CN204886763U - 一种无刷直流电机驱动实时嵌入式控制电路 - Google Patents

一种无刷直流电机驱动实时嵌入式控制电路 Download PDF

Info

Publication number
CN204886763U
CN204886763U CN201520413157.7U CN201520413157U CN204886763U CN 204886763 U CN204886763 U CN 204886763U CN 201520413157 U CN201520413157 U CN 201520413157U CN 204886763 U CN204886763 U CN 204886763U
Authority
CN
China
Prior art keywords
pin
fixed value
value resistance
type triode
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520413157.7U
Other languages
English (en)
Inventor
张晶
马晨
付鑫
肖智斌
范洪博
崔毅
容会
薛冷
汤守国
王剑平
张果
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201520413157.7U priority Critical patent/CN204886763U/zh
Application granted granted Critical
Publication of CN204886763U publication Critical patent/CN204886763U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本实用新型涉及一种无刷直流电机驱动实时嵌入式控制电路,属于电子技术领域。本实用新型包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。本实用新型充分发挥单片机ATMEGA的高性能、资源丰富的特点,外围电路结构简单。无刷直流电机采用软件启动和PWM速度控制的方式,实现电机的启动和稳定运行,大大提高无刷直流电机的调速和控制性能。

Description

一种无刷直流电机驱动实时嵌入式控制电路
技术领域
本实用新型涉及一种无刷直流电机驱动实时嵌入式控制电路,属于电子技术领域。
背景技术
近年来,四轴飞行器的研究和应用范围逐步扩大,它采用四个无刷直流电机作为其动力来源。无刷直流电机为外转子结构,直接驱动螺旋桨高速旋转。无刷主流电机的驱动控制方式主要分为有位置传感器和无位置传感器的控制方式两种。由于在四轴飞行器中的要求无刷直流电机控制器要求体积小、重量轻、高效可靠,因而采用无位置传感器的无刷直流电机。无刷直流电机驱动控制系统包括驱动电路和系统程序控制两部分。采用功率管的开关特性构成三相全桥驱动电路,之后使用DSP作为主控芯片,借助其强大的运算处理能力,实现电机的启动与控制,但电路结构复杂成本高,缺乏经济性。直流无刷电机的换向采用反电势过零检测法,一旦检测到第三相的反电势过零点就为换向做准备。反电势过零检测采用虚拟中性点的方法,通过检测电机各相的反电势过零点来判断转子位置。而基于电机三相绕组端电压变化规律的电机电流换向理论,可以大大提高系统控制精度。本无刷直流电机的驱动电路采用三相六臂全桥电路,控制电路的管理控制芯片采用单片机ATMEGA实现,以充分发挥其高性能、资源丰富的特点,因而外围电路结构简单。无刷直流电机采用软件启动和PWM速度控制的方式,实现电机的启动和稳定运行,大大提高四轴飞行器无刷直流电机的调速和控制性能。
发明内容
本实用新型提供了一种无刷直流电机驱动实时嵌入式控制电路,以用于解决现有电路结构复杂成本高,缺乏经济性等不足。
本实用新型的技术方案是:一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。(其中驱动控制电路中的A1引脚、A2引脚、A3引脚与单片机ATMEGA的硬件PWM驱动信号输出管脚(单片机上任意未使用的PA、PB、PC、PD管脚中的三个)相接,B1引脚、B2引脚、B3引脚与单片机的I/O接口(单片机上任意未使用的与PWM驱动信号输出管脚不重复的PA、PB、PC、PD管脚中的三个)相连接;反电势检测电路中的中性点N与单片机ATMEGA的INT2引脚相接,Ain引脚、Bin引脚、Cin引脚分别接单片机ATMEGA的ADC0引脚、ADC1引脚、ADC2引脚。)
所述单片机模块包括单片机ATMEGA、时钟电路、复位电路、电阻模块、整流二极管模块、在线下载方式模块ISP、在线仿真接口模块JTAG;其中单片机ATMEGA的X1引脚和X2引脚接时钟电路,RST引脚接按键复位电路,单片机ATMEGA中内置的A/D转换器的模拟输入端PA0引脚-PA7引脚串接一个上拉电阻模块,然后通过上拉电阻模块连接至由八个发光二极管组成的整流二极管模块,然后通过整流二极管模块连接至5V电源VCC,MOSI引脚、MISO引脚、SCK引脚、RESET引脚与在线下载方式模块ISP相连接,TDI引脚、TDO引脚、TMS引脚、TCK引脚与在线仿真接口模块JTAG相连接。
