一种无人机紫外成像仪装置
技术领域
本实用新型涉及一种紫外成像仪装置,具体是一种无人机紫外成像仪装置,属于电力系统无人机输变电巡线技术领域。
背景技术
由于我国地域辽阔,地形复杂,导致我国输电线路分布面广。而且,自然环境复杂多变,电力输电线路长期暴露在野外,不仅要承受电力负荷带来压力,还要长期受雷击闪电、污秽腐蚀、风吹雨打等外力破坏,造成输电线路绝缘子磨损缺失、导线断股、防震锤缺失等隐患,这些故障隐患问题若不能及时被发现,会严重威胁电能传输、电网安全运行。
具体而言,受破坏后的输变电设备会发生局部放电现象,所以必须定期对输变电设备及线路进行检测。一方面,传统的人工巡线方式会使巡检人员的工作量比较大,再加上某些地形复杂区域,又会给输电线路的检测增加了困难;另一方面,传统的人工巡线是依靠人眼、相机或红外成像仪进行检测,对巡检的可靠性造成了一定程度的误差。
无人机巡线技术是最近十年才开始发展的一门新兴的技术,融合了航空、电子、电力、飞行控制、通信、图像识别等多个高尖技术领域,实现起来难度比较大,世界范围内专门研究无人机用于巡线技术的并不多。
国内关于无人机巡线研究的报道比较少。国家电网公司电力机器人实验室进行过无人直升机的巡线研究,取得过阶段性的成果。研究人员利用无人直升机搭载高清相机和红外热成像仪对线路进行了巡线实验。但高清相机和红外热成像仪只能形成可见光和发热点图像,很难确定放电点位置。
实用新型内容
针对上述现有技术存在问题,本实用新型提供一种无人机上的紫外成像仪装置,该装置通过在无人机上安装有紫外成像设备,从而制造出一种能够快速准确检测输变电设备的装置,以解决背景技术中所描述的技术问题。
本实用新型通过以下技术方案来实现上述目的:一种无人机紫外成像仪装置,包括带有降落架的四旋翼航空无人机,所述四旋翼航空无人机下面安装有能够上下移动的云台,所述云台上固定安装有紫外成像仪;
所述四旋翼航空无人机包括卫星定位模块、控制电路模块,无线传输模块以及与控制电路模块连接的地面控制模块;
所述紫外成像仪包括移动储存和读取设备、由可见光通道和紫外光通道组成的紫外成像镜头以及与所述四旋翼航空无人机连接的接口。
进一步,所述云台一侧安装有云台控制器,所述云台控制器通过控制电机控制所述云台的转动。
进一步,所述降落架是两个半圆形的支架固定于所述四旋翼航空无人机下端,并且两个半圆形的支架端头固定连接有横梁。
进一步,所述紫外成像仪位于两个半圆形的支架所形成的空间内。
进一步,所述接口为紫外成像仪的视频传输接口,该接口与无人机的数据读取接口连接。
本实用新型的有益效果是:四旋翼航空无人机下端固定有能够上下移动的云台,云台上固定安装紫外成像仪,通过控制电机能够使得云台转动,进而带动紫外成像镜头上下移动,实现了紫外成像仪的拍摄角度可调节。利用四旋翼无人机自身带有的卫星定位模块。能够随时定位无人机的位置,从而保持无人机与待巡检线路的距离。
该装置节约人力成本,在地形复杂地区,给输电线路的巡检带来了困难,人工巡检将消耗大量人力资源,利用该装置能够有效的节约人力成本,降低劳动力投入。紫外成像仪本身是一种高清摄像机,不仅能够检测出输电线路的破损情况,又能对输电线路的放电点准确定位,为检修提供了可靠的坐标位置。
附图说明
图1为本实用新型整体结构示意图;
图2为本实用新型三维整体结构示意图;
图中:1、降落架,2、四旋翼航空无人机,3、云台,4、云台控制器,5、可见光通道,6、紫外光通道,7、移动储存和读取设备,8、接口,9、紫外成像仪。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
如图1和图2所示,一种无人机紫外成像仪装置,包括四旋翼航空无人机2和在四旋翼航空无人机2下端安装的紫外成像仪9。四旋翼航空无人机2下安装有降落架1,所述降落架1为两个半圆形的支架,两个半圆形的支架端头固定连接有横梁,从而使得四旋翼航空无人机2在起飞或降落过程中,都能够平稳和可靠,不会造成对紫外成像仪9的冲击。
所述四旋翼航空无人机2下端安装有能够移动的云台3,所述云台3上固定安装有紫外成像仪9,紫外成像仪9固定于云台3上,所述紫外成像仪9位于两个半圆形的支架所形成的空间内,保护紫外成像仪不受外界的干扰或破坏。云台3一侧安装有云台控制器4,所述云台控制器4通过控制电机控制所述云台3转动。
所述四旋翼航空无人机2包括卫星定位模块、控制电路模块,无线传输模块以及与控制电路模块连接的地面控制模块。所述卫星定位模块能够实时确定无人机所在位置,控制电路模块能够保证无人机在空中的运动持续的续航,以及将电信号稳定的与地面控制模块连接,无线传输模块将所拍摄的视频通过无线网传输至地面控制模块中的接收视频模块中,从而能够实时监测输变电电路的变化。
所述紫外成像仪9包括移动储存和读取设备7、由可见光通道5和紫外光通道6组成的紫外成像镜头以及与所述四旋翼航空无人机2连接的接口8;紫外成像镜头能够转动,并将拍摄的视频进入到移动储存和读取设备7内,所述紫外成像仪上设有接口,该接口为视频传输接口,与无人机的数据读取接口连接,从而将视频传输至无人机上。
工作原理:A、以四旋翼无人机为主体,起飞时确保无人机电量充沛,保证无人机续航时间。
B、初步分析待测巡线线路,保证无人机在可续航范围内,确保无人机与地面通讯系统正常。
C、无人机自身带有有数据接收和发送模块,通过2.4GHZ微波通讯发到地面工作站电脑。开始巡检前,工作人员将紫外成像设备固定在无人机下部云台上,并实验云台是否能够控制紫外成像镜头的拍摄角度,最后确保紫外成像设备RS232视频接口与无人机主体能够进行视频传输,确保一切正常后,启动无人机。
D、mdCockpit是专用于X86/X64架构下个人电脑的32位Windows应用程序,支持所有版本的Windows XP,Windows Vista和Windows7系统(32-Bit和64-Bit)。能够实现无人机信息接收工作。该程序下的界面不但能够显示无人机的飞行状况,如飞行距离、高度、运行时间、遥控器信号质量、GNSS质量、遥测质量、电池电压等信息,还能够显示紫外成像仪成像视频的功能。
E、通过GPS定位到无人机达到待巡检线路附近时,保持无人机与待巡检线路有一定距离,地面控制系统通过飞机主体启动紫外成像仪。并将所得的紫外成像视频通过RS232传输至无人机主机,通过无人机图传电台传输至地面接收系统。下行数据回放有两个模式:在线模式和回放模式。两者的区别在于数据来源。在线模式中,使用的数据是来自串口的遥测数据。视频文件是视频模拟信号PAL制式。mdCockpit3实时对遥测数据进行解码,并在下行数据回放对话框中显示得到的数据。可以使无人机工作在在线模式,在该模式下mdCockpit3将自动指派接口以接收数据。用户也可以在菜单栏打开下行数据回放,手动选择已知的下行数据流。用户在工具栏按键处选择回放文件时,对话框可以切换到回放模式。
F、待紫外成像设备检测到电晕放电点时,为仔细观察放电情况,可以设置无人机的悬停时间,最大悬停时间为600秒。可以完全满足紫外成像仪准确检测所需时间。定义相机舵机的俯仰角度,0°表示相机水平向前,90°表示相机垂直对地。检测时可以控制云台运动调节紫外成像仪的观察角度。
G、无人机达到巡检终点后选择返航,在返航过程中可以继续对待巡线的另一侧进行巡检。达到起始点后开始离开线路,返航到地面,工作人员可以对其进行检查维护。
以上所举实施例为本实用新型的较佳实施方式,仅用来方便说明本实用新型,并非对本实用新型作任何形式上的限制,任何所属技术领域中具有通常知识者,若在不脱离本实用新型所提技术特征的范围内,利用本实用新型所揭示技术内容所做出局部更动或修饰的等效实施例,并且未脱离本实用新型的技术特征内容,均仍属于本实用新型技术特征的范围内。