CN204198705U - 风、光弃电和工业有机废水用于煤制天然气的系统 - Google Patents

风、光弃电和工业有机废水用于煤制天然气的系统 Download PDF

Info

Publication number
CN204198705U
CN204198705U CN201420648643.2U CN201420648643U CN204198705U CN 204198705 U CN204198705 U CN 204198705U CN 201420648643 U CN201420648643 U CN 201420648643U CN 204198705 U CN204198705 U CN 204198705U
Authority
CN
China
Prior art keywords
hydrogen
coal
gas
wind
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201420648643.2U
Other languages
English (en)
Inventor
闫巍
肖天存
王晓龙
郜时旺
许世森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
Original Assignee
Huaneng Clean Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute filed Critical Huaneng Clean Energy Research Institute
Priority to CN201420648643.2U priority Critical patent/CN204198705U/zh
Application granted granted Critical
Publication of CN204198705U publication Critical patent/CN204198705U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

风、光弃电和工业有机废水用于煤制天然气的系统,包括收集弃风电和弃光电的电量收集和调配装置,和电量收集和调配装置连接的水电解槽,废水收集纯化装置通过电解溶液调配装置连接水电解槽,水电解槽阳极连接氧气储罐,阴极连接氢气储罐,氧气储罐出口依次连接煤气化装置、低温甲醇洗装置和气体混合器,气体混合器入口和氢气储罐出口连接,在低温甲醇洗装置与气体混合器间依次连接有二氧化碳解析收集装置和二氧化碳还原装置,二氧化碳还原装置入口还与氢气储罐出口连接,气体混合器的出口连接甲烷化反应装置;本实用新型优化升级新型煤制天然气工艺,通过新旧能源产业的结合互补,提高煤化工的产率,降低二氧化碳的排放和生产工艺中的能耗。