所述驱动控制电路包括定值电阻R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12,PNP型晶体管T1、T2、T3,NPN型三极管Q1、Q2、Q3,PNP型三极管Q4、Q5、Q6,三个12V稳压直流电源;其中定值电阻R1的一端为驱动控制电路A的A1端,另一端接入PNP型晶体管T1的基极,PNP型晶体管T1的集电极通过定值电阻R2与NPN型三极管Q1的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T1的发射极直接接大地,定值电阻R3的一端为驱动控制电路A的B1端,另一端与定值电阻R4和PNP型三极管Q4的并联电路串联,PNP型三极管Q4的集电极与NPN型三极管Q1的发射极相连接,PNP型三极管Q4的发射极直接接入大地;定值电阻R5的一端为驱动控制电路B的A2端,另一端接入PNP型晶体管T2的基极,PNP型晶体管T2的集电极通过定值电阻R6与NPN型三极管Q2的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T2的发射极直接接大地,定值电阻R7的一端为驱动控制电路B的B2端,另一端与定值电阻R8和PNP型三极管Q5的并联电路串联,PNP型三极管Q5的集电极与NPN型三极管Q2的发射极相连接,PNP型三极管Q5的发射极直接接入大地;定值电阻R9的一端为驱动控制电路C的A3端,另一端接入PNP型晶体管T3的基极,PNP型晶体管T3的集电极通过定值电阻R10与NPN型三极管Q3的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T3的发射极直接接大地,定值电阻R11的一端为驱动控制电路C的B3端,另一端与定值电阻R12和PNP型三极管Q6的并联电路串联,PNP型三极管Q6的集电极与NPN型三极管Q3的发射极相连接,PNP型三极管Q6的发射极直接接入大地;驱动控制电路中的A1引脚、A1引脚、A3引脚与单片机ATMEGA的硬件PWM驱动信号相接,B1引脚、B2引脚、B3引脚与单片机的I/O口相连接。
所述反电势检测电路包括定值电阻R13、R14、R15、R16、R17、R18、R19、R20、R21;其中定值电阻R13与定值电阻R16串联,定值电阻R14与定值电阻R17串联,定值电阻R15与定值电阻R18串联,这三组由两个定值电阻组成的串联电路最后并联,一端为反电势检测电路的中性点N点,另一端接入A、B、C三相,定值电阻R19、定值电阻R20、定值电阻R21并联,一端接入大地,另一端作为反电势检测电路的Ain引脚、Bin引脚、Cin引脚;中性点N与单片机ATMEGA的AIN0引脚相接,Ain引脚、Bin引脚、Cin引脚分别接单片机ATMEGA的ADC0引脚、ADC1引脚、ADC2引脚;不停地比较中性点N电压与A、B、C三相三个端点电压的大小,以检测出每相感应电动势的过零点。
本实用新型的工作原理是:
无刷直流电机的驱动电路采用三相六臂全桥电路,控制电路的管理控制芯片采用单片机ATMEGA实现,利用其高性能、资源丰富的特点,使得外围电路结构简单。无刷直流电机的驱动电路采用软件启动和PWM速度控制的方式,其中,三相六臂全桥电路与普通高等教育“十二五”国家及规划教材《电子电子技术》中的三相六臂全桥电路所述一致,电机的软件启动和PWM速度控制的方式与普通高等教育“十一五”国家及规划教材《电机与拖动》中所述的电机软件启动和PWM速度控制方式一致,充分实现电机的启动和稳定运行,大大提高无刷直流电机的调速和控制性能。
所述的无刷直流电机控制系统,因为电机不转或转速很低时,反电势无法检测,因而采用软件启动的方式。针对无位置传感器无刷直流电机的控制,本专利采用三步启动的方法,首先,给A,B相通电一段时间以固定电机转子位置;六状态轮流换向,通电时间逐步减少;检测第三相的反电势,若正常则启动成功,否则重新启动。单片机ATMEGA根据检测到的电机转子位置,利用MOSFET的开关特性,实现电机的通电控制,例如,当Q1、Q5打开时,AB相导通,此时电流流向为电源正极→Q1→绕组A→绕组B→Q5→电源负极。类似的,当MOSFET打开顺序分别为Q1、Q5,Q1、Q6,Q2、Q6,Q2、Q4,Q3、Q4,Q3、Q5时,只要在合适的时机进行准确换向,就可实现无刷直流电机的连续运转。当电机通电正常连续转动后反电势检测法进行。无刷直流电机能够正常连续运转,就要对转子位置进行检测,从而实现准确换向,由于无刷直流电机要求系统结构简单、重量轻,因而采用无位置传感器的方式,利用第三相产生的感生电动势过零点时刻延迟30°换向,由于无刷直流电机的两相导通模式,因而可以利用不导通的第三相检测反电势的大小;反电势检测电路,中性点N与单片机的AIN0相接,Ain,Bin,Cin分别接单片机的ADC0,ADC1,ADC2.不停地比较中性点N电压与A,B,C三相三个端点电压的大小,以检测出每相感应电动势的过零点。单片机ATMEGA模拟比较器的正向输入端为AIN0,负向输入端则根据ADMUX寄存器的配置而选择ADC0,ADC1,ADC2,从而利用了单片机ATMEGA自带的模拟比较器的复用功能。当A,B相通电期间,C相反电势与中性点N进行比较,类似的,就可以成功检测出各相的过零事件,当电机的反电势检测出来后,就可以找到反电势的过零点,在反电势过零后延迟30°电角度进行换向操作。无刷直流电机的驱动电路采用三相六臂全桥驱动方式,采用此方式可以减少电流波动和转矩脉动,使得电机输出较大的转矩。在电机驱动部分使用6个功率场效应管控制输出电压,直流无刷电机驱动电路电源电压为12V驱动电路中,三极管Q1-Q3采用IRFR5305(P沟道),三极管Q4-Q6为IRFR1205(N沟道)。该场效应管内藏续流二极管,为场效应管关断时提供电流通路,以避免管子的反向击穿;A1-A3提供三相全桥上桥臂栅极驱动信号,并与单片机ATMEGA的硬件PWM驱动信号相接,通过改变PWM信号的占空比来实现电机转速控制,B1-B3提供下桥臂栅极驱动信号,由单片机的I/O口直接提供,具有导通与截止两种状态;无刷直流电机驱动控制采用三相六状态控制策略,功率管具有六种触发状态,每次只有两个管子导通,每60°电角度换向一次,例如某一时刻AB相导通时,C相截至,无电流输出。此时,达到了电机的启动、换向和转速控制操作。
