CN205846228U - A kind of millimeter wave paster antenna of the T-shaped probe feed of high-gain - Google Patents

A kind of millimeter wave paster antenna of the T-shaped probe feed of high-gain Download PDF

Info

Publication number
CN205846228U
CN205846228U CN201620740046.1U CN201620740046U CN205846228U CN 205846228 U CN205846228 U CN 205846228U CN 201620740046 U CN201620740046 U CN 201620740046U CN 205846228 U CN205846228 U CN 205846228U
Authority
CN
China
Prior art keywords
radiation patch
medium substrate
transmission line
paster
coplanar waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201620740046.1U
Other languages
Chinese (zh)
Inventor
甘正
涂治红
姚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201620740046.1U priority Critical patent/CN205846228U/en
Application granted granted Critical
Publication of CN205846228U publication Critical patent/CN205846228U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model discloses the millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain, including first medium substrate, first medium substrate is provided with T-shaped probe, first radiation patch, second radiation patch, first coplanar waveguide transmission line and the second coplanar waveguide transmission line, T-shaped probe is made up of horizontal paster and vertical metal via, horizontal paster, first radiation patch and the second radiation patch are arranged on the front of first medium substrate, and horizontal paster and the first radiation patch, there is between second radiation patch identical spacing, first coplanar waveguide transmission line and the second coplanar waveguide transmission line are arranged on the back side of first medium substrate, vertical metal via is positioned at the center of horizontal paster, and sequentially pass through horizontal paster, first medium substrate and the first coplanar waveguide transmission line.This utility model achieves good antenna pattern, has stable and higher gain in whole working frequency range, has design simple, and volume is little, low cost, the advantage that characteristic is good.

