CN205067412U - Poroid electrode parallel -plate capacitive moisture sensor of going up of miniature quick response - Google Patents
Poroid electrode parallel -plate capacitive moisture sensor of going up of miniature quick response Download PDFInfo
- Publication number
- CN205067412U CN205067412U CN201520417725.0U CN201520417725U CN205067412U CN 205067412 U CN205067412 U CN 205067412U CN 201520417725 U CN201520417725 U CN 201520417725U CN 205067412 U CN205067412 U CN 205067412U
- Authority
- CN
- China
- Prior art keywords
- upper electrode
- hole
- shaped upper
- moisture
- sensitive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004044 response Effects 0.000 title claims abstract description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000003990 capacitor Substances 0.000 claims 4
- 238000009413 insulation Methods 0.000 claims 1
- 239000004642 Polyimide Substances 0.000 abstract description 15
- 229920001721 polyimide Polymers 0.000 abstract description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002253 acid Substances 0.000 abstract description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 abstract description 3
- 229910052786 argon Inorganic materials 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000003466 welding Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本实用新型公开了一种微型快速响应孔状上电极平行板电容式湿敏元件,由上至下分别为孔状上电极、PI感湿膜、平板下电极、SiO2绝缘层和Si基底,其中,上电极设有若干排列整齐的上电极孔,PI感湿膜上设有2个下电极引线孔。制作时,首先清洗硅片,硅片氧化形成绝缘层,蒸镀下电极,下电极涂覆聚酰亚胺酸、亚胺化,蒸镀上电极,上电极孔状图形磷酸刻蚀,使用磷酸刻蚀电极、等离子刻蚀感湿膜形成划片道,使用等离子刻蚀感湿膜形成下电极引线孔,最后切片、氩焊、封装。本实用新型的有益效果是相同条件下,孔状上电极湿敏元件与栅状上电极相比,响应时间可得到最大程度的改善。
The utility model discloses a miniature fast-response hole-shaped upper electrode parallel-plate capacitive humidity sensor, which respectively includes a hole-shaped upper electrode, a PI moisture-sensitive film, a flat lower electrode, an SiO2 insulating layer and a Si substrate from top to bottom. Among them, the upper electrode is provided with a number of neatly arranged upper electrode holes, and the PI moisture-sensitive film is provided with 2 lower electrode lead holes. During production, the silicon wafer is first cleaned, the silicon wafer is oxidized to form an insulating layer, the lower electrode is evaporated, the lower electrode is coated with polyimide acid, imidized, the upper electrode is evaporated, and the hole pattern of the upper electrode is etched with phosphoric acid. Etch electrodes and plasma etch the moisture-sensitive film to form a scribing line, use the plasma-etched moisture-sensitive film to form the lower electrode lead hole, and finally slice, argon welding, and package. The beneficial effect of the utility model is that under the same conditions, the response time of the humidity sensitive element with the hole-shaped upper electrode can be improved to the greatest extent compared with that of the grid-shaped upper electrode.
Description
技术领域 technical field
本实用新型属于湿度测量与控制技术领域,涉及一种微型快速响应孔状上电极平行板电容式湿敏元件。 The utility model belongs to the technical field of humidity measurement and control, and relates to a miniature fast-response hole-shaped upper electrode parallel plate capacitive humidity sensor.
背景技术 Background technique
湿度测量与控制紧密相关于社会生活、工农业生产等。某些领域,如呼吸系统疾病诊治、燃料电池汽车等,不但需要湿敏元件具有准确、可靠等静态特性,还要求湿敏元件能够快速响应测量环境湿度的瞬态变化。现有湿敏元件的静态特性相对较好,但其市场化产品的动态特性不尽人意(通常几十秒)。 Humidity measurement and control are closely related to social life, industrial and agricultural production, etc. Some fields, such as the diagnosis and treatment of respiratory diseases, fuel cell vehicles, etc., not only require the humidity sensor to have accurate and reliable static characteristics, but also require the humidity sensor to be able to quickly respond to the transient change of the measured environmental humidity. The static characteristics of existing humidity sensitive elements are relatively good, but the dynamic characteristics of their marketed products are not satisfactory (usually tens of seconds).