反电势检测法只有在电机正常运转后才能进行,当电机不转或转速很低时,其反电势无法检测,因而采用软件启动的方式。针对无位置传感器无刷直流电机的控制,本专利采用三步启动的方法,首先,给A,B相通电一段时间以固定电机转子位置;六状态轮流换向,通电时间逐步减少;检测第三相的反电势,若正常则启动成功,否则重新启动。
如图1、图2、图3、图4、图5、图6构成的单片机最小系统所示:电机不转或转速很低时,反电势无法检测,因而采用软件启动的方式。针对无位置传感器无刷直流电机的控制,本专利采用三步启动的方法,首先,给A,B相通电一段时间以固定电机转子位置;六状态轮流换向,通电时间逐步减少;检测第三相的反电势,若正常则启动成功,否则重新启动。单片机ATMEGA根据检测到的电机转子位置,利用MOSFET的开关特性,实现电机的通电控制,例如,当Q1、Q5打开时,AB相导通,此时电流流向为电源正极→Q1→绕组A→绕组B→Q5→电源负极。类似的,当MOSFET打开顺序分别为Q1、Q5,Q1、Q6,Q2、Q6,Q2、Q4,Q3、Q4,Q3、Q5时,只要在合适的时机进行准确换向,就可实现无刷直流电机的连续运转。当电机通电正常连续转动后反电势检测法进行。无刷直流电机能够正常连续运转,就要对转子位置进行检测,从而实现准确换向,由于无刷直流电机要求系统结构简单、重量轻,因而采用无位置传感器的方式,利用第三相产生的感生电动势过零点时刻延迟30°换向,由于无刷直流电机的两相导通模式,因而可以利用不导通的第三相检测反电势的大小;反电势检测电路,中性点N与单片机的AIN0相接,Ain,Bin,Cin分别接单片机的ADC0,ADC1,ADC2.不停地比较中性点N电压与A,B,C三相三个端点电压的大小,以检测出每相感应电动势的过零点。单片机ATMEGA模拟比较器的正向输入端为AIN0,负向输入端则根据ADMUX寄存器的配置而选择ADC0,ADC1,ADC2,从而利用了单片机ATMEGA自带的模拟比较器的复用功能。当A,B相通电期间,C相反电势与中性点N进行比较,类似的,就可以成功检测出各相的过零事件,当电机的反电势检测出来后,就可以找到反电势的过零点,在反电势过零后延迟30°电角度进行换向操作。无刷直流电机的驱动电路采用三相六臂全桥驱动方式,采用此方式可以减少电流波动和转矩脉动,使得电机输出较大的转矩。在电机驱动部分使用6个功率场效应管控制输出电压,直流无刷电机驱动电路电源电压为12V驱动电路中,三极管Q1-Q3采用IRFR5305(P沟道),三极管Q4-Q6为IRFR1205(N沟道)。该场效应管内藏续流二极管,为场效应管关断时提供电流通路,以避免管子的反向击穿;A1-A3提供三相全桥上桥臂栅极驱动信号,并与单片机ATMEGA的硬件PWM驱动信号相接,通过改变PWM信号的占空比来实现电机转速控制,B1-B3提供下桥臂栅极驱动信号,由单片机的I/O口直接提供,具有导通与截止两种状态;无刷直流电机驱动控制采用三相六状态控制策略,功率管具有六种触发状态,每次只有两个管子导通,每60°电角度换向一次,例如某一时刻AB相导通时,C相截至,无电流输出。
如图7、图8、图9构成的驱动控制电路所示:无刷直流电机的驱动电路采用三相六臂全桥驱动方式,采用此方式可以减少电流波动和转矩脉动,使得电机输出较大的转矩。在电机驱动部分使用6个功率场效应管控制输出电压,直流无刷电机驱动电路电源电压为12V驱动电路中,三极管Q1-Q3采用IRFR5305(P沟道),三极管Q4-Q6为IRFR1205(N沟道)。该场效应管内藏续流二极管,为场效应管关断时提供电流通路,以避免管子的反向击穿;A1-A3提供三相全桥上桥臂栅极驱动信号,并与单片机ATMEGA的硬件PWM驱动信号相接,通过改变PWM信号的占空比来实现电机转速控制,B1-B3提供下桥臂栅极驱动信号,由单片机的I/O口直接提供,具有导通与截止两种状态;无刷直流电机驱动控制采用三相六状态控制策略,功率管具有六种触发状态,每次只有两个管子导通,每60°电角度换向一次,若某一时刻AB相导通时,C相截至,无电流输出。单片机ATMEGA根据检测到的电机转子位置,利用MOSFET的开关特性,实现电机的通电控制,例如,当Q1、Q5打开时,AB相导通,此时电流流向为电源正极→Q1→绕组A→绕组B→Q5→电源负极。类似的,当MOSFET打开顺序分别为Q1Q5,Q1Q6,Q2Q6,Q2Q4,Q3Q4,Q3Q5时,只要在合适的时机进行准确换向,就可实现无刷直流电机的连续运转。
如图10所示:无刷直流电机能够正常连续运转,就要对转子位置进行检测,从而实现准确换向,由于无刷直流电机要求系统结构简单、重量轻,因而采用无位置传感器的方式,利用第三相产生的感生电动势过零点时刻延迟30°换向,由于无刷直流电机的两相导通模式,因而可以利用不导通的第三相检测反电势的大小;反电势检测电路,中性点N与单片机的AIN0相接,Ain,Bin,Cin分别接单片机的ADC0,ADC1,ADC2.不停地比较中性点N电压与A,B,C三相三个端点电压的大小,以检测出每相感应电动势的过零点。单片机ATMEGA模拟比较器的正向输入端为AIN0,负向输入端则根据ADMUX寄存器的配置而选择ADC0,ADC1,ADC2,从而利用了单片机ATMEGA自带的模拟比较器的复用功能。当A,B相通电期间,C相反电势与中性点N进行比较,类似的,就可以成功检测出各相的过零事件,当电机的反电势检测出来后,就可以找到反电势的过零点,在反电势过零后延迟30°电角度进行换向操作。