Description

A kind of millimeter wave paster antenna of the T-shaped probe feed of high-gain
Technical field
This utility model relates to a kind of millimeter wave paster antenna, the millimeter of the T-shaped probe feed of a kind of high-gain Ripple paster antenna, belongs to wireless mobile telecommunication technology field.
Background technology
Along with the development of mobile communication technology, when the current mankind entirety has stepped into 4G (the 4th generation) In generation, 4G communication is that the development further of mechanics of communication lays a solid foundation.Since US Federal Communication Committee (FCC) will After the frequency range of this 7GHz of 57-64GHz opens as free use frequency range, people are made that substantial amounts of work around 60-GHz frequency range. 5G (the fifth generation) communication grows up on the basis of 4G communication, the most still in conceptual phase, away from Formally come into operation from it and also need to long period of time.Pass owing to the signal of millimeter wave frequency band is especially suitable for high-speed data Defeated, therefore the 5G communication that millimeter-wave technology is applied to future is an inevitable choice.But the signal due to 57-64GHz frequency range Having higher free space transmission decay and the strongest Atmospheric Absorption effect, the antenna therefore designing a high-gain is very It is necessary.
Millimeter wave paster antenna is by the size limitation of itself, and its gain can not reach the highest level, the most single The gain of antenna element can only achieve about 6dBi in working frequency range, and the gain being effectively improved antenna element is ten score value The work that must explore.
According to investigations with understanding, presently disclosed prior art is as follows:
1) 2014, Mingjian Li, Kwai-Man Luk, et al. at " IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION " deliver entitled " Low-Cost Wideband Microstrip Antenna Array For 60-GHz Applications " article in, use L-shaped probe feed structure, paster antenna is fed.Realize The widest impedance bandwidth and higher gain, and there is the lowest cross polarization and good directional diagram.Whole antenna structure It build on monolayer pcb board, there is characteristic that is cheap and that be prone to processing.Antenna structure is divided into upper and lower two-layer, and upper strata is radiation patch, Lower floor is cpw (Coplanar waveguide) feeder line.
2) 2013, Mei Sun, Zhi Ning Chen, Xianming Qing et al. was at " IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION " deliver entitled " Gain Enhancement of 60-GHz Antipodal Tapered Slot Antenna Using Zero-Index Metamaterial " article in, be loaded with a kind of ZIM structure In ATSA (Antipodal Tapered Slot Antenna) front end, it is achieved that the entire gain at working frequency range internal antenna carries High 0.2-2.6dBi.
Utility model content
The purpose of this utility model is the defect in order to solve above-mentioned prior art, it is provided that the T-shaped of a kind of high-gain is visited The millimeter wave paster antenna of pin feed, this antenna achieves good antenna pattern, has stable in whole working frequency range And higher gain, there is design simple, volume is little, low cost, the advantage that characteristic is good.
The purpose of this utility model can reach by adopting the following technical scheme that:
The millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain, including first medium substrate, described first medium Substrate is provided with T-shaped probe, the first radiation patch, the second radiation patch, the first coplanar waveguide transmission line and the second co-planar waveguide Transmission line, described T-shaped probe is made up of horizontal paster and vertical metal via, described horizontal paster, the first radiation patch and Two radiation patch are arranged between the front of first medium substrate, and horizontal paster and the first radiation patch, the second radiation patch Having identical spacing, described first coplanar waveguide transmission line and the second coplanar waveguide transmission line are arranged on first medium substrate The back side, described vertical metal via is positioned at the center of horizontal paster, and sequentially passes through horizontal paster, first medium substrate and first Coplanar waveguide transmission line.
As a kind of preferred version, also include two pieces of second medium substrates, two pieces of upper and lower symmetries of second medium substrate, often Block second medium substrate is arranged on the upper end of first medium substrate, and the front of every piece of second medium substrate is loaded with one or many Individual ZIM unit, each ZIM unit includes that the first vertical section, the second vertical section and bending segment, the described first vertical section erect with second The left and right symmetry of straight section, the two ends of described bending segment are connected with the first vertical section, the second vertical section respectively, and this bending segment is by one " several " shape structure and one fall " several " shape structure composition.
As a kind of preferred version, when described every piece of second medium substrate loads multiple ZIM unit, multiple ZIM unit exist Arrange successively in horizontal direction.
As a kind of preferred version, the dielectric constant of described every piece of second medium substrate is 5.9.
As a kind of preferred version, described first radiation patch is rectangular configuration, and described second radiation patch is inverted concave Structure;Described first radiation patch is arranged on the position that the second radiation patch middle concave is entered, and the first radiation patch and the Between two radiation patch, there is gap.