目前广泛使用的栅状上电极平行板电容式湿敏元件多基于Si基片和聚酰亚胺感湿膜(PI),聚酰亚胺(PI)高分子感湿膜是多孔介质,能够吸附气体,且介电常数较小,而水气分子的介电常数较大,当感湿膜吸附湿空气中水气分子后,感湿膜介电常数εs显著线性变化,并对应于感湿膜吸附水气分子不同的浓度。当环境湿度突然变大时,由于环境与感湿膜内水气分子浓度差的原因,环境气体中水气分子自栅状上电极的栅齿间隙进入感湿膜表面,然后纵向向下和横向左右扩散至上电极栅齿覆盖的感湿膜区域,扩散越快,湿敏元件响应时间越短。可以看出,相同条件下,栅状上电极栅齿越窄(覆盖区域越窄)和感湿膜越薄,水气分子扩散路程越短,则水气分子扩散越快,湿敏元件响应时间越短;反之亦然。 At present, the widely used grid-shaped upper electrode parallel plate capacitive humidity sensor is mostly based on Si substrate and polyimide moisture-sensitive film (PI). The polyimide (PI) polymer moisture-sensitive film is a porous medium and can absorb Gas, and the dielectric constant is small, and the dielectric constant of water vapor molecules is relatively large. When the moisture-sensing film absorbs water vapor molecules in the humid air, the dielectric constant ε s of the humidity-sensing film changes significantly linearly, and corresponds to the moisture-sensing The membrane adsorbs varying concentrations of water vapor molecules. When the ambient humidity suddenly increases, due to the difference in the concentration of water vapor molecules in the environment and the moisture-sensitive film, the water vapor molecules in the ambient gas enter the surface of the wet-sensitive film from the grid teeth gap of the grid-shaped upper electrode, and then vertically downward and horizontally Spread left and right to the moisture-sensitive film area covered by the grid teeth of the upper electrode. The faster the diffusion, the shorter the response time of the humidity sensor. It can be seen that under the same conditions, the narrower the grid teeth of the grid-shaped upper electrode (the narrower the coverage area) and the thinner the moisture-sensitive film, the shorter the diffusion distance of water vapor molecules, the faster the diffusion of water vapor molecules, and the faster the response time of the humidity sensor. shorter; and vice versa.
为了强化栅状上电极的结构和均匀电荷分布,栅状上电极须设置均流条,均流条宽度远大于栅状上电极栅齿宽度,且面积约占栅状上电极总面积30%-40%。均流条的存在增加了水气分子扩散的路程,使得通过追求过小栅状上电极栅齿宽度改善湿敏元件动态响应时间的效果不能明显。如此,栅状上电极均流条的存在制约了湿敏元件动态响应时间的进一步改善。 In order to strengthen the structure and uniform charge distribution of the grid-shaped upper electrode, the grid-shaped upper electrode must be equipped with a current equalizing bar, the width of which is much larger than the width of the grid-shaped upper electrode grid teeth, and the area accounts for about 30% of the total area of the grid-shaped upper electrode- 40%. The existence of the equalizer strips increases the diffusion distance of water vapor molecules, so that the effect of improving the dynamic response time of the humidity sensor by pursuing too small grid-shaped upper electrode grid tooth width is not obvious. In this way, the presence of the grid-shaped upper electrode flow equalizer bar restricts the further improvement of the dynamic response time of the humidity sensor.