本实用新型的有益效果是:充分发挥单片机ATMEGA的高性能、资源丰富的特点,外围电路结构简单。无刷直流电机采用软件启动和PWM速度控制的方式,实现电机的启动和稳定运行,大大提高无刷直流电机的调速和控制性能。
附图说明
图1为本实用新型的单片机ATMEGA电路图;
图2为本实用新型的复位电路电路图;
图3为本实用新型的时钟电路电路图;
图4为本实用新型的在线仿真接口模块JTAG电路图;
图5为本实用新型的在线下载方式模块ISP电路图;
图6为本实用新型的电阻模块及整流二极管模块电路图;
图7为本实用新型的驱动控制电路A电路图;
图8为本实用新型的驱动控制电路B电路图;
图9为本实用新型的驱动控制电路C电路图;
图10为本实用新型的反电势检测电路图。
具体实施方式
下面结合附图和实施例,对本实用新型作进一步说明,但本实用新型的内容并不限于所述范围。
实施例1:如图1-10所示,一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。
所述单片机模块包括单片机ATMEGA、时钟电路、复位电路、电阻模块、整流二极管模块、在线下载方式模块ISP、在线仿真接口模块JTAG;其中单片机ATMEGA的X1引脚和X2引脚接时钟电路,RST引脚接按键复位电路,单片机ATMEGA中内置的A/D转换器的模拟输入端PA0引脚-PA7引脚串接一个上拉电阻模块,然后通过上拉电阻模块连接至由八个发光二极管组成的整流二极管模块,然后通过整流二极管模块连接至5V电源VCC,MOSI引脚、MISO引脚、SCK引脚、RESET引脚与在线下载方式模块ISP相连接,TDI引脚、TDO引脚、TMS引脚、TCK引脚与在线仿真接口模块JTAG相连接。
所述驱动控制电路包括定值电阻R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12,PNP型晶体管T1、T2、T3,NPN型三极管Q1、Q2、Q3,PNP型三极管Q4、Q5、Q6,三个12V稳压直流电源;其中定值电阻R1的一端为驱动控制电路A的A1端,另一端接入PNP型晶体管T1的基极,PNP型晶体管T1的集电极通过定值电阻R2与NPN型三极管Q1的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T1的发射极直接接大地,定值电阻R3的一端为驱动控制电路A的B1端,另一端与定值电阻R4和PNP型三极管Q4的并联电路串联,PNP型三极管Q4的集电极与NPN型三极管Q1的发射极相连接,PNP型三极管Q4的发射极直接接入大地;定值电阻R5的一端为驱动控制电路B的A2端,另一端接入PNP型晶体管T2的基极,PNP型晶体管T2的集电极通过定值电阻R6与NPN型三极管Q2的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T2的发射极直接接大地,定值电阻R7的一端为驱动控制电路B的B2端,另一端与定值电阻R8和PNP型三极管Q5的并联电路串联,PNP型三极管Q5的集电极与NPN型三极管Q2的发射极相连接,PNP型三极管Q5的发射极直接接入大地;定值电阻R9的一端为驱动控制电路C的A3端,另一端接入PNP型晶体管T3的基极,PNP型晶体管T3的集电极通过定值电阻R10与NPN型三极管Q3的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T3的发射极直接接大地,定值电阻R11的一端为驱动控制电路C的B3端,另一端与定值电阻R12和PNP型三极管Q6的并联电路串联,PNP型三极管Q6的集电极与NPN型三极管Q3的发射极相连接,PNP型三极管Q6的发射极直接接入大地;驱动控制电路中的A1引脚、A1引脚、A3引脚与单片机ATMEGA的硬件PWM驱动信号相接,B1引脚、B2引脚、B3引脚与单片机的I/O口相连接。
所述反电势检测电路包括定值电阻R13、R14、R15、R16、R17、R18、R19、R20、R21;其中定值电阻R13与定值电阻R16串联,定值电阻R14与定值电阻R17串联,定值电阻R15与定值电阻R18串联,这三组由两个定值电阻组成的串联电路最后并联,一端为反电势检测电路的中性点N点,另一端接入A、B、C三相,定值电阻R19、定值电阻R20、定值电阻R21并联,一端接入大地,另一端作为反电势检测电路的Ain引脚、Bin引脚、Cin引脚;中性点N与单片机ATMEGA的AIN0引脚相接,Ain引脚、Bin引脚、Cin引脚分别接单片机ATMEGA的ADC0引脚、ADC1引脚、ADC2引脚;不停地比较中性点N电压与A、B、C三相三个端点电压的大小,以检测出每相感应电动势的过零点。
实施例2:如图1-10所示,一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。
所述单片机模块包括单片机ATMEGA、时钟电路、复位电路、电阻模块、整流二极管模块、在线下载方式模块ISP、在线仿真接口模块JTAG;其中单片机ATMEGA的X1引脚和X2引脚接时钟电路,RST引脚接按键复位电路,单片机ATMEGA中内置的A/D转换器的模拟输入端PA0引脚-PA7引脚串接一个上拉电阻模块,然后通过上拉电阻模块连接至由八个发光二极管组成的整流二极管模块,然后通过整流二极管模块连接至5V电源VCC,MOSI引脚、MISO引脚、SCK引脚、RESET引脚与在线下载方式模块ISP相连接,TDI引脚、TDO引脚、TMS引脚、TCK引脚与在线仿真接口模块JTAG相连接。