As a kind of preferred version, described first coplanar waveguide transmission line is rectangular configuration, and described second co-planar waveguide passes Defeated line is concave structure;Described first coplanar waveguide transmission line is arranged on the position that the second coplanar waveguide transmission line middle concave is entered On, and between the first coplanar waveguide transmission line and the second coplanar waveguide transmission line, there is gap.
As a kind of preferred version, the dielectric constant of described first medium substrate is 2.2.
As a kind of preferred version, described horizontal paster is rectangle copper sheet, and the center of circle of described vertical metal via is positioned at square The geometric center of shape copper sheet.
This utility model has a following beneficial effect relative to prior art:
1, millimeter wave paster antenna of the present utility model have employed T-shaped probe (generation be high frequency to the first radiation patch Mode of resonance), the second radiation patch (generation is the mode of resonance of low frequency) feeds, with conventional coaxial probe feed Paster antenna is compared, and has wider impedance bandwidth, and from the point of view of the result of Electromagnetic Simulation, impedance bandwidth is about 30%.
2, millimeter wave paster antenna of the present utility model also sets up two pieces of second medium bases in the upper end of first medium substrate Plate, loads one or more ZIM (zero-index metamaterial, zero refractive index in the front of every piece of second medium substrate Meta Materials) unit, each ZIM unit includes the first vertical section, the second vertical section and bending segment, and wherein bending segment is by one " several " Shape structure and one fall " several " shape structure composition, utilize ZIM unit to be carried in the upper of the first radiation patch and the second radiation patch End, improves the gain of antenna, and restrained effectively secondary lobe.
3, millimeter wave paster antenna of the present utility model uses T-shaped probe feed so that antenna body can be directly based upon PCB technology processes, it will be apparent that reduce the cost of antenna, and mobile communcations system has the highest requirement, low cost to cost Large-scale application for antenna has obvious advantage in mobile communication.
4, millimeter wave patch-antenna structure of the present utility model is simple, volume is little, and low cost, there is good radiation Characteristic, cross polarization ratio is the lowest, and directional diagram is stable, all has the lowest cross polarization and good spoke in whole working frequency range Penetrating directional diagram, and the gain of antenna can be stablized at more than 6dBi, highest-gain can reach about 8dBi.
Accompanying drawing explanation
Fig. 1 is first medium substrate front side structural representation in millimeter wave paster antenna of the present utility model.
Fig. 2 is first medium substrate back structural representation in millimeter wave paster antenna of the present utility model.
When Fig. 3 is one ZIM unit of second medium substrate back loading in millimeter wave paster antenna of the present utility model Structural representation.
When Fig. 4 is three ZIM unit of second medium substrate back loading in millimeter wave paster antenna of the present utility model Structural representation.
Fig. 5 is that the S parameter of the millimeter wave paster antenna Electromagnetic Simulation gained loading ZIM unit with being not loaded with ZIM unit is bent Line comparison diagram.
Fig. 6 is that the gain of the millimeter wave paster antenna Electromagnetic Simulation gained loading ZIM unit with being not loaded with ZIM unit is with frequency The curve comparison diagram of rate change.
Wherein, 1-first medium substrate, 2-the first radiation patch, 3-the second radiation patch, 4-the first coplanar wave guide transmission Line, 5-the second coplanar waveguide transmission line, the horizontal paster of 6-, 7-vertical metal via, 8-second medium substrate, 9-ZIM unit.
Detailed description of the invention
Below in conjunction with embodiment and accompanying drawing, this utility model is described in further detail, but enforcement of the present utility model Mode is not limited to this.
Embodiment 1:
As depicted in figs. 1 and 2, the millimeter wave paster antenna of the present embodiment includes first medium substrate 1, described first medium It is coplanar that substrate 1 is provided with T-shaped probe, first radiation patch the 2, second radiation patch the 3, first coplanar waveguide transmission line 4 and second Waveguide transmission line 5.
The millimeter wave paster antenna of the present embodiment have employed T-shaped probe and enters first radiation patch the 2, second radiation patch 3 Row feed, creates two modes of resonance, and wherein what the first radiation patch 2 produced is the mode of resonance of high frequency, the second radiation patch What sheet 3 produced is the mode of resonance of low frequency, it is ensured that antenna has wider impedance bandwidth;Described T-shaped probe is by horizontal paster 6 Forming with vertical metal via 7, described horizontal paster the 6, first radiation patch 2 and the second radiation patch 3 are arranged on first medium There is identical spacing (in Fig. 1 between the front of substrate 1, and horizontal paster 6 and first radiation patch the 2, second radiation patch 3 It is the gap formed between horizontal paster 6 and first radiation patch the 2, second radiation patch 3 at dotted line 2L);Can from Fig. 1 Arriving, described first radiation patch 2 is rectangular configuration, and described second radiation patch 3 is inverted concave structure, described first radiation patch 2 are arranged on the position that the second radiation patch 3 middle concave is entered, and have between the first radiation patch 2 and the second radiation patch 3 Gap.
