CN204794843U - 采用双轴联动跟踪系统的暖棚上盖光伏系统 - Google Patents

采用双轴联动跟踪系统的暖棚上盖光伏系统 Download PDF

Info

Publication number
CN204794843U
CN204794843U CN201520219173.2U CN201520219173U CN204794843U CN 204794843 U CN204794843 U CN 204794843U CN 201520219173 U CN201520219173 U CN 201520219173U CN 204794843 U CN204794843 U CN 204794843U
Authority
CN
China
Prior art keywords
photovoltaic
direction rotation
rotation axis
green house
subsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520219173.2U
Other languages
English (en)
Inventor
吴建农
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG TONKING NEW ENERGY GROUP Co Ltd
Original Assignee
ZHEJIANG TONKING NEW ENERGY GROUP Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG TONKING NEW ENERGY GROUP Co Ltd filed Critical ZHEJIANG TONKING NEW ENERGY GROUP Co Ltd
Priority to CN201520219173.2U priority Critical patent/CN204794843U/zh
Application granted granted Critical
Publication of CN204794843U publication Critical patent/CN204794843U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本实用新型公开了一种采用双轴联动跟踪系统的暖棚上盖光伏系统,包括暖棚支架以及若干个独立的光伏跟踪组件子系统,该暖棚支架的上方铺设有覆盖材料,每个光伏跟踪组件子系统均包括两个固定支撑柱,其中所述暖棚支架固定在所述光伏跟踪组件子系统的所述固定支撑柱上。本实用新型通过光伏组件子系统的东西向和南北向倾角的同时调节,实现了全面、实时、无死角地跟踪太阳运行,确保了一天之中的光伏组件子系统始终处于最佳受光角度,提高了转换效率,提高了发电量,并且,通过单个控制器和转动轴即可同时控制连接在一个方向上的多组跟踪组件子系统,实现了对复数个光伏面板的在东西和南北两个方向上的角度同时调节,大幅提高控制效率,降低成本。

Description

采用双轴联动跟踪系统的暖棚上盖光伏系统
技术领域
本申请一般地涉及光伏发电领域,特别涉及采用双轴联动跟踪系统的暖棚上盖光伏系统。
背景技术
太阳能光伏发电是通过使用太阳能光伏组件子系统所形成的阵列接受入射的太阳光,通过光伏转换将光能转换为电能,并收集所产生的电能以供使用的技术。该技术具有无污染、成本低、发电可持续的优点,并在全球各地的光照强烈的热带或沙漠地区有着越来越多的运用。
目前,在太阳能光伏发电系统中,一般会在开阔地面(或楼宇屋顶等直接受光照表面)上部署大量的光伏组件子系统机架,机架上安装有光伏面板,通过光伏面板接收太阳光照射进行光伏转换发电。一般,根据部署区域的面积,机架的数目可以是十几组、几十组、上百组甚至上千组。
同时,为了更好地使光伏组件子系统接收太阳光照,本领域中已经实现了光伏组件子系统的太阳跟踪系统。通过实时地跟踪太阳运动,调整光伏组件子系统机架的朝向,以使得太阳光直射至光伏组件子系统的受光平面,可以增加光伏组件子系统所能接收到的太阳辐射量,提高太阳能光伏发电系统的总体发电量。
简单来说,光伏发电装置自动跟踪系统的实现原理是将跟踪传感器安装在承载有光伏组件子系统的机架上。当光线方向发生改变时,则跟踪传感器输出偏移信号,跟踪系统开始运作,调整机架上的光伏组件子系统的朝向,直到跟踪传感器重新达到平衡状态(即由光伏组件子系统的受光平面与入射太阳光线成直角时)停止运作,完成一次调整。如此实时地不断调整就可确保光伏阵列组件子系统沿着太阳的运行轨迹时刻跟随太阳,提高总发电量。自动跟踪系统也可以设有防杂光干扰及夜间跟踪电路,并附有手动控制开关,以方便调试。
传统的光伏发电装置自动跟踪方式一般包括:平单轴自动跟踪、斜单轴自动跟踪、双轴跟踪等。但目前,这些跟踪方式一般实现“一机一架”的控制方式,即使用单个控制和驱动系统来控制单个光伏组件子系统机架。如若对于成片面积上的大规模铺设,则需要与光伏组件子系统机架数目相当的控制和驱动系统,这极大地增加了铺设成本和铺设难度,不利于光伏发电在经济不发达地区的广泛利用。因此,需要对若干个光伏组件子系统机架的集中化跟踪控制系统。
同时,由于太阳的每日自东向西运动,一般的单轴跟踪系统均会采用南北向固定放置、东西向可调转动的方式来对太阳进行跟踪。具体而言,光伏组件子系统机架的中轴线按照南北向放置,并且整个机架可以沿其中轴线进行转动,从而实现了光伏组件子系统的面板朝向东或西偏移,以更好地接受太阳光照。但对于我国的大部分地区而言,由于铺设地形非水平、上空云层遮盖等原因,即便东西向可调,南北向固定的机架放置也无法将光伏组件子系统的面板调整为与最大光轴入射方向垂直。因此,需要一种在东西向和南北向均可调的光伏组件子系统双轴跟踪系统。
对于目前的光伏组件子系统机架而言,防风性能也是一个重要的考察因素。我国南部地区多光照和台风,当光伏组件子系统机架暴露在大风中时会受到各个方向的来凤。来风会对机架产生侧向和纵向的压力。这对机架的抗风提出了很高的要求。如若被风吹歪,光伏组件子系统本身的重量就足以使得整个机架结构的重心发生偏移,进而垮塌。因此,需要光伏跟踪系统能够有效抵挡侧向强风。
综合上述需求,目前光伏发电领域缺少一种对若干个光伏组件子系统机架进行集中化双轴跟踪控制、具有良好抗风能力、能在各种地形上大面积铺设的光伏组件子系统跟踪系统。
同时,由于光伏组件一般被铺设在开阔的地带,而光伏板通常被架设在空中,因此导致大量的土地资源被闲置。现在迫切地需要对光伏发电装置所占用的闲置的土地资源进行更为有效的利用。
实用新型内容
针对以上现有技术的缺陷,本申请的目的至少在于提供一种采用双轴联动跟踪系统的暖棚上盖光伏系统,包括:
暖棚支架,所述暖棚支架的上方铺设有覆盖材料;
若干个独立的光伏跟踪组件子系统,在第一方向上前后成纵向排列,每个光伏跟踪组件子系统均包括:
固定梁杭架结构,其上正面设置有多个光伏面板安装位,其背面在第二方向上安装有两个固定端,所述第二方向与所述第一方向在水平面上正交,所述多个光伏面板安装位在第二方向上成多行的并行排列,其中所述并行排列的多个光伏面板安装位具有一个共用的第二方向转动轴;
两个固定支撑柱,所述两个固定支撑柱之间在第一方向上固定有第一方向轴,所述固定梁杭架结构被活动连接在所述第一方向轴上;
第一方向转动轴,安装在所述两个固定支撑柱之间、第一方向轴的下方;
牵引绳,缠绕在所述第一方向转动轴上,并且两端分别连接到所述固定梁杭架结构背面的所述两个固定端;
万向联轴器,设置在所述第一方向转动轴的两端,联接到前一个光伏跟踪组件子系统的第一方向转动轴以及后一个光伏跟踪组件子系统的第一方向转动轴,
其中所述若干个独立的光伏跟踪组件子系统中一个的第一方向转动轴与第一方向转动控制机构连接,并且所述若干个独立的光伏跟踪组件子系统的固定梁杭架结构上的所有第二方向转动轴均与第二方向转动轴控制杆活动连接,所述第二方向转动轴控制杆与第二方向转动控制机构连接,并且
所述暖棚支架固定在所述光伏跟踪组件子系统的所述固定支撑柱上。
在一个实施例中,所述暖棚支架可通过暖棚支架连接位固定在所述光伏跟踪组件子系统的所述固定支撑柱上。所述两个固定支撑柱中的至少一个的至少一侧可以设有斜向支柱或三角形支撑块。在另一个实施例中,所述两个固定支撑柱中的至少一个的至少一侧还设有与暖棚支架固定连接的加固杆。
此外,所述暖棚支架连接位可包括与所述固定支撑柱连接的第一部分以及与所述暖棚支架连接的第二部分。在一个实施例中,所述第一部分可以完全或部分地包覆所述固定支撑柱的对应部分的表面。所述暖棚支架可插入到所述第二部分中。所述暖棚上盖光伏系统还可以包括两端分别连接所述暖棚支架和所述固定支撑柱的辅助撑杆。
在一个实施例中,所述覆盖材料为薄膜或玻璃。在另一个实施例中,所述光伏面板采用双面光伏面板,并且所述覆盖材料的至少一部分由能够反射光线的材料制成、或者所述覆盖材料表面的至少一部分涂覆有能够反射光线的材料。
附图说明
包括附图是为提供对本申请进一步的理解,它们被收录并构成本申请的一部分,附图示出了本申请的实施例,并与本说明书一起起到解释本申请原理的作用。在结合附图并阅读了下面的对特定的非限制性本申请的实施例之后,本申请的其他特征以及优点将变得显而易见。其中:
图1示出了根据本申请的一个实施例的暖棚上盖光伏系统的整体示意图。
图2A示出了根据本申请的一个实施例的光伏子系统的固定支撑柱单侧与暖棚支架连接的示意图。
图2B示出了根据本申请的另一个实施例的光伏子系统的固定支撑柱双侧与暖棚支架连接的示意图。
图3A、3B示出了根据本申请的实施例的光伏子系统的固定支撑柱设有撑脚结构的示意图。
图4A、4B示出了根据本申请的实施例的光伏系统包括加固杆的示意图。
图5示出了根据本申请的一个实施例的双轴跟踪系统的单个组件子系统的俯视图。
图6示出了根据本申请的一个实施例的双轴跟踪系统的单个组件子系统的立体图。
图7A、7B、7C为根据本申请的一个实施例的双轴跟踪系统的单个组件子系统的不同部分的侧视图和剖面图。
图8是根据本申请的一个实施例的双轴跟踪系统的单个组件子系统的另一个侧面图。
图9A-9C是在图7A的基础上补充了控制电机和压块后的单个组件子系统100的侧面示意图。
图10示出了根据本申请的一个实施例的控制系统的示意图。
图11示出了根据本申请的一个实施例的双轴跟踪系统的多个组件子系统的示意图。
图12示出了根据本申请的另一个改进实施例的网格化安装双轴跟踪系统的示意图。
具体实施方式
参考在附图中示出和在以下描述中详述的非限制性实施例,更完整地明本申请的多个技术特征和有利细节。并且,以下描述忽略了对公知的原始材料、处理技术、组件子系统以及设备的描述,以免不必要地混淆本申请的技术要点。然而,本领域技术人员会理解到,在下文中描述本申请的实施例时,描述和特定示例仅作为说明而非限制的方式来给出。
在任何可能的情况下,在所有附图中将使用相同的标记来表示相同或相似的部分。此外,尽管本申请中所使用的术语是从公知公用的术语中选择的,但是本申请说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本申请。
由于农业暖棚一般选择在无高大建筑物或树木遮蔽之处,因此非常适合于由于安装光伏发电装置而被闲置的土地。同时,光伏发电装置还能为暖棚提供其夜间照明、控制温湿度等所需要的电力,可为一举两得。
图1示出了根据本申请的一个实施例的暖棚上盖光伏系统的整体示意图。为了最大限度地利用土地资源,本申请提出的技术方案选择使暖棚16与光伏系统10进行“无缝”连接,即使得暖棚支架12与光伏系统10的固定支撑柱11通过例如焊接或者铆接等连接方式直接固定在一起。在图1中,本申请提出的暖棚上盖光伏系统10可包括多个光伏子系统13,相邻的两个光伏子系统13之间存在一定的空间。在图1所示的实施例中,光伏板15位于暖棚16的上方,而暖棚16则占据两个相邻的光伏子系统13之间的位于光伏板15下方的空间。一方面,暖棚紧邻光伏系统可以最大限度地利用土地资源;另一方面,暖棚支架还有助于提高光伏系统抵抗侧向风压的能力。暖棚支架的上方可铺设有玻璃或薄膜等覆盖材料。
本发明的另一个实施例可以进一步提高光伏系统10的总体发电量。在该实施例中,光伏板15采用双面光伏面板,即每块光伏板15的正面和背面都设有光伏面板。同时,位于暖棚上方的覆盖材料表面的至少一部分涂覆有能够反射光线的材料,例如金属或金属氧化物;或者该覆盖材料的至少一部分由能够反射光线的材料制成。这样,照射在覆盖材料上的光线就可以被反射到位于光伏板15背面的光伏面板上,从而进一步被转换为电能。
在图1中,位于暖棚16前后两端的暖棚支架12还设有“︹”形的辅助撑杆14。该辅助撑杆14可借助于地面或光伏子系统13的固定支撑柱11对暖棚支架12起到辅助支撑的作用。本领域技术人员可以理解,即使没有这些辅助撑杆,暖棚也完全可以搭建起来。其中,暖棚支架与光伏子系统的固定支撑柱之间的连接将在下面的附图中详细说明。
图2A示出了根据本申请的一个实施例的光伏子系统的固定支撑柱单侧与暖棚支架连接的示意图。在一个实施例中,光伏子系统的固定支撑柱21上设置有暖棚支架连接位23,使得该固定支撑柱21可经由该暖棚支架连接位23与暖棚支架22实现固定连接。在图2A所示的实施例中,暖棚支架连接位23可至少包括两部分,其中第一部分24可与光伏系统的固定支撑柱21固定连接,第二部分25可与暖棚支架22固定连接。该暖棚支架连接位23的第一部分24与第二部分25可以是一体成型的,也可以通过例如焊接等方式实现固定连接。
在另一个实施例中,暖棚支架连接位23的第一部分24可以呈例如弧面,与固定支撑柱21通过例如螺钉、焊接等方式实现贴合连接。其中,该第一部分24可以完全或部分地包覆固定支撑柱21的对应部分的表面。第二部分25可以呈例如类似于中空的圆柱形,以便呈例如圆柱形的暖棚支架22可以插入到该第二部分25中(或者使第二部分25插入到暖棚支架22中也可,此时暖棚支架连接位23的第二部分25可以不是中空的)。本领域技术人员可以理解,当暖棚支架22被插入到暖棚支架连接位23的第二部分25中之后,本领域技术人员可以选择进行或者不进行暖棚支架22与暖棚支架连接位23的第二部分25之间的其他方式的进一步固定连接。当然,暖棚支架连接位23的第二部分25和暖棚支架22的横截面也可以是除圆形以外的其他形状。
另外,本领域技术人员也可以理解,上述暖棚支架连接位23的第一部分24和第二部分25也可以采用能够实现上述目的的其他形状或形式。例如,第二部分25不必采用例如圆柱形,而仅呈现例如一弧面,使其能够承托住暖棚支架22即可。当然,当第二部分采用此种形式时,本领域技术人员可以根据实际情况来决定是否采用进一步的固定方式来实现二者的固定连接。
本领域技术人员还可以理解,其中固定支撑柱21上设置的暖棚支架连接位23的具体位置可以根据固定支撑柱21和暖棚的高度、暖棚棚顶的倾斜角度以及地形地势特点等实际情况来确定。即,固定支撑柱21上设置的暖棚支架连接位23可以离地面较远,也可以离地面较近。
图2B示出了根据本申请的另一个实施例的光伏子系统的固定支撑柱双侧与暖棚支架连接的示意图。本领域普通技术人员可以理解,暖棚的位置、面积以及形状可以根据地形、光伏发电装置的具体布局等实际情况来确定。即,暖棚可以设置在光伏子系统的单侧或者双侧,那么光伏子系统的固定支撑柱上的暖棚支架连接位可以与其一侧或双侧的暖棚支架相连接。
当光伏子系统的两侧均设置有暖棚时,其固定支撑柱21可采用两个上述暖棚支架连接位23,例如其中第一部分24是部分包覆固定支撑柱对应部分表面的呈弧面的暖棚支架连接位,来与双侧的暖棚支架分别连接。
在另一个实施例中,如图2B所示,当上述呈弧面的第一部分27完全包覆固定支撑柱21的对应部分的表面时,该第一部分27可与同两侧暖棚支架22分别固定连接的两个第二部分28分别固定连接,如图所示。上述第二部分28可采用例如圆柱形,也可以采用其他形式,例如能够承托住暖棚支架22的弧面等。
本领域技术人员可以理解,上述两个第二部分28相对于第一部分27的位置可以是对称的,也可以是不对称的。当地面起伏不平时,处于不同位置的暖棚支架22相对于固定支撑柱21的高度和角度等可能会有所不同。因此,可以在暖棚支架连接位26的第一部分27上根据实际需要灵活地设置与暖棚支架22连接的第二部分28。例如,两个第二部分28在水平面上可以是齐平的,也可以是一高一低;并且,二者之间的夹角可以是180度,也可以大于或小于180度。
图3A、3B示出了根据本申请的实施例的光伏子系统的固定支撑柱31设有撑脚结构的示意图。为了进一步提高光伏系统抵抗侧向风压的能力,本申请还提出为光伏子系统的固定支撑柱31提供三角形的撑脚结构。在图3A所示的实施例中,固定支撑柱31的一侧或者两侧可设有斜向支柱34。在图3B所示的实施例中,固定支撑柱31底部的一侧或者两侧可设有三角形支撑块35。
图4A、4B示出了根据本申请的实施例的光伏系统包括加固杆的示意图。在一个实施例中,可在固定支撑柱41的至少一侧设置起到加固连接作用的加固杆44,使得该加固杆44、固定支撑柱41与暖棚支架42三者构成一个稳定的三角形,从而进一步提高光伏系统和暖棚的稳定性。本领域普通技术人员可以理解,该加固杆44既可以被设置在暖棚的外部(如图4A所示),也可以被设置在暖棚的内部(如图4B所示)。
图5示出了根据本申请的一个实施例的一种对多个光伏组件子系统机架进行跟踪控制的双轴跟踪系统的单个组件子系统100的俯视图。图5是从天顶俯瞰的俯视图,则在地面的水平面上,图示的X方向和Y方向正交。具体而言,在一个实施例中,Y方向为南北方向,而X方向为东西方向。当然,因为本申请在垂直的两个轴向方向(X方向和Y方向)上都可以转向,因此可以将Y方向设置为东西方向并将X方向设置为南北方向。图5示出的组件子系统100包括:光伏面板、光伏面板安装位、固定梁杭架结构,以及其下方接触底面的支撑结构。由于俯视的关系,支撑结构在图5中未能直接地体现。固定梁杭架结构是一个框架型的长方体扁平结构,由刚性框架条沿长方体的边搭建而成,框架中由多条刚性框架条在对角线上交叉补强。由此搭建的固定梁杭架结构具有重量轻、强度高、不易变形等优点。在三维方向上均有很优良的抗拉扯性能。刚性框架条可以使用耐腐蚀处理过的金属材料制成,例如:。固定梁杭架结构与其下的支撑结构釆用轴承结构互相连接。具体而言,在支撑结构上固定有第一方向轴L,固定梁杭架结构220(图中所示的具有交叉梁的结构)穿过第一方向轴L。在固定梁杭架结构的中心线上设置有多组轴承结构,在安装时将第一方向轴L穿过轴承结构,由此使得整个固定梁杭架结构可以绕第一方向轴L进行无摩擦的灵活转动。由此,带动了其上的全部光伏面板安装位在Y方向上的转动。固定梁杭架结构上朝向太阳入射的正面设置有多个光伏面板安装位。图5中由虚线框A所特别标出的为一个俯视的光伏面板安装位,其上可以覆有一片光伏面板。同样示例性示出的还有光伏组件子系统安装位B、C、D、E、F、G、L、I、J。多个光伏面板安装位成两两并行排列,共有5行。当然,在其他实施例中也可以成多个并行排列,例如,三三并行排列(每行三个光伏面板安装位),或四四并行排列,等等,并有多行。图5中的单个双轴跟踪组件子系统一共包括有10个光伏面板安装位,即可以最多安装有10片光伏面板。但在另一个实施例中,可以修改图5的配置方式,使其提供2、4、6、8、12、14、16、18、20个或更多的光伏面板安装位。这是根据本领域技术人员在实际安装过程中的需要,并根据实际所要安装的光伏面板的大小来决定的,本申请在此方面不做限制。
如前所述,图5中的光伏面板安装位被可动架设在固定梁杭架结构220之上(示出在图6中),而固定梁杭架结构220进一步被架设在支撑结构之上。此外,整个系统包括第一方向转动控制机构(将在下文详述),用于控制固定梁杭架结构220(包括其上的所有光伏组件子系统安装位)绕第一方向轴L的转动。图5中示出的第一方向轴L在X方向上延伸,则整个固定梁杭架结构及其上所安装的光伏面板A至J可以绕第一方向轴L在Y方向上发生转动。
同样,每个光伏面板安装位还包括有用于在第二方向控制安装位发生转动的系统。按照图示,并行排列的多个光伏面板安装位具有一根共用的第二方向转动轴。光伏面板安装位A和B包括有第二方向转动轴K1,光伏面板安装位C和D包括有第二方向转动轴K2,光伏面板安装位E和F包括有第二方向转动轴K,光伏面板安装位G和L包括有第二方向转动轴K4,光伏面板安装位I和J包括有第二方向转动轴K5。所有的第二方向转动轴K1至K5均由第二方向转动轴控制杆K所活动连接(为了便于示例,图5中的第二方向转动轴控制杆K仅仅示出连接有第二方向转动轴K1、K2、K3,但实际情况下,第二方向转动轴控制杆K将继续延伸下去一直连接到第二方向转动轴K4和K5)。第二方向转动轴控制杆K将在第二方向控制电机的驱动下作水平方向的前后移动,借由该水平方向的前后移动,通过活动连接方式带动所有的第二方向转动轴K1至K5在X方向上发生转动,进而使得其上的光伏面板安装位A至J在X方向上发生转动。
由此,图5示出的双轴跟踪系统的单个组件子系统100可以使其所承载的光伏面板A至J在X方向和Y方向这两个互相垂直的方向上均发生转动。在一个实施例中,在X方向和Y方向上的转动是可以同时进行的。由此,光伏面板A至J可以在南北向和东西向这两个方向上跟踪太阳光,使光伏面板时刻保持与太阳光光线呈最佳角度,实现太阳光的最佳吸收利用。
图6示出了根据本申请的一个实施例的双轴跟踪系统的单个组件子系统100的立体图。为了清楚起见,图6中的方向X和Y与图5中的方向X和Y相同。同时,为了不遮蔽其他的组件子系统,图6中仅仅安装了5片光伏面板。但实际情况中可以安装更多的光伏面板。图6自上而下示出了光伏面板被安置在光伏面板安装位上,多个光伏面板安装位被安装在固定梁杭架结构上,固定梁杭架结构被架设在支撑结构上。第一方向轴L在X方向上贯穿固定梁杭架结构。支撑结构的前后两个支撑柱支撑了固定梁杭架结构和第一方向轴L。支撑结构的一个支撑柱上设置有第一方向转动控制电机,用于控制固定梁杭架结构沿着第一方向轴L的转动。根据一个实施例,第一方向轴L是被固定在支撑结构的前后两个支撑柱上的。在第一方向轴L上活动地套有(例如,经由轴承结构)固定梁杭架结构220。固定梁杭架结构上进一步设置有多条Y方向上的第二方向转动轴(例如,图5中的K1-K5)。每一条第二方向转动轴上都设置有两个或两个以上光伏面板安装位。在其他实施例中,每一条第二方向转动轴上可以设置有更多的光伏面板安装位,例如,三个、四个、五个、或更多。
为了控制固定梁杭架结构在Y方向上的转动,组件子系统还包括第一方向转动轴M。该第一方向转动轴M的两端设置有万向轴连器(没有示出),通过万向轴连器进一步连接到前一个组件子系统和后一个组件子系统的第一方向转动轴M,第一方向转动轴M是可以转动的,并且其通过自身的转动来带动其上缠绕的牵引绳(可以是钢丝绳或纤维绳),由此带动固定梁杭架结构的转动。第一方向转动轴M进而连接到第一方向转动控制电机(图6中没有示出)。第一方向转动控制电机是第一方向转动控制机构的一部分。第一方向转动控制机构除此之外还包括控制电路。控制电路可以是控制用电路板。控制电机是可以根据控制器所输出的控制信号来带动第一方向转动轴M进行转动的设备,其可以釆用多种实现方式,例如,液压绞车、伺服电机、链条系统、或其他可用的传动系统。太阳运动跟踪传感器(没有在图中示出)被设置在双轴跟踪系统的各个组件子系统上。控制器基于太阳运动跟踪传感器的输出信号来输出控制信号以实时地驱动控制电机,进而调节第一方向转动轴M在Y方向上的转动角度,从而机械联动调节固定梁杭架结构在Y方向上的转动,近而使得固定梁杭架结构上的光伏面板安装位上设置的所有光伏面板在Y方向上的转动角度发生改变,以适应太阳在每一日中的运动轨迹。
为了控制固定梁杭架结构上所有光伏面板沿着X方向的转动,组件子系统还包括设置在固定梁杭架结构一侧的第二方向转动控制机构。第二方向转动控制机构通过第二方向转动控制杆K带动所有的第二方向转动轴进行转动,进而使得其上的光伏面板在X方向上发生转动。
由此,该单个组件子系统能够使得其上的所有光伏面板在Y方向和X方向上均可以转动,从而实现了双轴转动跟踪太阳。
图7A、7B、7C为每一个光伏跟踪子系统的单个组件子系统100的不同侧面的示意图。图7A是侧视图,其中示出了每个组件子系统100包括:二个固定支撑柱306、第一方向转动轴M、若干个光伏组件子系统安装位302、以及引导轨304和其他未示出的部分。光伏面板被安装在光伏组件子系统安装位302上。从此图可以看到,第一方向轴L的两端被固定在两个支撑柱306的顶端上。第一方向转动轴M的转动带动固定梁杭架结构的转动。引导轨304起到辅助转动定位的作用。
图7B示出了单个组件子系统100的支撑结构和转动控制机构的剖面图,其中省略了部分结构,这是出于说明性的目的为了使得整个描述更为清楚,而不旨在限定其具体实施的结构。可以看到,固定梁杭架结构(已被简化示出)的正面(受光面)安装有光伏面板安装位,而中轴线上设置有轴承结构,其中穿过有第一方向轴L。其背面的两侧下方分别设置有牵引绳308的固定端。牵引绳两头分别接在两侧的对应固定端上,中部转过第一方向转动轴M,形成环路的牵引绳拉动系统。同时,固定梁杭架结构的背面耦合到引导轨304,引导轨304与固定梁杭架结构的转动倾斜方向成平行关系,即朝向第二方向(即,在一个实施例中成东西向放置)。牵引绳308靠近固定梁杭架结构的部分套入引导轨304。图上示出了引导轨304的左右两侧与牵引绳308的接触部分成圆弧状,这是为了使得牵引绳308始终处于张紧状态,由此可以有效地拉动固定梁杭架结构。为了节约材料,引导轨304的下方中部不接触牵引绳的部分可以被截去,不采用圆弧状。在牵引绳308牵动固定梁杭架结构时,固定梁杭架结构的轴承结构与固定的第一方向轴L之间的摩擦轻微,提高了调节的灵活性。
根据本申请的一个实施例,在跟踪控制时,基于跟踪传感器〔没有示出)的信号,传动控制装置通过如下方式进行角度调节:控制器基于跟踪传感器的信号确定转动方向和转动角度,通过控制电机带动第一方向转动轴M进行顺时针或逆时针转动,第一方向转动轴M的时钟方向转动将绞动牵引绳308,使其沿着左或右(即,东或西方向)方向上缩短,由此牵动所连接固定梁杭架结构的一侧,带动画定梁杭架结构向两侧中的任意一侧发生倾斜,由此调节了其上所承载的光伏面板在Y方向上的倾角,使得光伏组件子系统能随着一天中太阳运行的角度变化而不断调整其受光面角度,增加转换效率,提高发电量。引导轨304确保了牵引绳308在转动过程中仍然保持张紧状态,由此,无论固定梁杭架结构的倾斜角度如何,牵引绳308均能有效带动固定梁杭架结构。
图7C是支撑结构的放大剖面图。可以看到,图7C仅示出了两个支撑结构中的一个,另一个可以完全复制本图示的结构。支撑结构包括:中央支撑柱312,其架设在水平向的底部横梁314上。底部横梁314的两端分别插入一个压块310,压块310放置在安装地面上。图7C还示出了中央支撑柱312通过三角形的两边支柱稳固地架设在底部横梁314上。在一个替换实施例中,可以省略该三角形的两边支柱。中央支撑柱312顶端固定有第一方向轴L。固定方式可以通过焊接、或通过压片结构压紧轴L,或是通过其他方式。这是本领域技术人员根据现场情况可以自由选择的。图7C的放大框1示出了中央支撑柱下方靠近底部横梁314的位置安装有转动控制机构的一部分,具体而言,其中插入有第一方向转动轴M,第一方向转动轴M上绕有牵引绳308。
图8示出了根据本申请的一个实施例的双轴跟踪系统的单个组件子系统的另一种侧面图。标号410示出了上文已经描述过的第一方向转动控制结构,用于带动第一方向转动轴M的转动。如上所述的,第一方向转动控制结构410包括第一方向控制电机。该控制电机是可以根据控制器(没有示出)所输出的控制信号来带动第一方向转动轴M进行转动的设备。控制器基于太阳运动跟踪传感器的输出信号来输出控制信号以实时地驱动控制电机,进而调节第一方向转动轴M在Y方向上的转动角度。
图8中的标号420示出了上文已经描述过的第二方向转动控制结构,用于带动第二方向转动轴控制杆K的转动。第二方向转动控制结构420包括第二方向控制电机。该控制电机是可以根据控制器(没有示出)所输出的控制信号来带动第二方向转动轴K1-K5进行转动的设备。
可以认识到,虽然图8中示出的单个组件子系统同时具有第一方向转动控制结构和第二方向转动控制结构,但第一方向转动控制结构和第二方向转动控制结构可以被分别设置在不同的组件子系统中。例如,当多个组件子系统成前后纵列排列时,排列的第一个组件子系统可以具有第一方向转动控制结构,而排列的中部一个组件子系统可以具有第二方向转动控制结构。
图9A是在图8的基础上补充了控制电机和压块后的单个组件子系统100的侧面示意图。目的之一是示出第一方向转动控制结构410和第二方向转动控制结构420在系统中的位置。可以看到,第一方向转动控制结构410设置在整个子系统的下部,而第二方向转动控制结构420则设置固定梁杭架结构的一侧。图9B示出了从图9A中以A-A方向的剖面图,以更为清楚地示出了第二方向转动控制结构420与固定梁杭架结构430。可以看到,第固定梁杭架结构430的任意一侧设置有托架结构440,第二方向转动控制结构420通过螺栓被固定在托架结构440上。
图9C示出了与图9A同一个侧面的第二方向转动控制机构的更为详细的工作原理示意图。其中省略了部分结构,这是出于说明性的目的为了使得整个描述更为清楚,而不旨在限定其具体实施的结构。图9C示出了两组同样的结构,以期更为清楚地表达本申请的工作原理。以图上左侧的一组结构为例,标号450示出了光伏面板安装位。箭头方向X与图5中的方向X相同。在所示的实施例中,光伏面板安装位450可以绕第二方向转动轴K1在方向X上进行转动。为了控制光伏面板安装位450在方向X上的转动,光伏面板安装位450的第二方向转动轴均固定连接有牵引杆460。如图所示的实施例中,牵引杆460垂直耦合于光伏面板安装位450的第二方向转动轴上。当然,牵引杆460也可以以一定角度(例如80度、60度、等等)地固定耦合于光伏面板安装位450。第二方向转动控制结构420包括有图上所示出的单个的第二方向控制电机480。第二方向控制电机480转动,带动旋转杆490发生转动,如图上a、b、c三个位置所示。而旋转杆490进一步活动连接到水平的第二方向转动轴控制杆K。本领域技术人员可以理解到,随着旋转杆490的转动,第二方向转动轴控制杆K在方向X上发生前后移动。由此,实现了由第二方向控制电机480控制的第二方向转动轴控制杆K的X方向的位移。进一步的,第二方向转动轴控制杆K通过活动连接方式(例如,通过铰链)连接于每一个牵引杆460。随着第二方向控制电机480带动第二方向转动轴控制杆K在X方向上进行前后移动,第二方向转动轴控制杆K的前后移动拉动了牵引杆460,由于第二方向转动轴控制杆K与牵引杆460是活动连接的,则牵引杆460可以发生转动,如图上的A、B位置所示。由于牵引杆460与光伏面板安装位450是固定连接的,则随着牵引杆460从A位置转动到B位置,光伏面板安装位450也随即绕第二方向转动轴K1在方向X上进行转动。在一个实施例中,单个光伏面板安装位450绕第二方向转动轴K1在方向X上的转动幅度为+/-10至30度。
进一步的,第二方向转动轴控制杆K可以延长,进而连接到图上右侧的第二组光伏面板安装位450’的牵引杆460’。并且,第二方向转动轴控制杆K可以继续延长到另一个光伏组件子系统上的复数个光伏面板安装位。由此,通过单个的第二方向控制电机480以及一个第二方向转动轴控制杆K,可以带动复数个牵引杆和光伏面板安装位在方向X上进行转动。在一个实施例中,根据架设在跟踪子系统上的光线探测器,由控制器(未在图上示出)对第二方向控制电机480发出第二方向转动控制信号,第二方向控制电机480带动第二方向转动轴控制杆K进行水平前后移动,进而带动其上多个牵引杆460和光伏面板安装位450在方向X上进行转动,实现了对太阳光的跟踪调节。
图10示出了根据本申请的一个实施例的控制系统1000的示意图。本申请的第一方向转动控制电机1010和第二方向转动控制电机1020可以被耦合至共用的控制器1030。该耦合可以是通过各种常用的通信形式来进行,例如,有线的电缆传输或无线传输。当整个光伏发电系统被铺设在广阔的面积上时,采用无线传输是更为有利的。例如,可以采用WiFi、蓝牙、2.4Ghz频段的无线传输技术等方式,由某一个物理地点上放置的控制器对所有机架上的第一/第二方向控制电机发送无线控制信号,由此减少了在广阔面积上的布线需求,
节约了成本,提高了布设效率。同样,通过第一/第二方向的传感器1040和1050,收集太阳在第一方向和第二方向上的实时位置信息。控制器基于该实时位置信息来产生并输出第一方向转动控制信号和第二方向转动控制信号,以控制所有光伏面板实时地转动。传感器可以同样采用有线或无线的方式耦合到控制器。并且,传感器可以采用多种不同的实现方式。例如,在一个实施例中,传感器可以是设置在不同物理位置上的用于接收光照的光敏传感器。或者,在另一个实施例中,可以不需要传感器,而是通过接收第三方的实时气象资料来产生第一方向转动控制信号和第二方向转动控制信号。该第三方实时气象资料可以是气象台的实时数据,或是其他第三方商业气象预测机构提供的更为准确的太阳实时位置信息。或者,以上多种方式可以被结合使用来提供更为精确的太阳实时位置信息。由此,本领域技术人员可以认识到,本申请的传感器和控制器不需要被设置在光伏系统的附近,而是可以在远程对整个广阔面积上的光伏系统进行控制,这显著降低了控制成本并提高了控制效率。
图11示出了根据本申请的一个实施例的双轴跟踪系统的多个组件子系统的示意图。图11的上半部分是多个组件子系统互联的侧视图,下半部分是多个组件子系统互联的俯视图。图11中包括有多个组件子系统100、200、300、400。但本领域技术人员可以知道,可以进一步包括有更多的组件子系统,并能按照如下描述的方式等同地进行连接和操作。组件子系统200、300、400和前文参考图5-8所描述的组件子系统100相同结构。并且,组件子系统200、300、400均包括有第一方向转动轴M,示出为M200、M300、M400。M200、M300、M400通过万向轴连器互相连接,并且M200的一端连接到组件子系统100(最右侧)的第一方向转动轴M。组件子系统100的第一方向转动轴M的另一条连接到第一方向转动控制机构(图上没有示出)。第一方向转动控制机构包括第一方向转动控制电机。太阳运动跟踪传感器(没有在图中示出)被设置在双轴跟踪系统的各个组件子系统100、200、300、400上。控制器(例如,如图10所示的控制器)基于传感器的输出信号来输出控制信号以实时地驱动控制电机,进而调节第一方向转动轴M在Y方向上的转动角度。经由万向轴连器,第一方向转动轴M的转动带动了第一方向转动轴M200、M300、M400和转动,从而机械联动调节组件子系统200、300、400上的固定梁杭架结构在Y方向上的转动,近而使得所有组件子系统的固定梁杭架结构上的所有光伏面板都在Y方向上发生角度改变。由此,通过单个控制装置和单个轴,可以实现多个组件子系统的光伏面板在Y方向上的转动角度同时发生改变。
同样,组件子系统200、300、400中的每个光伏面板安装位均包括有在Y方向上的第二方向转动轴(未示出标记〕。由第二方向转动轴控制杆K连接所有的组件子系统100、200、300、400。组件子系统100的第二方向转动轴控制杆K连接到第二方向转动控制机构。第二方向转动控制机构包括设置在组件M200和M300之间的单个的第二方向控制电机480。在控制器(例如,如图10所示的控制器)的指示下,第二方向控制电机480带动第二方向转动轴控制杆K发生水平方向上的前后移动,从个人通过活动连接方式带动组件子系统200、300、400上所有光伏面板安装位的第二方向转动轴在X方向上发生转动。由此,通过单个控制装置和单个轴,使得所有光伏面板安装位能同时在X方向上发生受控的转动。在本实施例中,由于使用四个组件子系统,则为了使水平方向上的驱动力均匀,因此在中央位置,即M200和M300之间的位置设置该单个的第二方向控制电机480。由此,第二方向控制电机480在水平方向上的左右两侧均驱动基本相同长度的第二方向转动轴控制杆K,平衡了功率输出。由于本申请不限定彼此连接的组件子系统的数量,因此可以联接尽可能多的组件子系统。根据本申请的设计,一个第二方向控制电机480可以同时带动大约二十至四十个组件子系统的所有光伏面板安装位进行转动。
通过单个的第一方向转动控制机构和第二方向转动控制机构,可以同时地分别调节所有组件子系统上的光伏面板在X和Y两个方向上的转动角度,从而无死角地精确调节光伏面板为垂直正面迎向太阳光的入射方向。由此可以最大化太阳能入射角度,提高光伏面板的光伏转换效率。在一个测试系统中,相对于单轴系统,可提高10%-15%的发电效率。同时,可以实现一套跟踪控制系统对复数个光伏组件子系统的控制跟踪,大幅度降低跟踪控制成本。
此外,固定梁杭架结构在不使用时的初始状态为处于水平面。固定梁杭架结构釆取了框架结构在三维方向上都具有优良的抗拉扯性能。由此有效提高整个光伏跟踪系统的抗风性能,提高安全性和持久耐用性。
现在参考图12,图12示出了根据本申请的另一个改进实施例的网格化双轴跟踪系统的示意图。进一步而言,图12示出了与例如图7C和图8类似的侧面。图12中示出了三组系统纵列8-1、8-2和8-3。可以认识到,这仅仅是示意性的,本申请可以不限于三组系统纵列,并且可以组成多达数十组系统纵列。每一组系统纵列均是如图11所示的串联有组件子系统200、300、400(以及更多)的纵列控制结构,实现本申请如上所示的第一方向/第二方向转动控制。改进之一在于,与图7C和图8相比,省略了中央支撑柱312架设在底部横梁314上所需要三角形两边支柱。而进而,在在彼此相邻的两两系统纵列的相对应组件子系统的中央支撑柱之间,通过纵列横梁810进行水平连接并加固,由此,使得整个网格化的组件子系统能彼此依靠地连接在一起。图12上的纵列横梁810以断开线方式示出,表示其中可以包括有一组或更多组没有示出的系统纵列。当数十组系统纵列彼此通过纵列横梁810进行连接时,即便在每一个子系统上不设置三角形两边支柱,也可以极大地提高抗风性能和安装稳定性。由此,实现了整个网格化双轴跟踪系统的整体安装稳定性,并通过省略每一个子系统上的三角形两边支柱,极大地节约了安装支架的成本。达到了成本和效果的双重收益。此外,在此网格化系统中,可以如图10所示的采用单个控制器的形式,以无线方式向整个网格化系统的所有第一方向/第二方向转动控制电机发送转动信号,以更为高效且节约的方式控制广大面积上的光伏面板,实现了集中控制。
根据本申请的以上诸个实施例所提供的采用双轴联动跟踪系统的暖棚上盖光伏系统具有如下优点:
一、通过光伏组件子系统的东西向和南北向倾角的同时调节,实现了全面、实时、无死角地跟踪太阳运行,确保了一天之中的光伏组件子系统始终处于最佳受光角度,提高了转换效率,提高了发电量;
二、通过单个控制器和转动轴即可同时控制连接在一个方向上的多组跟踪组件子系统,实现了对复数个光伏面板的在东西和南北两个方向上的角度同时调节,大幅提高控制效率,降低成本;
三、通过轴承结构和连接轴,提高了光伏组件子系统的转动灵活性;
四、通过框架结构的光伏组件安装架,提高了整个系统的强度和抗风能力。
五、提高了对光伏发电装置所占用的土地的利用率。
鉴于本公开内容,可在不进行过度实验的情况下执行本申请中公开和要求保护的所有方法。虽然已经按照优选实施例来描述了本申请的装置和方法,但本领域普通技术人员可显而易见,可对本申请中描述的方法和方法的步骤或步骤顺序应用多种变型,而不背离本申请的概念、精神和范围。此外,可对所公开的装置做出修改,且可从本申请描述的组件子系统中排除或替代多个组件子系统,并实现相同或相似的结果。对本领域普通技术人员显而易见的所有这些相似的替代和修改被视为在由所附权利要求所限定的本申请的精神、范围以及概念以内。