实用新型内容 Utility model content
本实用新型的目的在于提供一种微型快速响应孔状上电极平行板电容式湿敏元件,无需均流条,解决现有栅状上电极平行板电容式湿敏元件须设置占上电极总面积相当比例、较宽的上电极均流条导致水气分子扩散路径过长,使得通过减小栅状上电极栅齿宽度方法改善湿敏元件响应时间的效果不能明显的问题。 The purpose of this utility model is to provide a miniature fast response hole-shaped upper electrode parallel plate capacitive humidity sensor, which does not need a flow equalizer, and solves the problem that the existing grid-shaped upper electrode parallel plate capacitive humidity sensor must be set to occupy the total area of the upper electrode. A relatively large proportion of the upper electrode current equalizing strips leads to a too long diffusion path of water vapor molecules, so that the effect of improving the response time of the humidity sensor by reducing the width of the grid-shaped upper electrode grid teeth cannot be obvious.
本实用新型所采用的技术方案是由上至下分别为孔状上电极、PI感湿膜、平板下电极、SiO2绝缘层和Si基底,其中,上电极设有若干排列整齐的上电极孔,PI感湿膜上设有2个下电极引线孔。 The technical solution adopted by the utility model is respectively from top to bottom a hole-shaped upper electrode, a PI moisture-sensitive film, a flat lower electrode, a SiO2 insulating layer and a Si substrate, wherein the upper electrode is provided with a number of neatly arranged upper electrode holes , There are 2 lower electrode lead holes on the PI moisture-sensitive film.
进一步,所述Si基底选用硅片,所述上电极和下电极为Mo-Al电极。 Further, the Si substrate is selected from a silicon chip, and the upper electrode and the lower electrode are Mo-Al electrodes.
进一步,所述上电极孔的孔径为2μm,上电极孔间中心最小间距为4μm。 Further, the hole diameter of the upper electrode holes is 2 μm, and the minimum distance between the centers of the upper electrode holes is 4 μm.
进一步,PI感湿膜厚度为0.54μm。 Further, the thickness of the PI moisture-sensitive film is 0.54 μm.
本实用新型的有益效果是采用孔状上电极替代现有湿敏元件栅状上电极,无需上电极结构强化和均匀电荷分布作用的均流条,使得通过上电极各孔进入感湿膜的水气分子的扩散路程近似相等,且可随孔间距的减少而减少,相同条件下,孔状上电极湿敏元件与栅状上电极湿敏元件相比,响应时间可得到最大程度的改善。 The beneficial effect of the utility model is that the hole-shaped upper electrode is used to replace the grid-shaped upper electrode of the existing humidity-sensitive element, and there is no need for the upper electrode structure strengthening and the flow equalizer for uniform charge distribution, so that the water entering the moisture-sensitive film through the holes of the upper electrode The diffusion path of gas molecules is approximately equal, and can be reduced with the decrease of the hole spacing. Under the same conditions, the response time of the hole-shaped upper electrode humidity sensor can be improved to the greatest extent compared with the grid-shaped upper electrode humidity sensor.
附图说明 Description of drawings
图1孔状上电极平行板电容式湿敏元件平面图; Fig. 1 plan view of the hole-shaped upper electrode parallel plate capacitive humidity sensor;
图2孔状上电极平行板电容式湿敏元件结构示意图; Fig. 2 structure schematic diagram of hole-shaped upper electrode parallel plate capacitive humidity sensor;
图3孔状上电极平行板电容式湿敏元件制作工艺流程图; Fig. 3 process flow chart of the manufacturing process of the hole-shaped upper electrode parallel plate capacitive humidity sensor;
图4孔状上电极平行板电容式湿敏元件上电极孔距示意图; Fig. 4 is a schematic diagram of hole distance between electrodes on the hole-shaped upper electrode parallel plate capacitive humidity sensor;
图5孔状上电极与栅状上电极湿敏元件动态特性比较图。 Fig. 5 Comparison diagram of the dynamic characteristics of the humidity sensor with the hole-shaped upper electrode and the grid-shaped upper electrode.
具体实施方式 detailed description
下面结合具体实施方式对本实用新型进行详细说明。 The utility model will be described in detail below in conjunction with specific embodiments.