The millimeter wave paster antenna of the present embodiment is to be carried out feeding by the co-planar waveguide without ground, using as feeder line First coplanar waveguide transmission line 4 and the second coplanar waveguide transmission line 5 are arranged on the back side of first medium substrate 1, permissible from Fig. 2 Seeing, described first coplanar waveguide transmission line 4 is rectangular configuration, and described second coplanar waveguide transmission line 5 is concave structure, described First coplanar waveguide transmission line 4 is arranged on the position that the second coplanar waveguide transmission line 5 middle concave is entered, and the first co-planar waveguide Between transmission line 4 and the second coplanar waveguide transmission line 5, there is gap, during making, one piece of paster is covered at first medium substrate 1 The back side, then a U-shaped gap is dug out in the top edge center, the back side at first medium substrate 1, forms the first co-planar waveguide Transmission line 4 and the second coplanar waveguide transmission line 5;Described vertical metal via 7 is plating, and it is positioned at the center of horizontal paster 6, And sequentially pass through horizontal paster 6, first medium substrate 1 and the first coplanar waveguide transmission line 4.
Embodiment 2:
As shown in Figure 1 to 4, the millimeter wave paster antenna of the present embodiment also includes two pieces of second medium substrates 8, two piece The upper and lower symmetry of second medium substrate 8, every block of second medium base 8 plate is arranged on the upper end of first medium substrate 1, and every piece second Jie The front of matter substrate 8 is loaded with one or more ZIM unit 9, and second medium substrate 8 loads a ZIM unit 9 individually below Illustrate with three ZIM unit 9:
1) when the front of every piece of second medium substrate 8 loads a ZIM unit 9, as it is shown on figure 3, ZIM unit 9 includes the One vertical section, the second vertical section and bending segment, the described first vertical section and the second vertical left and right symmetry of section, described bending segment Two ends are connected with the first vertical section, the second vertical section respectively, and bending segment is fallen " several " shape structure by " several " shape structure and one Composition.
2) when the front of every piece of second medium substrate 8 loads three ZIM unit 9, as shown in Figure 4, each ZIM unit 9 Structure as previously discussed, arrange the most successively by three ZIM unit 9.
The ZIM unit 9 of two pieces of second medium substrates 8 loads two dotted line (1L, 2L) places in FIG, due to ZIM unit Can effectively suppress the secondary lobe in antenna radiation pattern E face and improve main lobe gain, therefore substantially carrying in the gain of working frequency range internal antenna Height, in 57-64GHz frequency range, gain improves 0.5-1.5dBi.
In above-described embodiment 1 and 2, first radiation patch the 2, second radiation patch the 3, first coplanar waveguide transmission line 4, second Coplanar waveguide transmission line 5, horizontal paster 6 and ZIM unit 9 all use metal material to constitute, can be such as aluminum, ferrum, stannum, copper, Silver, gold and any one of platinum, can be maybe any one alloy of aluminum, ferrum, stannum, copper, silver, gold and platinum.
Embodiment 3:
In the millimeter wave paster antenna of the present embodiment, the dielectric constant of first medium substrate 1 is 2.2, two pieces of second mediums The dielectric constant of substrate 2 is 5.9, and whole millimeter wave paster antenna utilizes T-shaped probe to large radiation paster (the second radiation patch 3), little radiation patch (the first radiation patch 2) feed, make antenna achieve wider impedance bandwidth, T-shaped probe is by level Paster 6 and vertical metal via 7 form, and the most horizontal paster 6 is rectangle copper sheet, and the center of circle of described vertical metal via 7 is positioned at The geometric center of rectangle copper sheet, is printed on first medium substrate by horizontal paster the 6, first radiation patch 2 and the second radiation patch 3 The front of 1;Whole millimeter wave paster antenna is fed by co-planar waveguide, is total to by the first coplanar waveguide transmission line 4 and second Coplanar waveguide transmission line 5 is printed on the back side of first medium substrate 1, and vertical metal via 7 sequentially passes through horizontal paster 6, first and is situated between Matter substrate 1 and the first coplanar waveguide transmission line 4;The front of every piece of second medium substrate 8 is loaded with three ZIM unit 9, loads The structure of ZIM unit, it is achieved that the overall lifting of the antenna gain in whole working frequency range, and restrained effectively side Lobe;As shown in Figure 5 and Figure 6, it can be seen that load the millimeter wave paster antenna of ZIM unit and the millimeter wave being not loaded with ZIM unit Paster antenna is compared, and has good radiation characteristic and the widest impedance bandwidth (about 30%), owing to ZIM unit can have The effect suppression secondary lobe in antenna radiation pattern E face also improves main lobe gain, therefore significantly improves in the gain of working frequency range internal antenna, In 57-64GHz frequency range, gain improves 0.5-1.5dBi.
In sum, millimeter wave paster antenna of the present utility model uses T-shaped probe to feed radiation patch, it is ensured that Antenna has wider impedance bandwidth, and also can load a kind of novel ZIM cellular construction on radiation patch, has Improve to effect the gain of antenna, all there is in whole working frequency range the lowest cross polarization and good antenna pattern, And the gain of antenna can be stablized at more than 6dBi, and highest-gain can reach about 8dBi.
The above, only this utility model patent preferred embodiment, but the protection domain of this utility model patent is also Being not limited to this, any those familiar with the art is in the scope disclosed in this utility model patent, according to this The technical scheme of utility model patent and utility model thereof conceive equivalent or change in addition, broadly fall into this utility model patent Protection domain.