Description

风、光弃电和工业有机废水用于煤制天然气的系统
技术领域
本实用新型涉及一种可再生能源收集和利用的方法,具体涉及一种风、光弃电和工业有机废水用于煤制天然气的系统。
背景技术
我国经济近年来一直保持着稳定快速的增长势头,工业、农业、第三产业服务业和高新技术产业发展迅速,人民生活水平不断提高;同时,对传统能源的需求和使用也大幅提高。目前,我国已经是全球第二大石油消费国,对于石油进口的依赖程度也是逐年增加。我国也是煤炭生产与消费的主要贡献者,总量均接近全球的1/2,这也是造成国内环境问题,特别是雾霾天气频出的主要原因之一。我国已经逐步开始调整能源结构,近年来积极推进可再生能源的发展,努力提高可再生能源在我国能源消费结构中的比重,希望可以缓解我国能源需求增长过快的压力和改善生态环境。在近十年里,风能发电和光伏发电在新能源领域中发展迅速。截至2013年底,我国风电装机容量已经达到约9174万千瓦,光电装机也已经达到1479万千瓦,均居世界第一位。但是,也出现了风能、光能等新能源建设产能过剩的问题,导致发电难以送出,出现了较为严重的弃风、弃光问题。国家能源局的一项统计显示,2013年,我国风电平均弃风率为10%,而从重点区域来看,弃风率在25%以上,如内蒙古和东北的不少地方,弃风率在35%—40%。因此,如何充分有效利用我们的新能源,特别是如何消纳那些弃风弃光是一个急需解决的重要课题。
我国煤化工产业大,品种多,生产规模较大,煤气化过程需要的氧气和后续的调节碳氢比的需要的氢气量很大,导致排放的二氧化碳量大。而且煤化工的空分和自备电厂是污染排放的主要来源、目前国内传统的碳一化工产品市场已进入饱和期且传统煤化工带来的环境污染问题日益严重,很多地方环境容量饱和,后续发展乏力,这种情况需要急切改变。现代新型煤化工是一种相对清洁、绿色和环保的新兴产业,它是以石油替代为目标,希望可以改变我国能源储备“多煤、少气、少油”的现状以及缓解传统煤化工对环境造成的污染。虽然现代新型煤化工总体上有利于提高煤的利用效率,但在生产过程中,相比于传统煤化工,现代煤化工的环境污染更多的是从一个技术环节转移到另一个技术环节,二氧化碳等温室气体、废渣和废水的排放问题并未得到根本解决。废水的有效处理和温室气体的大量排放已经成了制约现代煤化工进一步发展的重要屏障。发展绿色环保且高效的煤化工工艺,已经成了目前的当务之急。
现代新型煤制天然气是现代煤化工产业中重要的组成部分,典型的现代煤制气工艺流程包括煤气化、变换反应(耐硫宽温变换)、低温甲醇洗、甲烷化等工序,如图1所示。煤气化工艺中,制造粗煤气的主要反应物是煤、蒸汽和氧气。煤气化反应中需要的氧气主要是通过空分装置提供,但是空分装置的设备投资和运行成本都很大,这大大增加了煤制天然气工艺的成本。除此之外,煤气化过程中污染物排放,尤其是二氧化碳的大量产生会引发各种环境问题,回收利用二氧化碳意义重大。变换反应(耐硫宽温变换)是用来调节粗煤气中的氢碳比的。通常情况下煤气化制得的粗煤气中氢碳比太低,根据化学反应方程式(1)可知,氢气与一氧化碳合成甲烷的化学当量比为3。因此,在煤气化工序后必须要引入变换反应来增加氢气的物质的量,达到调节氢碳比的目的。然而,用这种方式来调节氢碳比存在着明显的缺点:(1)根据化学反应方程式(2),变换反应(耐硫宽温变换)必然要消耗大量的水,并且产生大量的温室气体二氧化碳;(2)为了生成更多的氢气,需要消耗更多的一氧化碳,这降低了碳的有效转化率,影响了最终的甲烷产率;(3)变换反应需要在至少5MPa的压强和300℃~600℃高温高压条件下才能很好的进行,能耗大且不易控制。对于现代新型煤制气工艺,煤气化和变换反应是两个主要的工序,煤制油、煤制甲醇等工艺也存在着类似的问题。
开发一种绿色的技术给现代新型煤制天然气工艺提供必需的氧气和氢气,将完全有可能避免使用高能耗的空分装置和变换反应装置。水电解制氢氧技术已经是工业上非常成熟的技术,能够提供氧气和氢气,但是由于其能耗过高,因此在工业界始终没有大规模的应用。
发明内容
为了克服上述现有技术存在的问题,本实用新型的目的在于提供一种风、光弃电和工业有机废水用于煤制天然气的系统,优化升级新型煤制天然气工艺,通过新旧能源产业的结合互补,提高煤化工的产率,降低二氧化碳的排放和生产工艺中的能耗,实现煤制天然气工艺的节能环保和高效益。
为达到以上目的,本实用新型采用如下技术方案:
风、光弃电和工业有机废水用于煤制天然气的系统,包括收集弃风电1和弃光电2的电量收集和调配装置3,和电量收集和调配装置3连接的水电解槽4,废水收集纯化装置5通过电解溶液调配装置6连接水电解槽4,水电解槽4的阳极连接氧气储罐7,阴极连接氢气储罐8,氧气储罐7的出口依次连接煤气化装置9、低温甲醇洗装置11和气体混合器13,气体混合器13的入口和氢气储罐8的出口连接,在低温甲醇洗装置11与气体混合器13间依次连接有二氧化碳解析收集装置12和二氧化碳还原装置10,二氧化碳还原装置10的入口还与氢气储罐8的出口连接,气体混合器13的出口连接甲烷化反应装置14。
所述水电解槽4和电解溶液调配装置6间设置有降解后的电解液回收装置。
上述所述系统将风、光弃电和工业有机废水用于煤制天然气的方法,包括如下步骤:
步骤1:将弃风电1和弃光电2通过电量收集和调配装置3收集起来作为水电解槽4的工作电源;
步骤2:将工业有机废水通过废水收集纯化装置5进行废水预处理后,通入电解溶液调配装置6中,加入氢氧化钾,配比成氢氧化钾质量浓度为20%-30%的碱性溶液作为通入水电解槽4的电解水溶液;
步骤3:通过电量收集和调配装置3向水电解槽4施加不高于10V的直流电压,水电解槽5阳极生成的氧气和阴极生成的氢气分别通入氧气储罐7和氢气储罐8;在氧气储罐7和氢气储罐8出口处安装有压缩机、换热器和流量调节阀;根据煤气化工序的要求调解氧气出口的温度、压力和流量,根据二氧化碳还原反应的要求调解氢气出口的温度、压力和流量;
步骤4:将从氧气储罐7出来的氧气和水蒸气混合作为气化剂通入煤气化装置9,气化剂在煤气化装置9内与煤接触反应生成了富含一氧化碳、氢气和二氧化碳的粗煤气;煤的性质决定了煤气化装置9的种类,决定了煤与气化剂结合反应的方式以及粗煤气中各种组分气体的质量百分比;