本实用新型孔状上电极平行板电容式湿敏元件如图1和图2所示,由上至下分别为孔状上电极2、PI感湿膜4、平板下电极6、SiO2绝缘层7和Si基底8,Si基底8可选用硅片,上电极2和下电极6为Mo-Al电极,其中,孔状上电极2设有若干排列整齐的上电极孔3,上电极孔3的孔径优选为2μm,上电极孔3间中心最小间距优选为4μm,通过刻蚀PI感湿膜4形成的2个下电极引线孔5,用于氩焊下电极引线。本实用新型中,PI感湿膜4由预先配置的聚酰亚氨酸经匀胶机硅片涂覆,再经亚胺化形成,其厚度通过控制聚酰亚氨酸浓度、涂覆用量、及匀胶机每分钟转数得到,优选厚度为0.54μm。本实用新型中采用Mo-Al复合电极是通过粘附性更强的钼(Mo)强化电极引线的易焊性,铝电极的使用降低了湿敏元件成本,并增加了其寿命。环境湿度升高时,水气分子1穿过上电极孔3扩散进入PI感湿膜4,环境湿度降低时,水气分子1自PI感湿膜4穿过上电极孔3扩散进入环境。 The hole-shaped upper electrode parallel plate capacitive humidity sensor of the utility model is shown in Figure 1 and Figure 2, from top to bottom are the hole-shaped upper electrode 2, the PI moisture-sensitive film 4, the plate lower electrode 6, and the SiO 2 insulating layer. 7 and Si substrate 8, Si substrate 8 can be selected silicon chip, upper electrode 2 and lower electrode 6 are Mo-Al electrodes, wherein, hole-shaped upper electrode 2 is provided with several upper electrode holes 3 arranged neatly, the upper electrode hole 3 The hole diameter is preferably 2 μm, and the minimum distance between the centers of the upper electrode holes 3 is preferably 4 μm. The two lower electrode lead holes 5 formed by etching the PI moisture-sensitive film 4 are used for argon welding of the lower electrode leads. In the utility model, the PI moisture-sensitive film 4 is formed by pre-configured polyimidic acid coated on silicon wafers of a homogenizer, and then imidized, and its thickness is controlled by controlling the concentration of polyimidic acid, coating dosage, And the number of revolutions per minute of the glue homogenizer, the preferred thickness is 0.54 μm. The Mo-Al composite electrode used in the utility model is to strengthen the weldability of the electrode lead wire through molybdenum (Mo) with stronger adhesion, and the use of the aluminum electrode reduces the cost of the humidity sensitive element and increases its life. When the ambient humidity rises, the water vapor molecules 1 diffuse through the upper electrode hole 3 and enter the PI moisture-sensing film 4 , and when the ambient humidity decreases, the water vapor molecules 1 diffuse from the PI moisture-sensing film 4 through the upper electrode hole 3 and enter the environment.
本实用新型平行板电容式湿敏元件的制作工艺如图3所示,首先清洗硅片,硅片氧化形成绝缘层,蒸镀下电极,下电极涂覆聚酰亚胺酸、亚胺化,蒸镀上电极,上电极孔状图形磷酸刻蚀,通过磷酸刻蚀电极、等离子刻蚀感湿膜形成划片道,等离子刻蚀PI感湿膜形成下电极引线孔,最后切片、氩焊、封装。 The manufacturing process of the parallel plate capacitive humidity sensor of the present utility model is as shown in Figure 3. First, the silicon chip is cleaned, the silicon chip is oxidized to form an insulating layer, the lower electrode is evaporated, and the lower electrode is coated with polyimide acid and imidized. Evaporate the upper electrode, etch the hole pattern of the upper electrode with phosphoric acid, form a scribing line by etching the electrode with phosphoric acid, and etch the moisture-sensitive film by plasma, and form the lead hole of the lower electrode by plasma etching the PI moisture-sensitive film, finally slice, argon welding, and package .