Claims (8)

1. a millimeter wave paster antenna for the T-shaped probe feed of high-gain, including first medium substrate, it is characterised in that: institute State first medium substrate and be provided with T-shaped probe, the first radiation patch, the second radiation patch, the first coplanar waveguide transmission line and Two coplanar waveguide transmission lines, described T-shaped probe is made up of horizontal paster and vertical metal via, described horizontal paster, the first spoke Penetrate paster and the second radiation patch is arranged on the front of first medium substrate, and horizontal paster and the first radiation patch, the second spoke Penetrating and have identical spacing between paster, described first coplanar waveguide transmission line and the second coplanar waveguide transmission line are arranged on first The back side of medium substrate, described vertical metal via is positioned at the center of horizontal paster, and sequentially passes through horizontal paster, first medium Substrate and the first coplanar waveguide transmission line.
The millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain the most according to claim 1, it is characterised in that: Also including two pieces of second medium substrates, two pieces of upper and lower symmetries of second medium substrate, every piece of second medium substrate is arranged on first Jie The upper end of matter substrate, and the front of every piece of second medium substrate is loaded with one or more ZIM unit, each ZIM unit includes First vertical section, the second vertical section and bending segment, the described first vertical section and the second vertical left and right symmetry of section, described bending segment Two ends be connected with the first vertical section, the second vertical section respectively, this bending segment is fallen " several " shape by " several " shape structure and one Structure forms.
The millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain the most according to claim 2, it is characterised in that: When described every piece of second medium substrate loads multiple ZIM unit, multiple ZIM unit are arranged the most successively.
4., according to the millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain described in Claims 2 or 3, its feature exists In: the dielectric constant of described every piece of second medium substrate is 5.9.
5., according to the millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain described in any one of claim 1-3, it is special Levying and be: described first radiation patch is rectangular configuration, described second radiation patch is inverted concave structure;Described first radiation patch Sheet is arranged on the position that the second radiation patch middle concave is entered, and has seam between the first radiation patch and the second radiation patch Gap.
6., according to the millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain described in any one of claim 1-3, it is special Levying and be: described first coplanar waveguide transmission line is rectangular configuration, described second coplanar waveguide transmission line is concave structure;Described First coplanar waveguide transmission line is arranged on the position that the second coplanar waveguide transmission line middle concave is entered, and the first co-planar waveguide passes Between defeated line and the second coplanar waveguide transmission line, there is gap.
7., according to the millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain described in any one of claim 1-3, it is special Levy and be: the dielectric constant of described first medium substrate is 2.2.
8., according to the millimeter wave paster antenna of the T-shaped probe feed of a kind of high-gain described in any one of claim 1-3, it is special Levying and be: described horizontal paster is rectangle copper sheet, the center of circle of described vertical metal via is positioned at the geometric center of rectangle copper sheet.
CN201620740046.1U 2016-07-12 2016-07-12 A kind of millimeter wave paster antenna of the T-shaped probe feed of high-gain Withdrawn - After Issue CN205846228U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620740046.1U CN205846228U (en) 2016-07-12 2016-07-12 A kind of millimeter wave paster antenna of the T-shaped probe feed of high-gain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620740046.1U CN205846228U (en) 2016-07-12 2016-07-12 A kind of millimeter wave paster antenna of the T-shaped probe feed of high-gain

Publications (1)

Publication Number Publication Date
CN205846228U true CN205846228U (en) 2016-12-28

Family

ID=57619563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620740046.1U Withdrawn - After Issue CN205846228U (en) 2016-07-12 2016-07-12 A kind of millimeter wave paster antenna of the T-shaped probe feed of high-gain

Country Status (1)

Country Link
CN (1) CN205846228U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058451A (en) * 2016-07-12 2016-10-26 华南理工大学 High gain T-shaped probe feed millimeter wave patch antenna
CN107831597A (en) * 2017-09-18 2018-03-23 华南理工大学 A kind of new generation bimodulus optical eddy light beam circular polarised array antenna
CN108134197A (en) * 2017-12-26 2018-06-08 上海安费诺永亿通讯电子有限公司 Integrated 4 differential feed low section dual polarization vibrator units and antenna for base station
CN108923129A (en) * 2018-07-10 2018-11-30 西安中电科西电科大雷达技术协同创新研究院有限公司 Multiple resonance points vertical polarization magnetic current end-on-fire antenna
CN109980345A (en) * 2019-03-22 2019-07-05 中国电子科技集团公司第三十八研究所 A kind of on-chip antenna and antenna array
CN110289491A (en) * 2019-06-18 2019-09-27 天津大学 A kind of Sidelobe high-gain mold compression dipole antenna three times loading folding line