步骤5:将生成的粗煤气通过压缩机压缩、换热器冷却后,通入低温甲醇洗装置11进行脱二氧化碳和脱硫处理;
步骤6:将低温甲醇洗装置11中的吸收剂在二氧化碳解析收集装置12中经过升温减压的方式将粗煤气里被吸收的二氧化碳解析并收集起来,此时的气体为精煤气;
步骤7:然后将二氧化碳解析收集装置12收集起来的二氧化碳通入到二氧化碳还原装置10中与氢气储罐8中的氢气发生二氧化碳还原反应得到目标产物一氧化碳,并将一氧化碳通入气体混合器13与脱硫后的精煤气混合形成混合精煤气;
步骤8:使用在线检测设备检测混合精煤气氢碳比,根据合成天然气所需要的最优氢碳比,控制调节氢气储罐8中的氢气流量,氢气与步骤7形成的混合精煤气在气体混合器13中混合后,通入合成塔后通过甲烷化反应装置14合成目标产物天然气。
在多风季节采用“弃风电”供电为主,弃光电作为补充;在弱风或无风季节采用“弃光电”为主,弃风电作为补充。
从所述氧气储罐7中流入煤气化装置9中的氧气需要通过氧气压缩机加压到至少10MPa以上,同时通过换热器升温到90℃以上。
从所述氢气储罐8中流入二氧化碳还原装置10中的氢气需要通过换热器换热升温到200℃~600℃之间,且氢气的压力不超过5MPa。
步骤5所述的将生成的粗煤气通过压缩机压缩、换热器冷却是指将粗煤气通过压缩机压缩到5MPa以上、换热器冷却至-30℃~-70℃之间后通入低温甲醇洗装置11进行脱二氧化碳和脱硫处理。
步骤6所述的在二氧化碳解析收集装置12中将粗煤气里被吸收的二氧化碳进行升温减压是指将参与反应的二氧化碳在进入二氧化碳还原装置10之前必须加热到200℃~600℃以上,且压强低于5MPa。
步骤8所述的氢气与步骤7形成的混合精煤气在气体混合器13中混合后预热到250℃以上。
本实用新型实质上将非并网的弃风弃光和工业有机废水利用在现代煤制气工艺上,事实上这个方法也适用于煤制乙二醇、煤制甲醇、煤制油等多个煤化工工艺。采用这种方法具有以下突出的优点:
1)利用弃风弃光电解氧化工业有机废水中的有机物,相对于其他处理有机废水的方法,这种方式易操作可控,降解处理有机物速度快而且还能为煤化工提供必要的原料气体(氢气和氧气)。
2)风、光弃电协同供电,既提高了风能和光能的利用率,又保证了作为水电解工作电源的稳定性和可靠性。同时这种利用风、光弃电的模式将有效拓宽风能和光伏发电等新能源的应用领域,为大力发展新能源发电提供了新的可能性。
3)因为回收还原煤气化工序产生的二氧化碳且不需要通过一氧化碳水蒸气变换反应来调节氢碳比,所以理论上由煤气化产生的一氧化碳和二氧化碳都可以参与最终的甲烷化反应。因此,根据反应方程式和实际反应效率来计算,天然气的产率将提高一倍以上,二氧化碳的排放将降低至少90%。
4)因为不需要空分或者有效减少空分装置供给煤气化反应需要的氧气,这样就节省了空分装置的设备投资和运行成本,降低了生产能耗。
5)因为不需要发生变换反应,避免使用需要提供高温高压环境的变换反应装置。
附图说明
图1为典型的现代煤制天然气工艺流程图。
图2为本实用新型系统及方法流程图。
具体实施方式
下面结合附图和具体实施方式对本实用新型作进一步详细说明。
如图2所示,将弃风电1和弃光电2通过电量收集和调配装置3收集起来作为水电解槽4的工作电源。将工业有机废水通入废水收集纯化装置5进行废水预处理,然后通入电解溶液调配装置6中,通过加入一定量的氢氧化钾,将其配比成氢氧化钾质量浓度为20%-30%的碱性废水有机溶液,作为通入水电解槽4的电解水溶液。通过电量收集和调配装置3给电解槽4施加不高于10V的直流电压,在水电解槽4的阳极会产生氧气并将其通入到氧气储罐7中,在水电解槽4阴极会产生氢气并将其通入到氢气储罐8中。为了满足煤气化工序的需要,从氧气储罐7里流入到煤气化装置9中的氧气需要通过氧气压缩机加压到至少10MPa以上,同时通过换热器升温到90℃以上。为了满足二氧化碳还原反应的要求,从氢气储罐8中流入到二氧化碳还原反应装置10的氢气需要换热升温到200℃~600℃之间,但是氢气的压力要严格控制不超过5MPa。经过煤气化反应后得到的粗煤气通过压缩机压缩到5MPa以上、换热器冷却至-30℃~-70℃之间后流入到低温甲醇洗装置11中脱硫和脱二氧化碳。将低温甲醇洗装置11中饱和的吸收剂在二氧化碳解析收集装置12里经过升温减压的方式将粗煤气里被吸收的二氧化碳解析并收集起来。然后将收集起来的二氧化碳通入到二氧化碳还原装置10中与氢气储罐8中的氢气发生二氧化碳还原反应得到目标产物一氧化碳。为了严格的控制还原反应产物一氧化碳,参与反应的二氧化碳在进入二氧化碳还原装置10之前必须加热到200℃~600℃以上,压强不得高于5MPa。还原制得的一氧化碳将直接被通入到气体混合器13中与脱硫脱二氧化碳后的精煤气以及氢气储罐8中的氢气混合并且预热到250℃以上。在气体混合器13里,需要通过控制氢气储罐8中氢气的流量来调节气体混合器13中的氢碳比为甲烷化反应的最佳氢碳比。最后,将带有最佳氢碳比的混合精煤气通入到甲烷化反应装置14中合成目标产物天然气(甲烷)。
本实用新型系统用于煤制天然气的方法是将风、光弃电先收集起来作为工作电源,然后利用电解技术降解工业有机废水中难处理的有机分子,并同时获得大量的电解副产物氢气和氧气,并将其作为重要的原料供于现代煤制气工艺中,这将大大降低煤制气工艺中的能耗,解决水电解制氢氧成本高的问题。水电解制氢氧技术可以很好的融合风电的不稳定性和波动性,拓展了风能的利用领域,突破了风能发电必须要并网的局限性,减少风力发电过程中为了风电并网所需要的大量辅助设备,降低了风电的投资成本和运行成本。不仅如此,此方法所用的电解水可以是江河水,也可以是有机工业废水,在电解得到氢气和氧气的同时,还可以进行工业有机废水的处理(图2)。此外,通过利用二氧化碳捕集技术,将粗煤气中的二氧化碳收集还原成一氧化碳(参考反应方程式(3)),再次用于合成甲烷(天然气),这样不仅可以避免温室气体的大量排放,还可以提高天然气的产率。