本实用新型孔状上电极避免了栅状上电极考虑栅齿过窄易断裂及均匀电荷分布而设置的面积比例大、宽度宽的均流条,使各孔进入感湿膜的水分子扩散路径相等,在未增加成本和工艺复杂度的前提下,可有效改善湿敏元件的响应时间。 The hole-shaped upper electrode of the utility model avoids the grid-shaped upper electrode considering that the grid teeth are too narrow and easy to break and uniform charge distribution. Equal, without increasing the cost and process complexity, the response time of the humidity sensor can be effectively improved.
本实用新型一种孔状上电极平行板电容式湿敏元件,面积3mm×3mm,上电极有源区面积2mm×2mm,孔距如图4所示,其中孔直径2μm,孔中心间距S1=S2=4μm,上电极面积2.5mm2;经试验验证,其余相同条件下,本实用新型孔状上电极平行板电容式湿敏元件的动态响应时间比现有栅状上电极平行板电容式湿敏元件改善了至少30%。 The utility model is a capacitive humidity sensor with a hole-shaped upper electrode parallel plate, with an area of 3 mm × 3 mm, an area of the upper electrode active area of 2 mm × 2 mm, and the hole distance as shown in Figure 4, wherein the hole diameter is 2 μm, and the hole center distance S1 = S2=4μm, the area of the upper electrode is 2.5mm 2 ; it has been verified by experiments that under the same conditions, the dynamic response time of the utility model's hole-shaped upper electrode parallel plate capacitive humidity sensor is faster than that of the existing grid-shaped upper electrode parallel plate capacitive humidity sensor. Sensitive components have improved by at least 30%.
图5示出了现有栅状上电极湿敏元件(面积3mm×3mm,上电极有源区面积2mm×2mm,其中栅齿宽度2μm,栅齿间隙宽度2μm,上电极面积2.5mm2,均流条宽度50μm,占上电极面积比例40%)和本实用新型湿敏元件动态特性比较,其中,栅状上电极湿敏元件的动态特性数据来源于25℃自相对湿度为33.2%RH(MgCl2饱和盐溶液)到相对湿度为75.8%RH(NaCl饱和盐溶液)的升湿响应测试结果,动态特性测试基于饱和盐溶液法,平衡时间为5s,测试时间小于10s,孔状上电极湿敏元件的动态特性数据来源于数值模拟,图中纵坐标为无量纲电容值,横坐标为时间。 Figure 5 shows the existing grid-shaped upper electrode humidity sensor (area 3mm×3mm, upper electrode active area area 2mm×2mm, grid teeth width 2μm, grid teeth gap width 2μm, upper electrode area 2.5mm 2 , average Flow bar width 50 μm, accounts for upper electrode area ratio 40%) and the utility model humidity sensor dynamic characteristic comparison, wherein, the dynamic characteristic data of grid-shaped upper electrode humidity sensor originates from 25 ℃ since relative humidity is 33.2%RH (MgCl 2 saturated salt solution) to a relative humidity of 75.8% RH (NaCl saturated salt solution) humidity response test results, the dynamic characteristics test is based on the saturated salt solution method, the equilibrium time is 5s, the test time is less than 10s, the hole-shaped upper electrode is humidity sensitive The dynamic characteristic data of the component comes from numerical simulation. The ordinate in the figure is the dimensionless capacitance value, and the abscissa is time.
由图5可以看出,孔状上电极湿敏元件的响应时间明显优于栅状上电极湿敏元件,尤其试验后期。 It can be seen from Figure 5 that the response time of the hole-shaped upper electrode humidity sensor is obviously better than that of the grid-shaped upper electrode humidity sensor, especially in the later stage of the test.
以上所述仅是对本实用新型的较佳实施方式而已,并非对本实用新型作任何形式上的限制,凡是依据本实用新型的技术实质对以上实施方式所做的任何简单修改,等同变化与修饰,均属于本实用新型技术方案的范围内。 The above description is only a preferred embodiment of the utility model, and does not limit the utility model in any form. Any simple modification made to the above implementation method according to the technical essence of the utility model is equivalent to changes and modifications. All belong to the scope of the technical solution of the utility model.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520417725.0U CN205067412U (en) | 2015-06-15 | 2015-06-15 | Poroid electrode parallel -plate capacitive moisture sensor of going up of miniature quick response |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520417725.0U CN205067412U (en) | 2015-06-15 | 2015-06-15 | Poroid electrode parallel -plate capacitive moisture sensor of going up of miniature quick response |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205067412U true CN205067412U (en) | 2016-03-02 |
Family
ID=55393949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520417725.0U Expired - Fee Related CN205067412U (en) | 2015-06-15 | 2015-06-15 | Poroid electrode parallel -plate capacitive moisture sensor of going up of miniature quick response |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205067412U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104931546A (en) * | 2015-06-15 | 2015-09-23 | 兰州交通大学 | Rapid responding miniature capacitance type humidity-sensitive element with porous upper electrode and parallel board electrode |
CN110494744A (en) * | 2017-03-31 | 2019-11-22 | 三美电机株式会社 | Humidity sensor |
-
2015
- 2015-06-15 CN CN201520417725.0U patent/CN205067412U/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104931546A (en) * | 2015-06-15 | 2015-09-23 | 兰州交通大学 | Rapid responding miniature capacitance type humidity-sensitive element with porous upper electrode and parallel board electrode |
CN110494744A (en) * | 2017-03-31 | 2019-11-22 | 三美电机株式会社 | Humidity sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100523799C (en) | Polyelectrolyte / intrinsic conducting polymer composite humidity sensor and its production method | |
CN104181203B (en) | A kind of MEMS gas sensors and preparation method thereof | |
KR101093612B1 (en) | Capacitive humidity sensor and its manufacturing method | |
CN101949878B (en) | Polyimide film miniature quick-response humidity sensing element and manufacturing method thereof | |
CN104634833A (en) | MEMS capacitance-type relative humidity sensor and preparation method thereof | |
CN205067413U (en) | A Fast Response Capacitive Humidity Sensing Element with Hole-shaped Upper Electrode and Humidity-Sensing Film Parallel Plate | |
CN102323300A (en) | Polyelectrolyte and graphene composite resistive moisture sensor and manufacturing method thereof | |
CN105510404A (en) | Rapidly-responsive humidity sensor and manufacturing method thereof | |
KR101367887B1 (en) | Capacitance Type Humidity Sensor | |
CN106124574A (en) | Graphene oxide quantum dot humidity sensor and preparation method thereof | |
CN205067412U (en) | Poroid electrode parallel -plate capacitive moisture sensor of going up of miniature quick response | |
CN105067682A (en) | Flexible capacitive humidity sensor and preparation method thereof | |
CN104931546A (en) | Rapid responding miniature capacitance type humidity-sensitive element with porous upper electrode and parallel board electrode | |
CN104634832B (en) | CMOS MEMS capacitive humidity sensors and preparation method thereof | |
US10006881B2 (en) | Microelectrodes for electrochemical gas detectors | |
CN104914139A (en) | A Fast Response Capacitive Humidity Sensing Element with Hole-shaped Upper Electrode and Humidity-Sensing Film Parallel Plate | |
CN107807156B (en) | Capacitive humidity sensor | |
CN108398466A (en) | A kind of thin-film capacitor humidity sensor and preparation method thereof | |
KR100676088B1 (en) | Capacitive humidity sensor and its manufacturing method | |
US9976975B2 (en) | Method of making thin film humidity sensors | |
JP2013174509A5 (en) | ||
KR101876942B1 (en) | High-Sensitivity and Low-Hysteresis Porous MIM-Type Capacitive Humidity Sensor Using Functional Polymer Mixed with titanium dioxide Microparticles | |
CN104466210B (en) | Fuel cell interior humidity-current density distribution measurement male tab | |
CN112710706A (en) | Humidity sensor | |
CN103134914A (en) | Microclimate instrument for measuring fabric moisture resistance and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160302 Termination date: 20210615 |
|
CF01 | Termination of patent right due to non-payment of annual fee |