所述驱动控制电路包括定值电阻R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12,PNP型晶体管T1、T2、T3,NPN型三极管Q1、Q2、Q3,PNP型三极管Q4、Q5、Q6,三个12V稳压直流电源;其中定值电阻R1的一端为驱动控制电路A的A1端,另一端接入PNP型晶体管T1的基极,PNP型晶体管T1的集电极通过定值电阻R2与NPN型三极管Q1的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T1的发射极直接接大地,定值电阻R3的一端为驱动控制电路A的B1端,另一端与定值电阻R4和PNP型三极管Q4的并联电路串联,PNP型三极管Q4的集电极与NPN型三极管Q1的发射极相连接,PNP型三极管Q4的发射极直接接入大地;定值电阻R5的一端为驱动控制电路B的A2端,另一端接入PNP型晶体管T2的基极,PNP型晶体管T2的集电极通过定值电阻R6与NPN型三极管Q2的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T2的发射极直接接大地,定值电阻R7的一端为驱动控制电路B的B2端,另一端与定值电阻R8和PNP型三极管Q5的并联电路串联,PNP型三极管Q5的集电极与NPN型三极管Q2的发射极相连接,PNP型三极管Q5的发射极直接接入大地;定值电阻R9的一端为驱动控制电路C的A3端,另一端接入PNP型晶体管T3的基极,PNP型晶体管T3的集电极通过定值电阻R10与NPN型三极管Q3的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T3的发射极直接接大地,定值电阻R11的一端为驱动控制电路C的B3端,另一端与定值电阻R12和PNP型三极管Q6的并联电路串联,PNP型三极管Q6的集电极与NPN型三极管Q3的发射极相连接,PNP型三极管Q6的发射极直接接入大地;驱动控制电路中的A1引脚、A1引脚、A3引脚与单片机ATMEGA的硬件PWM驱动信号相接,B1引脚、B2引脚、B3引脚与单片机的I/O口相连接。
实施例3:如图1-10所示,一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。
所述单片机模块包括单片机ATMEGA、时钟电路、复位电路、电阻模块、整流二极管模块、在线下载方式模块ISP、在线仿真接口模块JTAG;其中单片机ATMEGA的X1引脚和X2引脚接时钟电路,RST引脚接按键复位电路,单片机ATMEGA中内置的A/D转换器的模拟输入端PA0引脚-PA7引脚串接一个上拉电阻模块,然后通过上拉电阻模块连接至由八个发光二极管组成的整流二极管模块,然后通过整流二极管模块连接至5V电源VCC,MOSI引脚、MISO引脚、SCK引脚、RESET引脚与在线下载方式模块ISP相连接,TDI引脚、TDO引脚、TMS引脚、TCK引脚与在线仿真接口模块JTAG相连接。
所述反电势检测电路包括定值电阻R13、R14、R15、R16、R17、R18、R19、R20、R21;其中定值电阻R13与定值电阻R16串联,定值电阻R14与定值电阻R17串联,定值电阻R15与定值电阻R18串联,这三组由两个定值电阻组成的串联电路最后并联,一端为反电势检测电路的中性点N点,另一端接入A、B、C三相,定值电阻R19、定值电阻R20、定值电阻R21并联,一端接入大地,另一端作为反电势检测电路的Ain引脚、Bin引脚、Cin引脚;中性点N与单片机ATMEGA的AIN0引脚相接,Ain引脚、Bin引脚、Cin引脚分别接单片机ATMEGA的ADC0引脚、ADC1引脚、ADC2引脚;不停地比较中性点N电压与A、B、C三相三个端点电压的大小,以检测出每相感应电动势的过零点。
实施例4:如图1-10所示,一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。
所述驱动控制电路包括定值电阻R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12,PNP型晶体管T1、T2、T3,NPN型三极管Q1、Q2、Q3,PNP型三极管Q4、Q5、Q6,三个12V稳压直流电源;其中定值电阻R1的一端为驱动控制电路A的A1端,另一端接入PNP型晶体管T1的基极,PNP型晶体管T1的集电极通过定值电阻R2与NPN型三极管Q1的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T1的发射极直接接大地,定值电阻R3的一端为驱动控制电路A的B1端,另一端与定值电阻R4和PNP型三极管Q4的并联电路串联,PNP型三极管Q4的集电极与NPN型三极管Q1的发射极相连接,PNP型三极管Q4的发射极直接接入大地;定值电阻R5的一端为驱动控制电路B的A2端,另一端接入PNP型晶体管T2的基极,PNP型晶体管T2的集电极通过定值电阻R6与NPN型三极管Q2的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T2的发射极直接接大地,定值电阻R7的一端为驱动控制电路B的B2端,另一端与定值电阻R8和PNP型三极管Q5的并联电路串联,PNP型三极管Q5的集电极与NPN型三极管Q2的发射极相连接,PNP型三极管Q5的发射极直接接入大地;定值电阻R9的一端为驱动控制电路C的A3端,另一端接入PNP型晶体管T3的基极,PNP型晶体管T3的集电极通过定值电阻R10与NPN型三极管Q3的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T3的发射极直接接大地,定值电阻R11的一端为驱动控制电路C的B3端,另一端与定值电阻R12和PNP型三极管Q6的并联电路串联,PNP型三极管Q6的集电极与NPN型三极管Q3的发射极相连接,PNP型三极管Q6的发射极直接接入大地;驱动控制电路中的A1引脚、A1引脚、A3引脚与单片机ATMEGA的硬件PWM驱动信号相接,B1引脚、B2引脚、B3引脚与单片机的I/O口相连接。
所述反电势检测电路包括定值电阻R13、R14、R15、R16、R17、R18、R19、R20、R21;其中定值电阻R13与定值电阻R16串联,定值电阻R14与定值电阻R17串联,定值电阻R15与定值电阻R18串联,这三组由两个定值电阻组成的串联电路最后并联,一端为反电势检测电路的中性点N点,另一端接入A、B、C三相,定值电阻R19、定值电阻R20、定值电阻R21并联,一端接入大地,另一端作为反电势检测电路的Ain引脚、Bin引脚、Cin引脚;中性点N与单片机ATMEGA的AIN0引脚相接,Ain引脚、Bin引脚、Cin引脚分别接单片机ATMEGA的ADC0引脚、ADC1引脚、ADC2引脚;不停地比较中性点N电压与A、B、C三相三个端点电压的大小,以检测出每相感应电动势的过零点。
实施例5:如图1-10所示,一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。
所述单片机模块包括单片机ATMEGA、时钟电路、复位电路、电阻模块、整流二极管模块、在线下载方式模块ISP、在线仿真接口模块JTAG;其中单片机ATMEGA的X1引脚和X2引脚接时钟电路,RST引脚接按键复位电路,单片机ATMEGA中内置的A/D转换器的模拟输入端PA0引脚-PA7引脚串接一个上拉电阻模块,然后通过上拉电阻模块连接至由八个发光二极管组成的整流二极管模块,然后通过整流二极管模块连接至5V电源VCC,MOSI引脚、MISO引脚、SCK引脚、RESET引脚与在线下载方式模块ISP相连接,TDI引脚、TDO引脚、TMS引脚、TCK引脚与在线仿真接口模块JTAG相连接。
实施例6:如图1-10所示,一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。
所述驱动控制电路包括定值电阻R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12,PNP型晶体管T1、T2、T3,NPN型三极管Q1、Q2、Q3,PNP型三极管Q4、Q5、Q6,三个12V稳压直流电源;其中定值电阻R1的一端为驱动控制电路A的A1端,另一端接入PNP型晶体管T1的基极,PNP型晶体管T1的集电极通过定值电阻R2与NPN型三极管Q1的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T1的发射极直接接大地,定值电阻R3的一端为驱动控制电路A的B1端,另一端与定值电阻R4和PNP型三极管Q4的并联电路串联,PNP型三极管Q4的集电极与NPN型三极管Q1的发射极相连接,PNP型三极管Q4的发射极直接接入大地;定值电阻R5的一端为驱动控制电路B的A2端,另一端接入PNP型晶体管T2的基极,PNP型晶体管T2的集电极通过定值电阻R6与NPN型三极管Q2的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T2的发射极直接接大地,定值电阻R7的一端为驱动控制电路B的B2端,另一端与定值电阻R8和PNP型三极管Q5的并联电路串联,PNP型三极管Q5的集电极与NPN型三极管Q2的发射极相连接,PNP型三极管Q5的发射极直接接入大地;定值电阻R9的一端为驱动控制电路C的A3端,另一端接入PNP型晶体管T3的基极,PNP型晶体管T3的集电极通过定值电阻R10与NPN型三极管Q3的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T3的发射极直接接大地,定值电阻R11的一端为驱动控制电路C的B3端,另一端与定值电阻R12和PNP型三极管Q6的并联电路串联,PNP型三极管Q6的集电极与NPN型三极管Q3的发射极相连接,PNP型三极管Q6的发射极直接接入大地;驱动控制电路中的A1引脚、A1引脚、A3引脚与单片机ATMEGA的硬件PWM驱动信号相接,B1引脚、B2引脚、B3引脚与单片机的I/O口相连接。
实施例7:如图1-10所示,一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。
所述反电势检测电路包括定值电阻R13、R14、R15、R16、R17、R18、R19、R20、R21;其中定值电阻R13与定值电阻R16串联,定值电阻R14与定值电阻R17串联,定值电阻R15与定值电阻R18串联,这三组由两个定值电阻组成的串联电路最后并联,一端为反电势检测电路的中性点N点,另一端接入A、B、C三相,定值电阻R19、定值电阻R20、定值电阻R21并联,一端接入大地,另一端作为反电势检测电路的Ain引脚、Bin引脚、Cin引脚;中性点N与单片机ATMEGA的AIN0引脚相接,Ain引脚、Bin引脚、Cin引脚分别接单片机ATMEGA的ADC0引脚、ADC1引脚、ADC2引脚;不停地比较中性点N电压与A、B、C三相三个端点电压的大小,以检测出每相感应电动势的过零点。
实施例8:如图1-10所示,一种无刷直流电机驱动实时嵌入式控制电路,包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接。
上面结合附图对本实用新型的具体实施方式作了详细说明,但是本实用新型并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本实用新型宗旨的前提下作出各种变化。

Claims (3)

1.一种无刷直流电机驱动实时嵌入式控制电路,其特征在于:包括单片机模块、驱动控制电路、反电势检测电路;其中驱动控制电路、反电势检测电路分别与单片机模块连接;
所述反电势检测电路包括定值电阻R13、R14、R15、R16、R17、R18、R19、R20、R21;其中定值电阻R13与定值电阻R16串联,定值电阻R14与定值电阻R17串联,定值电阻R15与定值电阻R18串联,这三组由两个定值电阻组成的串联电路最后并联,一端为反电势检测电路的中性点N点,另一端接入A、B、C三相,定值电阻R19、定值电阻R20、定值电阻R21并联,一端接入大地,另一端作为反电势检测电路的Ain引脚、Bin引脚、Cin引脚;中性点N与单片机ATMEGA的AIN0引脚相接,Ain引脚、Bin引脚、Cin引脚分别接单片机ATMEGA的ADC0引脚、ADC1引脚、ADC2引脚;不停地比较中性点N电压与A、B、C三相三个端点电压的大小,以检测出每相感应电动势的过零点。
2.根据权利要求1所述的无刷直流电机驱动实时嵌入式控制电路,其特征在于:所述单片机模块包括单片机ATMEGA、时钟电路、复位电路、电阻模块、整流二极管模块、在线下载方式模块ISP、在线仿真接口模块JTAG;其中单片机ATMEGA的X1引脚和X2引脚接时钟电路,RST引脚接按键复位电路,单片机ATMEGA中内置的A/D转换器的模拟输入端PA0引脚-PA7引脚串接一个上拉电阻模块,然后通过上拉电阻模块连接至由八个发光二极管组成的整流二极管模块,然后通过整流二极管模块连接至5V电源VCC,MOSI引脚、MISO引脚、SCK引脚、RESET引脚与在线下载方式模块ISP相连接,TDI引脚、TDO引脚、TMS引脚、TCK引脚与在线仿真接口模块JTAG相连接。
3.根据权利要求1所述的无刷直流电机驱动实时嵌入式控制电路,其特征在于:所述驱动控制电路包括定值电阻R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12,PNP型晶体管T1、T2、T3,NPN型三极管Q1、Q2、Q3,PNP型三极管Q4、Q5、Q6,三个12V稳压直流电源;其中定值电阻R1的一端为驱动控制电路A的A1端,另一端接入PNP型晶体管T1的基极,PNP型晶体管T1的集电极通过定值电阻R2与NPN型三极管Q1的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T1的发射极直接接大地,定值电阻R3的一端为驱动控制电路A的B1端,另一端与定值电阻R4和PNP型三极管Q4的并联电路串联,PNP型三极管Q4的集电极与NPN型三极管Q1的发射极相连接,PNP型三极管Q4的发射极直接接入大地;定值电阻R5的一端为驱动控制电路B的A2端,另一端接入PNP型晶体管T2的基极,PNP型晶体管T2的集电极通过定值电阻R6与NPN型三极管Q2的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T2的发射极直接接大地,定值电阻R7的一端为驱动控制电路B的B2端,另一端与定值电阻R8和PNP型三极管Q5的并联电路串联,PNP型三极管Q5的集电极与NPN型三极管Q2的发射极相连接,PNP型三极管Q5的发射极直接接入大地;定值电阻R9的一端为驱动控制电路C的A3端,另一端接入PNP型晶体管T3的基极,PNP型晶体管T3的集电极通过定值电阻R10与NPN型三极管Q3的并联电路连接至12V稳压直流电源VCC,PNP型晶体管T3的发射极直接接大地,定值电阻R11的一端为驱动控制电路C的B3端,另一端与定值电阻R12和PNP型三极管Q6的并联电路串联,PNP型三极管Q6的集电极与NPN型三极管Q3的发射极相连接,PNP型三极管Q6的发射极直接接入大地;驱动控制电路中的A1引脚、A1引脚、A3引脚与单片机ATMEGA的硬件PWM驱动信号相接,B1引脚、B2引脚、B3引脚与单片机的I/O口相连接。
CN201520413157.7U 2015-06-16 2015-06-16 一种无刷直流电机驱动实时嵌入式控制电路 Expired - Fee Related CN204886763U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520413157.7U CN204886763U (zh) 2015-06-16 2015-06-16 一种无刷直流电机驱动实时嵌入式控制电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520413157.7U CN204886763U (zh) 2015-06-16 2015-06-16 一种无刷直流电机驱动实时嵌入式控制电路

Publications (1)

Publication Number Publication Date
CN204886763U true CN204886763U (zh) 2015-12-16

Family

ID=54831083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520413157.7U Expired - Fee Related CN204886763U (zh) 2015-06-16 2015-06-16 一种无刷直流电机驱动实时嵌入式控制电路

Country Status (1)

Country Link
CN (1) CN204886763U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100505A (zh) * 2016-08-29 2016-11-09 中山英达思迅智能科技有限公司 用于交流同步电机驱动的逆变控制电路
CN106253767A (zh) * 2016-08-22 2016-12-21 深圳市永亿豪电子有限公司 一种直流电机驱动电路
CN106950977A (zh) * 2017-03-09 2017-07-14 长沙开雅电子科技有限公司 一种无人飞行器控制系统设计

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253767A (zh) * 2016-08-22 2016-12-21 深圳市永亿豪电子有限公司 一种直流电机驱动电路
CN106100505A (zh) * 2016-08-29 2016-11-09 中山英达思迅智能科技有限公司 用于交流同步电机驱动的逆变控制电路
CN106950977A (zh) * 2017-03-09 2017-07-14 长沙开雅电子科技有限公司 一种无人飞行器控制系统设计

Similar Documents

Publication Publication Date Title
CN102075130B (zh) 控制单相永磁体同步电动机转动方向的便捷方法和使用该方法的电动机
Huazhang Design and implementation of brushless DC motor drive and control system
CN204886763U (zh) 一种无刷直流电机驱动实时嵌入式控制电路
TW200735518A (en) Control device of motor
CN103078573A (zh) 无刷直流电机无霍尔传感器的启动方法
US9960716B2 (en) Control timing and sequencing for a multi-phase electric motor
CN203278723U (zh) 一种无刷直流电机控制器
CN103973065B (zh) 变结构马达及其切换方法
CN106374787A (zh) 无刷马达控制器以及控制无刷马达的方法
CN103633904A (zh) 无位置传感器的无刷直流电机控制方法及控制系统
CN108023514A (zh) 应用设备、电机装置及其电机驱动集成电路
CN205232080U (zh) 一种电机驱动装置
Xu et al. Brushless DC motor speed control system Simulink simulation
CN105515454A (zh) 一种四相永磁无刷直流电动机伺服控制系统
CN201355795Y (zh) 九换向单元电子换向直流电动机
Hasen et al. Design implementation and testing of a three phase BLDC motor controller
CN108023530A (zh) 应用设备、电机装置及其电机驱动集成电路
CN204993134U (zh) 大功率无刷电机驱动电路
CN104362909A (zh) 一种无刷直流电机控制器
CN205178809U (zh) 风机、泵、电机组件及用于电机驱动的集成电路
CN204481722U (zh) 一种开关磁阻电机调速控制装置
CN203335445U (zh) 一种无刷无感风扇
CN106856385A (zh) 一种基于cpld的无刷电机电子换相方法
CN102916634B (zh) 双凸极电机角度控制中的角度在线校正方法
Huang et al. Model and system simulation of Brushless DC motor based on SVPWM control

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151216

Termination date: 20170616

CF01 Termination of patent right due to non-payment of annual fee