Claims (10)

1.一种采用双轴联动跟踪系统的暖棚上盖光伏系统,其特征在于,包括:
暖棚支架,所述暖棚支架的上方铺设有覆盖材料;
若干个独立的光伏跟踪组件子系统,在第一方向上前后成纵向排列,每个光伏跟踪组件子系统均包括:
固定梁杭架结构,其上正面设置有用于安装光伏面板的多个光伏面板安装位,其背面在第二方向上安装有两个固定端,所述第二方向与所述第一方向在水平面上正交,所述多个光伏面板安装位在第二方向上成多行的并行排列,其中所述并行排列的多个光伏面板安装位具有一个共用的第二方向转动轴;
两个固定支撑柱,所述两个固定支撑柱之间在第一方向上固定有第一方向轴,所述固定梁杭架结构被活动连接在所述第一方向轴上;
第一方向转动轴,安装在所述两个固定支撑柱之间、第一方向轴的下方;
牵引绳,缠绕在所述第一方向转动轴上,并且两端分别连接到所述固定梁杭架结构背面的所述两个固定端;
万向联轴器,设置在所述第一方向转动轴的两端,联接到前一个光伏跟踪组件子系统的第一方向转动轴以及后一个光伏跟踪组件子系统的第一方向转动轴,
其中所述若干个独立的光伏跟踪组件子系统中一个的第一方向转动轴与第一方向转动控制机构连接,并且所述若干个独立的光伏跟踪组件子系统的固定梁杭架结构上的所有第二方向转动轴均与第二方向转动轴控制杆活动连接,所述第二方向转动轴控制杆与第二方向转动控制机构连接,并且
所述暖棚支架固定在所述光伏跟踪组件子系统的所述固定支撑柱上。
2.如权利要求1所述的光伏系统,其特征在于,所述暖棚支架通过暖棚支架连接位固定在所述光伏跟踪组件子系统的所述固定支撑柱上。
3.如权利要求1所述的光伏系统,其特征在于,所述两个固定支撑柱中的至少一个的至少一侧还设有斜向支柱或三角形支撑块。
4.如权利要求1所述的光伏系统,其特征在于,所述两个固定支撑柱中的至少一个的至少一侧还设有与暖棚支架固定连接的加固杆。
5.如权利要求2所述的光伏系统,其特征在于,所述暖棚支架连接位包括与所述固定支撑柱连接的第一部分以及与所述暖棚支架连接的第二部分。
6.如权利要求5所述的光伏系统,其特征在于,所述第一部分完全或部分地包覆所述固定支撑柱的对应部分的表面。
7.如权利要求5所述的光伏系统,其特征在于,所述暖棚支架可插入到所述第二部分中。
8.如权利要求1所述的光伏系统,其特征在于,还包括两端分别连接所述暖棚支架和所述固定支撑柱的辅助撑杆。
9.如权利要求1所述的光伏系统,其特征在于,所述覆盖材料为薄膜或玻璃。
10.如权利要求1所述的光伏系统,其特征在于,所述光伏面板采用双面光伏面板,并且所述覆盖材料的至少一部分由能够反射光线的材料制成、或者所述覆盖材料表面的至少一部分涂覆有能够反射光线的材料。
CN201520219173.2U 2015-04-13 2015-04-13 采用双轴联动跟踪系统的暖棚上盖光伏系统 Expired - Fee Related CN204794843U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520219173.2U CN204794843U (zh) 2015-04-13 2015-04-13 采用双轴联动跟踪系统的暖棚上盖光伏系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520219173.2U CN204794843U (zh) 2015-04-13 2015-04-13 采用双轴联动跟踪系统的暖棚上盖光伏系统

Publications (1)

Publication Number Publication Date
CN204794843U true CN204794843U (zh) 2015-11-18

Family

ID=54534814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520219173.2U Expired - Fee Related CN204794843U (zh) 2015-04-13 2015-04-13 采用双轴联动跟踪系统的暖棚上盖光伏系统

Country Status (1)

Country Link
CN (1) CN204794843U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656422A (zh) * 2016-03-07 2016-06-08 陕西航泰电气股份有限公司 一种gzg-ht光伏自动跟踪系统
CN106067756A (zh) * 2016-07-29 2016-11-02 苏州聚晟太阳能科技股份有限公司 斜单轴跟踪支架
CN106208941A (zh) * 2016-08-24 2016-12-07 杭州华鼎太阳能科技股份有限公司 基于光伏跟踪系统的农业大棚
CN106849850A (zh) * 2017-02-28 2017-06-13 陕西航泰电气股份有限公司 一种双轴跟踪式光伏发电装置
CN106978890A (zh) * 2016-01-15 2017-07-25 五冶集团上海有限公司 彩钢瓦屋面光伏方阵安装支架的夹具定位方法
WO2019149048A1 (zh) * 2018-02-02 2019-08-08 上海施步新能源科技有限公司 一种回转系统及太阳能跟踪系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106978890A (zh) * 2016-01-15 2017-07-25 五冶集团上海有限公司 彩钢瓦屋面光伏方阵安装支架的夹具定位方法
CN106978890B (zh) * 2016-01-15 2019-06-14 五冶集团上海有限公司 彩钢瓦屋面光伏方阵安装支架的夹具定位方法
CN105656422A (zh) * 2016-03-07 2016-06-08 陕西航泰电气股份有限公司 一种gzg-ht光伏自动跟踪系统
CN106067756A (zh) * 2016-07-29 2016-11-02 苏州聚晟太阳能科技股份有限公司 斜单轴跟踪支架
CN106208941A (zh) * 2016-08-24 2016-12-07 杭州华鼎太阳能科技股份有限公司 基于光伏跟踪系统的农业大棚
CN106849850A (zh) * 2017-02-28 2017-06-13 陕西航泰电气股份有限公司 一种双轴跟踪式光伏发电装置
WO2019149048A1 (zh) * 2018-02-02 2019-08-08 上海施步新能源科技有限公司 一种回转系统及太阳能跟踪系统
CN110138323A (zh) * 2018-02-02 2019-08-16 上海施步新能源科技有限公司 一种回转系统及太阳能跟踪系统

Similar Documents

Publication Publication Date Title
CN204794843U (zh) 采用双轴联动跟踪系统的暖棚上盖光伏系统
US10326401B2 (en) Tracking control systems for photovoltaic modules
CN102156483B (zh) 基于丝杆传动的太阳跟踪装置及其控制调节方法
CN203708180U (zh) 改进型单轴光伏跟踪系统
JP2020534805A (ja) 農業施設に設置可能な太陽光発電プラント
CN106849850B (zh) 一种双轴跟踪式光伏发电装置
US20210194417A1 (en) Elevated dual-axis photovoltaic solar tracking assembly
CN104374107A (zh) 太阳能电池阵列支承方法和系统
CN205029609U (zh) 采用推杆式双轴跟踪系统的暖棚上盖光伏设备
CN105468025B (zh) 光伏双轴联动跟踪系统
CN112394749B (zh) 基于追踪控制与现场数据采集的太阳能光伏运维控制系统
CN107238221A (zh) 柔性双轴跟踪光伏或光热支架
CN106159458A (zh) 三伸缩杆驱动的环框柱型索网反射系统
KR20210070094A (ko) 2축 구동식 태양광 발전 시스템
CN113678368B (zh) 摇摆式太阳能板太阳跟踪安装系统
CN204650282U (zh) 光伏双轴联动跟踪系统和网格化的光伏双轴联动跟踪系统
CN115149893A (zh) 一种柔性光伏支架及其阵列结构和角度调节方法
CN109343575A (zh) 一种用于光伏组件双面发电的主动智能跟踪支架系统
CN105656422B (zh) 一种gzg-ht光伏自动跟踪系统
CN203350724U (zh) 新型太阳能倾角单轴跟踪系统
JP3199175U (ja) ソーラーパネルを備えた栽培ハウス
CN205407658U (zh) 一种新型光伏发电装置
CN205281267U (zh) 暖棚上盖联轴式驱动光伏设备
CN208737312U (zh) 一种用于光伏组件双面发电的主动智能跟踪支架系统
CN205028163U (zh) 采用双轴联动跟踪系统的水上光伏设备

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151118

Termination date: 20190413