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058451A (en) * 2016-07-12 2016-10-26 华南理工大学 High gain T-shaped probe feed millimeter wave patch antenna
CN106058451B (en) * 2016-07-12 2019-05-14 华南理工大学 A kind of millimeter wave paster antenna of the T shape probe feed of high-gain
CN107831597A (en) * 2017-09-18 2018-03-23 华南理工大学 A kind of new generation bimodulus optical eddy light beam circular polarised array antenna
CN108134197A (en) * 2017-12-26 2018-06-08 上海安费诺永亿通讯电子有限公司 Integrated 4 differential feed low section dual polarization vibrator units and antenna for base station
CN108923129A (en) * 2018-07-10 2018-11-30 西安中电科西电科大雷达技术协同创新研究院有限公司 Multiple resonance points vertical polarization magnetic current end-on-fire antenna
CN109980345A (en) * 2019-03-22 2019-07-05 中国电子科技集团公司第三十八研究所 A kind of on-chip antenna and antenna array
CN109980345B (en) * 2019-03-22 2021-04-09 中国电子科技集团公司第三十八研究所 On-chip antenna and antenna array
CN110289491A (en) * 2019-06-18 2019-09-27 天津大学 A kind of Sidelobe high-gain mold compression dipole antenna three times loading folding line

Similar Documents

Publication Publication Date Title
CN205846228U (en) A kind of millimeter wave paster antenna of the T-shaped probe feed of high-gain
CN111029762A (en) Millimeter wave end-fire circularly polarized antenna and wireless communication equipment
CN106848554B (en) A kind of ultra wide bandwidth angle antenna array based on interdigitated coupled dipole unit
CN108232458B (en) Differential dual-frequency dual-polarized dual-loop base station antenna
CN102570058B (en) Compound multi-antenna system and wireless communication device thereof
CN108963443A (en) A kind of antenna and encapsulating antenna structure
CN106816713A (en) Minimized wide-band microstrip antenna
CN101719593B (en) Broadband multi-frequency omni-directional array antenna
CN106972251B (en) A kind of three trap conformal omnidirectional micro-strip array antennas
CN107275766A (en) A kind of wideband surface wave antenna loaded based on non-homogeneous periodic structure
CN215600567U (en) Broadband patch antenna with parasitic structure loaded
CN106654557A (en) Dual-frequency-point broadband dipole antenna
CN107403994A (en) A kind of low section wide band high-gain omnidirectional surface-wave antenna for blocking super surface loading
CN114976665B (en) Broadband dual-polarized dipole antenna loaded with stable frequency selective surface radiation
CN205248439U (en) Two ring shape plane monopole antenna of ultra wide band
CN204857972U (en) Fractal hollowed out design ultra wide band dual polarized antenna oscillator
CN106058451A (en) High gain T-shaped probe feed millimeter wave patch antenna
CN206850018U (en) Ultra wide band circular-shaped monopole sub-antenna based on coplanar wave guide feedback
CN209298340U (en) The minimized wide-band wide-beam circularly-polarizedmicrostrip microstrip antenna of C-band
CN102904011A (en) Balance microstrip line transition full-mode dual-ridged integrated waveguide feed dipole printed antenna
CN109860976B (en) Broadband patch antenna based on differential resonator feed
CN202050055U (en) Planar waveguide slot array antenna
CN106711611A (en) Micro ultra wide band omnidirectional fractal paster antenna
CN206293612U (en) A kind of dual-frequency point broadband dipole antenna
CN110828973A (en) Broadband 5G mobile terminal antenna separated from frame and having low profile

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20161228

Effective date of abandoning: 20190514

AV01 Patent right actively abandoned

Granted publication date: 20161228

Effective date of abandoning: 20190514

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned