granted Critical
Publication of CN206270286U publication Critical patent/CN206270286U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本实用新型公开了一种高稳定性的氢气传感器,包括壳体、调节所述壳体内部湿度的水分管理单元、气体检测单元以及隔离膜;所述水分管理单元、气体检测单元以及隔离膜依次设置在所述壳体内,所述隔离膜包括防水透气膜;所述壳体内设有贯穿所述壳体以供氧气进入其中的氧气通道,所述壳体上设有贯通其内部的进气孔,所述隔离膜于所述壳体内覆盖在所述进气孔一侧。本实用新型的氢气传感器,适用于新能源汽车车内等环境的氢气含量监测,通过水分管理单元和防水透气膜、气体检测单元的配合,避免检测性能跟随环境湿度变化的情况,提高传感器的稳定性。

Description

高稳定性的氢气传感器
技术领域
本实用新型涉及一种传感器,尤其涉及一种高稳定性的氢气传感器。
背景技术
随着社会的进步和人们生活水平的提高,汽车在人们的日常生产和生活中扮演着越来越重要的角色。传统汽车都是以石油作为动力能源,石油燃烧后以CO、CO2、NO、NO2、SO2、粉尘颗粒物等作为终产物排放到大气中。随着汽车保有量的逐年增加,世界各国的能源危机和大气污染越来越严重,据统计大气污染50%都是由汽车排放的尾气引起的。虽然各国都在采用限行,收取拥堵费等一系列的措施来改善由汽车尾气引起的大气污染,但是根本解决之道还是在汽车本身,只有解决汽车排放的问题才能根治大气污染。所以世界各国都在大力推广新能源汽车,新能源汽车是指采用非常规的车用燃料作为动力来源,综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。
目前的新能源汽车主要包括燃料电池车以及电动汽车。燃料电池车是以纯氢气为能源,结合燃料电池的动力性能开发出发的新能源汽车;电动汽车是指以蓄电池为动力行驶的用电机驱动的汽车。二者的工作原理虽然不同,但是都是零排放,适合于大力推广。新能源汽车有别于传统汽车,不光体现在动力源、技术、排放物等方面,在汽车制造过程中也有一些细节需要注意,比如燃料电池车使用纯氢气作为燃料,在车内有储氢罐,这就对储氢罐以及管路的密封性提出了要求,一旦发生泄漏后果不堪设想。目前的电动汽车普遍采用锂离子电池作为动力源,锂电在过冲或短路时电池内部物质发生分解会产生氢气,同时作为电池温度管理主要手段的冷却液在充电电压达到一定等级时也会发生分解产生氢气。
氢气是一种无色、无味、无毒、易燃易爆的气体,当空气中的氢气含量达到4%时就会发生爆炸。氢气由于无色无味,燃烧时火焰是透明的,因此其存在不易被感官发现,具有巨大的危险性。所以在新能源汽车上需要安装氢气监测单元,以达到实时在线检测氢气泄漏或生成情况,为人车安全保驾护航。
结合汽车这个特殊的应用场景,要求所使用的氢气传感器除满足对一般安全监测领域所使用气体传感器的通用要求外,还应该具有较高的稳定性。
目前常用的氢气传感器有电化学式氢气传感器、燃料电池式氢气传感器、催化燃烧式氢气传感器及半导体式氢气传感器。在上述各种原理的氢气传感器中只有燃料电池式氢气传感器具有较高的稳定性,不受环境温湿度的影响,在使用周期内衰减可忽略,但是由于其使用的是微型燃料电池原理,响应时间非常长,其达到80%跃迁所需要的时间约10分钟,完全无法应用于安全监测领域。催化燃烧式传感器和半导体式传感器检测原理基本相同,这种类型的传感器虽然造价比较低,但是漂移和衰减非常严重,需要定期进行校准,半导体式传感器的检测性能还会受环境温湿度的影响,不适合应用于汽车行业。
电化学传感器利用定电位电解法进行气体检测,由工作电极,对电极,参比电极和电解质组成。其中工作电极是待测气体发生化学反应的地方;对电极是氧气发生反应的地方,并且和工作电极上的反应一起形成反应的闭环型;参比电极用来提供稳定的电势零点,防止检测结果受阴极极化以及氧气在对电极上的反应的影响。电解质提供质子传递通道,保证整个反应可以顺利进行,一般选择硫酸、硝酸、磷酸、苯磺酸、苯甲酸等酸性物质的水溶液充当电解液。为了提高传感器的信噪比,电化学传感器采用多孔形式的气体隔离膜充当传感器与外界环境的隔离屏障。在增加气体进入量的同时液体电解质中的水分也会很好的与外界环境进行交换。当外界环境发生变化时,传感器内部作为传质途径的电解质也会随之发生变化,如当外界环境湿度增大时传感器内部的电解质会熊环境中吸收水分导致电解液不断增多出现漏液现象,有些甚至撑破传感器外壳;当外界环境比较干燥时传感器内部的电解液中的水分会向环境中扩散导致电解液干涸从而失去传质能力;除此之外,氢气在电化学传感器中的反应产物是水,如果传感器长期工作在高浓度氢气环境下反应生成的水也会导致传感器出现水淹或衰减的现象。电解质的传质能力或者说传感器的检测性能与电解质中水分含量或者说外界环境湿度息息相关。除此之外,当检测环境中存在CO等干扰气体时容易出现催化剂中毒的现象,导致传感器的性能出现衰减。
综上所述,由于目前的氢气传感器存在着各种各样的问题,因此需要开发一种适合于新能源汽车车内氢气检测的传感器,满足要求外还具有较高的稳定性。
实用新型内容
本实用新型要解决的技术问题在于,提供一种高稳定性的氢气传感器。
本实用新型解决其技术问题所采用的技术方案是:提供一种高稳定性的氢气传感器,包括壳体、调节所述壳体内部湿度的水分管理单元、气体检测单元以及隔离膜;所述水分管理单元、气体检测单元以及隔离膜依次设置在所述壳体内,所述隔离膜包括防水透气膜;所述壳体内设有贯穿所述壳体以供氧气进入其中的氧气通道,所述壳体上设有贯通其内部的进气孔,所述隔离膜于所述壳体内覆盖在所述进气孔一侧。
优选地,所述水分管理单元包括内装有水分以形成浓缩湿度的容置室、以及密封在所述容置室开口上的气体隔离膜。
优选地,所述体检测单元位于所述水分管理单元的气体隔离膜一侧。
优选地,所述气体隔离膜为聚四氟乙烯膜、聚过氟乙烯膜、聚四氟乙烯/六氟丙烯共聚物膜、聚四氟乙烯/全氟丙乙烯醚共聚物膜、聚乙烯/四氟乙烯共聚物膜、聚酰亚胺膜、硅橡胶膜及氟化硅橡胶膜中的一种或多种的组合。
优选地,所述气体检测单元包括电解质体、设置在所述电解质体上的工作电极、对电极和参比电极;
所述壳体上设有数个插针,所述工作电极、对电极和参比电极分别通过引线与数个插针一一连接。
优选地,所述工作电极、对电极和参比电极分别平铺在所述电解质体的两侧上。
优选地,所述工作电极、对电极和参比电极为以抗干扰气体中毒的担载型催化剂为活性成分的多孔气体扩散电极。
优选地,所述防水透气膜为聚四氟乙烯膜、聚过氟乙烯膜、聚四氟乙烯/六氟丙烯共聚物膜、聚四氟乙烯/全氟丙乙烯醚共聚物膜、聚乙烯/四氟乙烯共聚物膜、聚酰亚胺膜、硅橡胶膜和氟化硅橡胶膜中的一种或多种的组合。
优选地,所述氧气通道位于所述水分管理单元远离所述气体检测单元的一侧。
优选地,所述进气孔开设在所述壳体的顶部,所述氧气通道贯穿所述壳体的底部。
本实用新型的氢气传感器,适用于新能源汽车车内等环境的氢气含量监测,通过水分管理单元和防水透气膜、气体检测单元的配合,避免检测性能跟随环境湿度变化的情况,提高传感器的稳定性。
附图说明
下面将结合附图及实施例对本实用新型作进一步说明,附图中:
图1是本实用新型一实施例的氢气传感器的剖面结构示意图;
图2是图1中水分管理单元的原理图;
图3是图1中气体检测单元的结构示意图;
图4是本实用新型的氢气传感器与现有氢气传感器进行氢气监测时的响应时间测试曲线图;
图5为本实用新型的氢气传感器进行环境试验的示意图;
图6是本实用新型的氢气传感器与现有氢气传感器进行环境试验前后的性能对比图。
具体实施方式
为了对本实用新型的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本实用新型的具体实施方式。
如图1所示,本实用新型一实施例的氢气传感器,包括壳体10、设置在壳体10内的水分管理单元20、设置在壳体10内且依次设置在水分管理单元20上方的气体检测单元30以及隔离膜。壳体10内设有贯穿壳体10的氧气通道11,氧气通过该氧气通道11进入壳体10作为供给。壳体10上设有贯通其内部的进气孔12,隔离膜于壳体10内覆盖在进气孔12一侧。需要监测氢气含量的气体从进气孔12进入壳体10内,通过隔离膜至气体检测单元30。
其中,壳体10起到整个传感器的防护支撑作用,且内部具有腔室供水分管理单元20、气体检测单元30以及防水透气膜40等容置其中。壳体10上(如图1中所示的底部)设有数个插针,插针与气体检测单元30连接,还用于与外界PCB板相连,实时将气体检测单元30产生的电信号传送给外界PCB板。
壳体10的材料可以是PP、PC、ABS、尼龙等有一定强度和韧性的高分子聚合物,抗冲击及震动能力强,且优选适用于酸性电解质的材料。
氧气通道11供氧气通过进入壳体10内,可以保证反应过程中氧气的供应,进而保证传感器的检测性能。氧气通道11贯穿壳体10的开口处设有气体隔离膜(未图示);氧气通道11通过该气体隔离膜与大气环境相通,所采用的气体隔离膜在常压下可以保证气体分子通过,但是液体以及粉尘无法通过,所用的气体隔离膜的材料可以是聚四氟乙烯(PTFE)、聚过氟乙烯(PVDF)、聚四氟乙烯/六氟丙烯共聚物(PFEP)、聚四氟乙烯/全氟丙乙烯醚共聚物(PFA)、聚乙烯/四氟乙烯共聚物(PETFE)、聚酰亚胺(PI)、硅橡胶(SR)或氟化硅橡胶(FSR)中的一种或多种的组合。
以图1传感器放置方向为例,进气孔12开设在壳体10的顶部,氧气通道11贯穿壳体10的底部。
水分管理单元20用于调节壳体10内部湿度(水分含量),使壳体10内电解质免受外界环境影响的作用。水分管理单元20包括内装有水分以形成浓缩湿度的容置室22、以及密封在容置室22开口上的气体隔离膜21;气体隔离膜21可供气体通过而液体及粉尘不可通过。水分管理单元20采用化学调控法和自扩散平衡法精准控制电解质内部水分含量,使其免受外界环境变化的影响。
当外界环境发生变化时,水分管理单元20会自动调整其内的浓缩湿度,浓缩湿度会通过气体隔离膜21分别在水分管理单元20及壳体10内部进行自扩散并迅速达到平衡,从而实现传感器内部的湿度调控,使其免受外界温湿度变化的影响:当环境湿度变大时水分管理单元20会把可能进入传感器中的水分子吸收掉;当环境湿度减小时又会释放自存储的水分,始终保持传感器内部与外界湿度之间的平衡。当氢气浓度增加时反应生成的水分也会被水分管理单元20吸收,从而保证传感器免受外界温湿度变化的影响。
如图2所示,其中的气体隔离膜21在常压下可以让水蒸气透过,但液体和固体(如粉尘)无法通过。该气体隔离膜21的材料可以是聚四氟乙烯(PTFE)、聚过氟乙烯(PVDF)、聚四氟乙烯/六氟丙烯共聚物(PFEP)、聚四氟乙烯/全氟丙乙烯醚共聚物(PFA)、聚乙烯/四氟乙烯共聚物(PETFE)、聚酰亚胺(PI)、硅橡胶(SR)及氟化硅橡胶(FSR)中的一种或多种的组合,为上述材料一种或多种组合制成的膜。
气体检测单元30在壳体10内位于气体隔离膜21的一侧,且位于水分管理单元20和隔离膜之间。
如图1、3所示,气体检测单元30包括电解质体31、设置在电解质体31上的工作电极32、对电极33和参比电极34。其中工作电极32、对电极33、参比电极34分别与电解质体31良好接触,以保证传质的通畅性。工作电极32、对电极33和参比电极34可以是同样的多孔气体扩散电极,也可以是不同的多孔气体扩散电极,其中的活性成分,即催化剂,可以是金(Au)、铑(Rh)、铂(Pt)、钌(Ru)、钯(Pd)、铱(Ir)、银(Ag)中的一种或几种金属的混合物,也可以是担载于导电碳颗粒上的上述金属或金属混合物,其中的导电碳颗粒可以是碳黑、碳纳米管或活性碳中的一种或几种的组合。优选地,活性成分选用具有抗一氧化碳等干扰气体中毒的担载型催化剂,抵御环境中的干扰气体对传感器检测性能的影响,避免出现催化剂中毒的现象。
气体检测单元30中,电解质体31可以是液体电解质、半固体电解质或固体电解质,其中传递质子的活性成分可以是硫酸、硝酸、磷酸、苯磺酸、苯甲酸等。优选地,各电极与电解质体31之间以平铺接触模式,以缩短传质距离加快响应速度。本实施例中,工作电极32、对电极33和参比电极34分别平铺在电解质体31的两侧上。如图3中所示,工作电极32位于电解质体31的一侧上,优选为朝向隔离膜的一侧上;对电极33和参比电极34位于电解质体31的相对另一侧上,且对电极33和参比电极34相间隔。
工作电极32、对电极33和参比电极34分别通过引线与数个插针一一连接。其中,结合图1、3,工作电极32通过引线321与插针101连接,对电极33通过引线331与插针102连接,参比电极34通过引线341与插针103连接。
参考图3,氢气从进入壳体10后,从气体检测单元30上方进入其中。
隔离膜包括防水透气膜40。防水透气膜40用于隔绝传感器与外界环境间的湿度交换,密实无孔,防水性强。通常,气体分子要通过膜必须先吸附在膜的表面,进而溶解进膜里,再从膜里脱附出来,而由于防水透气膜40本身具有防水特性,所以水分子是无法溶解在该防水透气膜40中,因此无法透过该膜,保证了传感器内部与外界环境的湿度之间基本上是零交换。由于气体分子大小不同能够透过防水透气膜40的比例也就不同,极大的提高了传感器的选择性;通过精准控制防水透气膜40的厚度来控制进入传感器内部的氢气分子的数量,既保证较好的检测精度又避免进入过多气体影响传感器的线性度。
作为选择,防水透气膜40可以是聚四氟乙烯(PTFE)膜、聚过氟乙烯(PVDF)膜、聚四氟乙烯/六氟丙烯共聚物(PFEP)膜、聚四氟乙烯/全氟丙乙烯醚共聚物(PFA)膜、聚乙烯/四氟乙烯共聚物(PETFE)膜、聚酰亚胺(PI)膜、硅橡胶(SR)膜和氟化硅橡胶(FSR)膜中的一种或多种的组合。
将本实用新型的氢气传感器监测浓度1%氢气作为测试,以英国城市技术公司型号为7HYT的氢气传感器作为对比,响应时间测试的曲线图如图4中所示,其中曲线A1为本实用新型的氢气传感器的响应曲线,曲线B1为对比氢气传感器的响应曲线。
从图中曲线可知,本实用新型的氢气传感器在测试1%的氢气时T90为14秒,而英国城市技术公司型号为7HYT的氢气传感器T90为93秒,可知本实用新型的氢气传感器响应迅速、对低含量的氢气灵敏度高,检测范围宽。
将本实用新型的氢气传感器进行环境试验:如图5所示,将本实用新型的氢气传感器密封放置于测试盒1上,测试盒1中部安装有风扇2保证传感器内的防水透气膜40可以和测试盒1的环境空气进行充分的接触,同时在实验前将测试盒1中加入适量水;将上述测试盒1整体放置于环境控制为60℃、90%RH的恒温恒湿箱3中,在温度的作用下,测试盒1中的水分开始挥发,在风扇2的作用下在测试盒1内部达到平衡,同时结合外界恒温恒湿箱3中的湿度,使得传感器所处环境的相对湿度达到98%以上。
将英国城市技术公司型号为7HYT的氢气传感器作为对比,进行为期两周的环境试验。环境试验前后氢气传感器的性能对比,如图6所示,其中(1)为试验前,(2)为试验后。其中线A2、A3代表本实用新型的氢气传感器,线B2、B3代表对比氢气传感器。作为对比的7HYT的氢气传感器在试验进行到第二天的时候就出现了外壳开裂损坏的现象,而本实用新型的氢气传感器壳体完好。
以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (10)

1.一种高稳定性的氢气传感器,其特征在于,包括壳体(10)、调节所述壳体(10)内部湿度的水分管理单元(20)、气体检测单元(30)以及隔离膜,所述水分管理单元(20)、气体检测单元(30)以及隔离膜依次设置在所述壳体(10)内,所述隔离膜包括防水透气膜(40);所述壳体(10)内设有贯穿所述壳体(10)以供氧气进入其中的氧气通道(11),所述壳体(10)上设有贯通其内部的进气孔(12),所述隔离膜于所述壳体(10)内覆盖在所述进气孔(12)一侧。
2.根据权利要求1所述的氢气传感器,其特征在于,所述水分管理单元(20)包括内装有水分以形成浓缩湿度的容置室(22)、以及密封在所述容置室(22)开口上的气体隔离膜(21)。
3.根据权利要求2所述的氢气传感器,其特征在于,所述体检测单元(30)位于所述水分管理单元(20)的气体隔离膜(21)一侧。
4.根据权利要求2所述的氢气传感器,其特征在于,所述气体隔离膜(21)为聚四氟乙烯膜、聚过氟乙烯膜、聚四氟乙烯/六氟丙烯共聚物膜、聚四氟乙烯/全氟丙乙烯醚共聚物膜、聚乙烯/四氟乙烯共聚物膜、聚酰亚胺膜、硅橡胶膜及氟化硅橡胶膜中的一种或多种的组合。
5.根据权利要求1所述的氢气传感器,其特征在于,所述气体检测单元(30)包括电解质体(31)、设置在所述电解质体(31)上的工作电极(32)、对电极(33)和参比电极(34);
所述壳体(10)上设有数个插针,所述工作电极(32)、对电极(33)和参比电极(34)分别通过引线与数个插针一一连接。
6.根据权利要求5所述的氢气传感器,其特征在于,所述工作电极(32)、对电极(33)和参比电极(34)分别平铺在所述电解质体(31)的两侧上。
7.根据权利要求5所述的氢气传感器,其特征在于,所述工作电极(32)、对电极(33)和参比电极(34)为以抗干扰气体中毒的担载型催化剂为活性成分的多孔气体扩散电极。
8.根据权利要求1所述的氢气传感器,其特征在于,所述防水透气膜(40)为聚四氟乙烯膜、聚过氟乙烯膜、聚四氟乙烯/六氟丙烯共聚物膜、聚四氟乙烯/全氟丙乙烯醚共聚物膜、聚乙烯/四氟乙烯共聚物膜、聚酰亚胺膜、硅橡胶膜和氟化硅橡胶膜中的一种或多种的组合。
9.根据权利要求1-8任一项所述的氢气传感器,其特征在于,所述氧气通道(11)位于所述水分管理单元(20)远离所述气体检测单元(30)的一侧。
10.根据权利要求9所述的氢气传感器,其特征在于,所述进气孔(12)开设在所述壳体(10)的顶部,所述氧气通道(11)贯穿所述壳体(10)的底部。
CN201621313127.XU 2016-12-01 2016-12-01 高稳定性的氢气传感器 Expired - Fee Related CN206270286U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201621313127.XU CN206270286U (zh) 2016-12-01 2016-12-01 高稳定性的氢气传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201621313127.XU CN206270286U (zh) 2016-12-01 2016-12-01 高稳定性的氢气传感器

Publications (1)

Publication Number Publication Date
CN206270286U true CN206270286U (zh) 2017-06-20

Family

ID=59042583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201621313127.XU Expired - Fee Related CN206270286U (zh) 2016-12-01 2016-12-01 高稳定性的氢气传感器

Country Status (1)

Country Link
CN (1) CN206270286U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030585A (zh) * 2018-07-10 2018-12-18 邓丽萍 一种提高工作环境安全性的检测方法
CN109632902A (zh) * 2019-01-18 2019-04-16 武汉万联高科传感技术有限公司 一种新型电化学氨气传感器
CN112067750A (zh) * 2020-09-10 2020-12-11 郑州美克盛世电子科技有限公司 一种可降湿探测气体的探头及新型气体探测器
CN113107465A (zh) * 2021-05-06 2021-07-13 中国石油大学(北京) 导管架及海洋深水浅层气监测装置
DE102020114281A1 (de) 2020-05-28 2021-12-02 Dräger Safety AG & Co. KGaA Ausgleichsmodul für einen Gassensor
WO2022033225A1 (zh) * 2020-12-03 2022-02-17 深圳中广核工程设计有限公司 耐高温高压高湿辐射的氢气浓度测量装置及氢气测量探头

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030585A (zh) * 2018-07-10 2018-12-18 邓丽萍 一种提高工作环境安全性的检测方法
CN109030585B (zh) * 2018-07-10 2020-12-15 泰州纳新新能源科技有限公司 一种提高工作环境安全性的检测方法
CN109632902A (zh) * 2019-01-18 2019-04-16 武汉万联高科传感技术有限公司 一种新型电化学氨气传感器
DE102020114281A1 (de) 2020-05-28 2021-12-02 Dräger Safety AG & Co. KGaA Ausgleichsmodul für einen Gassensor
CN112067750A (zh) * 2020-09-10 2020-12-11 郑州美克盛世电子科技有限公司 一种可降湿探测气体的探头及新型气体探测器
CN112067750B (zh) * 2020-09-10 2023-06-16 郑州美克盛世电子科技有限公司 一种可降湿探测气体的探头及新型气体探测器
WO2022033225A1 (zh) * 2020-12-03 2022-02-17 深圳中广核工程设计有限公司 耐高温高压高湿辐射的氢气浓度测量装置及氢气测量探头
CN113107465A (zh) * 2021-05-06 2021-07-13 中国石油大学(北京) 导管架及海洋深水浅层气监测装置

Similar Documents

Publication Publication Date Title
CN206270286U (zh) 高稳定性的氢气传感器
CN206470228U (zh) 一种高选择性的氢气传感器
CN206223723U (zh) 氢气传感器
CN108254420B (zh) 一种用于快速检测低浓度氢气的氢气传感器
Aoki et al. Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells
CN104181219B (zh) 一种甲醛气体传感器
CN205426842U (zh) 氢气传感器
US20100040913A1 (en) Apparatus and method for determining deterioration of a fuel cell and method for preventing deterioration of the same
CN106383155A (zh) 具有气体扩散通道的新能源车用氢气传感器
CN207163964U (zh) 高选择性的氢气传感器
EP0807249A1 (en) Electrochemical gas sensor
US3852169A (en) Measurement of carbon monoxide in gas mixtures
EP2825874A1 (en) Electrochemical gas sensor comprising an anion-exchange membrane
WO2013052041A1 (en) Gas sensor
Cho et al. Effect of catalyst layer ionomer content on performance of intermediate temperature proton exchange membrane fuel cells (IT-PEMFCs) under reduced humidity conditions
Choi et al. Current advances in polymer electrolyte fuel cells based on the promotional role of under‐rib convection
CN206470229U (zh) 一种用于快速检测低浓度氢气的氢气传感器
GB2518722A (en) Solid polymer electrolyte ammonia sensor
CN110514710A (zh) 一种电化学氨气传感器及多孔电极的制备方法及氨气检测方法
CN206192943U (zh) 抗震的氢气传感器
CN113899793A (zh) 一种电化学二氧化硫传感器及高稳定性对电极的制备方法
US20050145494A1 (en) Liquid electrochemical gas sensor
CN206270279U (zh) 宽量程的氢气传感器
CN106770582A (zh) 新能源车用氢气传感器
CN106596684A (zh) 一种氢气传感器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170620

Termination date: 20171201