Claims (2)

1.风、光弃电和工业有机废水用于煤制天然气的系统,其特征在于:包括收集弃风电(1)和弃光电(2)的电量收集和调配装置(3),和电量收集和调配装置(3)连接的水电解槽(4),废水收集纯化装置(5)通过电解溶液调配装置(6)连接水电解槽(4),水电解槽(4)的阳极连接氧气储罐(7),阴极连接氢气储罐(8),氧气储罐(7)的出口依次连接煤气化装置(9)、低温甲醇洗装置(11)和气体混合器(13),气体混合器(13)的入口和氢气储罐(8)的出口连接,在低温甲醇洗装置(11)与气体混合器(13)间依次连接有二氧化碳解析收集装置(12)和二氧化碳还原装置(10),二氧化碳还原装置(10)的入口还与氢气储罐(8)的出口连接,气体混合器(13)的出口连接甲烷化反应装置(14)。
2.根据权利要求1所述的风、光弃电和工业有机废水用于煤制天然气的系统,其特征在于:所述水电解槽(4)和电解溶液调配装置(6)间设置有降解后的电解液回收装置。
CN201420648643.2U 2014-11-03 2014-11-03 风、光弃电和工业有机废水用于煤制天然气的系统 Active CN204198705U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420648643.2U CN204198705U (zh) 2014-11-03 2014-11-03 风、光弃电和工业有机废水用于煤制天然气的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420648643.2U CN204198705U (zh) 2014-11-03 2014-11-03 风、光弃电和工业有机废水用于煤制天然气的系统

Publications (1)

Publication Number Publication Date
CN204198705U true CN204198705U (zh) 2015-03-11

Family

ID=52656686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420648643.2U Active CN204198705U (zh) 2014-11-03 2014-11-03 风、光弃电和工业有机废水用于煤制天然气的系统

Country Status (1)

Country Link
CN (1) CN204198705U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104371780A (zh) * 2014-11-03 2015-02-25 中国华能集团清洁能源技术研究院有限公司 风、光弃电和工业有机废水用于煤制天然气的系统及方法
CN113014037A (zh) * 2021-03-01 2021-06-22 西安交通大学 一种含飞轮和无极传动的电转气装置及其运行方法
CN116576592A (zh) * 2022-09-20 2023-08-11 东莞理工学院 一种太阳能和甲烷互补驱动的零排放多联产系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104371780A (zh) * 2014-11-03 2015-02-25 中国华能集团清洁能源技术研究院有限公司 风、光弃电和工业有机废水用于煤制天然气的系统及方法
CN104371780B (zh) * 2014-11-03 2016-06-08 中国华能集团清洁能源技术研究院有限公司 风、光弃电和工业有机废水用于煤制天然气的系统及方法
CN113014037A (zh) * 2021-03-01 2021-06-22 西安交通大学 一种含飞轮和无极传动的电转气装置及其运行方法
CN113014037B (zh) * 2021-03-01 2022-03-22 西安交通大学 一种含飞轮和无极传动的电转气装置及其运行方法
CN116576592A (zh) * 2022-09-20 2023-08-11 东莞理工学院 一种太阳能和甲烷互补驱动的零排放多联产系统
CN116576592B (zh) * 2022-09-20 2023-09-29 东莞理工学院 一种太阳能和甲烷互补驱动的零排放多联产系统

Similar Documents

Publication Publication Date Title
CN104371780B (zh) 风、光弃电和工业有机废水用于煤制天然气的系统及方法
CN106977369B (zh) 一种综合利用电能联合制甲醇及氨的装置及方法
CN102660340B (zh) 利用过剩电能将烟气中的二氧化碳转化成天然气的工艺及设备
CN101440019B (zh) 大规模非并网风电直接应用于生产甲醇的方法
CN101245262B (zh) 基于煤气化与甲烷化的燃气-蒸汽联合循环系统及工艺
DE102012105658B4 (de) Energieversorgungseinheit
CN103756741B (zh) 一种利用可再生电力的固体氧化物电解池制天然气的方法
CN101760248B (zh) 一种煤基能源化工产品多联产系统及方法
CN111547678B (zh) 沼气全组分热催化制备甲醇的方法及系统
CN104974780B (zh) 氯碱法与费托合成综合利用调节工艺及其设备
CN104725179A (zh) 一种基于非并网风电的二氧化碳循环利用的方法
CN204198705U (zh) 风、光弃电和工业有机废水用于煤制天然气的系统
CN112725034A (zh) 一种耦合生物质气化的可再生能源电转气系统
CN101760249B (zh) 一种地下气化煤基能源化工产品多联产系统及方法
CN208182929U (zh) 一种将气化和电解耦合生产合成气的系统
Sharma et al. A comprehensive study on production of methanol from wind energy
CN204342750U (zh) 一种电解制氢与煤制合成气制天然气的结构
CN210237792U (zh) 一种以水和二氧化碳为原料的能源路由器
CN104531246A (zh) 一种电解制氢与煤制合成气制天然气的系统
CN110094634B (zh) 一种负碳排放生物质产沼气的系统及方法
CN202538625U (zh) 利用过剩电能将烟气中的二氧化碳转化成天然气的设备
CN115924843A (zh) 一种海上移动新型低品质海水循环制氢系统及其工作方法
CN114000979B (zh) 一种电水氢甲醇多联产能源岛及方法
CN205856262U (zh) 工业废水处理工艺中的沼气发电装置
Bolt et al. Investigation of a renewable energy based integrated system with carbon capturing for hydrogen, methane and other useful outputs

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant