CN203811624U - 检测微电子机械系统加速度传感器芯片的特性的系统 - Google Patents

检测微电子机械系统加速度传感器芯片的特性的系统 Download PDF

Info

Publication number
CN203811624U
CN203811624U CN201420141705.0U CN201420141705U CN203811624U CN 203811624 U CN203811624 U CN 203811624U CN 201420141705 U CN201420141705 U CN 201420141705U CN 203811624 U CN203811624 U CN 203811624U
Authority
CN
China
Prior art keywords
acceleration sensor
sensor chip
mems acceleration
switch
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201420141705.0U
Other languages
English (en)
Inventor
董旸
冯方方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geology and Geophysics of CAS
Original Assignee
Institute of Geology and Geophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geology and Geophysics of CAS filed Critical Institute of Geology and Geophysics of CAS
Priority to CN201420141705.0U priority Critical patent/CN203811624U/zh
Application granted granted Critical
Publication of CN203811624U publication Critical patent/CN203811624U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

本实用新型实施例公开了一种检测MEMS加速度传感器芯片的特性的系统。包括:信号采集装置和特性检测与控制装置;信号采集装置包括振动台、振动传感器、被检测的MEMS加速度传感器芯片和检测电路;特性检测与控制装置根据被检测的MEMS加速度传感器芯片在不同振动频率下的输入信号和输出信号,拟合开环频率特性,并与理想状态下的开环频率特性进行比较,确定其结构是否存在问题。根据所述被检测的MEMS加速度传感器芯片的开环频率特性测试数据计算得到开环传递函数的极点和零点值。根据本实用新型实施例,可以确定被检测的MEMS加速度传感器芯片的开环传递函数,根据此特性可判定其是否满足误差允许范围,并可指导设计MEMS加速度传感器的闭环控制系统。

Description

检测微电子机械系统加速度传感器芯片的特性的系统
技术领域
本实用新型涉及传感器检测领域,特别是涉及检测微电子机械系统加速度传感器芯片的特性的系统。
背景技术
微电子机械系统(MEMS,Micro Electro Mechanical System)加速度传感器芯片是一种通过微加工工艺在硅片上加工成形的惯性测量元件。MEMS加速度传感器芯片可以分为以下几类:压阻式、压电式、谐振式、热电偶式和电容式。
通常,在设计完成一个MEMS加速度传感器芯片后,还需要进一步对该MEMS加速度传感器芯片的特性进行检测,以确定该MEMS加速度传感器芯片是否符合设计要求。一般情况下,是通过对该MEMS加速度传感器芯片的谐振频率、阻尼比和品质因数进行检测,来确定该MEMS加速度传感器芯片是否符合设计要求。如果该MEMS加速度传感器芯片的谐振频率检测值、阻尼比检测值和品质因数检测值与相应的谐振频率理论设计值、阻尼比理论设计值和品质因数理论设计值之间的差值在合理的误差范围内,即确定该MEMS加速度传感器芯片符合设计要求。否则,即可确定该MEMS加速度传感器芯片不符合设计要求。
但是,在实现本实用新型的过程中,本实用新型的发明人发现其它检测方法中至少存在如下问题:对该MEMS加速度传感器芯片的谐振频率、阻尼比和品质因数的检测是建立在假定该MEMS加速度传感器芯片的结构不存在任何问题(即,该MEMS加速度传感器芯片为只有两个极点的欠阻尼二阶线性系统)的前提下,而当该MEMS加速度传感器芯片的结构存在问题时,例如,结构不理想或者不正确,而通过对该MEMS加速度传感器芯片的谐振频率、阻尼比和品质因数进行检测并不会发现结构上的问题,从而导致对MEMS加速度传感器芯片特性的检测不全面,影响了特性检测的准确性。
实用新型内容
为了解决上述技术问题,本实用新型实施例提供了检测微电子机械系统加速度传感器芯片的特性的系统,以确定微电子机械系统加速度传感器芯片的结构是否出现问题,根据所述MEMS加速度传感器芯片的开环频率特性测试数据,计算得到所述MEMS加速度传感器芯片的开环传递函数的极点和零点值,确定MEMS加速度传感器芯片的开环传递函数,判定MEMS加速度传感器芯片是否满足误差允许范围,并可指导优化MEMS加速度传感器的闭环控制系统。
本实用新型实施例公开了如下技术方案:
一种检测微电子机械系统加速度传感器芯片的特性的系统,包括:信号采集装置和特性检测与控制装置;其中,所述信号采集装置包括振动台、振动传感器、被检测的MEMS加速度传感器芯片和检测电路,所述振动台分别与所述振动传感器和所述被检测的MEMS加速度传感器芯片刚性连接;
所述振动台,用于在不同频率的激励信号的作用下,产生不同频率的振动;
所述振动传感器,用于采集所述振动台的振动变化量,将所述振动变化量转换为电压信号,并将所述电压信号作为输入信号输出给所述特性检测与控制装置;
所述被检测的MEMS加速度传感器芯片,用于测量所述振动台的振动加速度,并将所述振动加速度转换为电容变化量;
所述检测电路,用于将所述电容变化量转换为电压信号,并将所述电压信号作为输出信号输出给所述特性检测与控制装置;
所述特性检测与控制装置,用于根据被检测的MEMS加速度传感器芯片在不同振动频率下的输入信号和输出信号,拟合所述被检测的MEMS加速度传感器芯片的开环频率特性,将所述被检测的MEMS加速度传感器芯片的开环频率特性与理想状态下的MEMS加速度传感器芯片的开环频率特性进行比较,确定所述被检测的MEMS加速度传感器芯片的结构是否存在问题。
优选的,所述信号采集装置还包括第一开关、第二开关、第三开关和第四开关,其中,
所述第一开关的一端接所述被检测的MEMS加速度传感器芯片的上固定电极,另一端接正向驱动电压;
所述第二开关的一端接所述被检测的MEMS加速度传感器芯片的上固定电极,另一端接地;
所述第三开关的一端接所述被检测的MEMS加速度传感器芯片的下固定电极,另一端接负向驱动电压;
所述第四开关的一端接所述被检测的MEMS加速度传感器芯片的下固定电极,另一端接地;
所述第一开关和第三开关的开关状态由第一时钟信号驱动;
所述第二开关和第四开关的开关状态由第二时钟信号驱动;
所述第一时钟信号和第二时钟信号互补。
优选的,所述第一时钟信号的工作占空比为1/16。
优选的,所述特性检测与控制装置,还用于根据所述被检测的MEMS加速度传感器芯片的开环频率特性,得到所述被检测的MEMS加速度传感器芯片的开环传递函数的所有极点和零点值,如果根据所述被检测的MEMS加速度传感器芯片的开环频率特性确定所述被检测的MEMS加速度传感器芯片的结构不存在问题,从所有极点和零点值中筛选出两个主导极点值,并根据所述两个主导极点值确定被检测的MEMS加速度传感器芯片的近似开环传递函数,根据所述被检测的MEMS加速度传感器芯片的近似开环传递函数,计算得到所述被检测的MEMS加速度传感器芯片的谐振频率、阻尼比和品质因数。
优选的,所述特性检测与控制装置,还用于针对筛选后剩余的极点和零点值,根据剩余的极点和零点值判断所述被检测的MEMS加速度传感器芯片是否满足误差允许范围,并根据所述剩余的极点和零点值指导优化所述被检测的MEMS加速度传感器的闭环控制系统。
因此,与现有技术相比,本实用新型的优点在于:
通过分析被检测的MEMS加速度传感器芯片的开环频率特性,可以确定被检测的MEMS加速度传感器芯片的结构是否存在问题。根据所述被检测的MEMS加速度传感器芯片的开环频率特性测试数据,进而计算得到所述被检测的MEMS加速度传感器芯片的开环传递函数的所有极点和零点值。如果被检测的MEMS加速度传感器芯片的结构不存在问题,就可以进一步根据被检测的MEMS加速度传感器芯片的所有极点和零点值中的主导极点值(两个)计算得到被检测的MEMS加速度传感器芯片的谐振频率、阻尼比和品质因数。
对于除主导极点值外的剩余的极点和零点值,如果其满足误差允许范围,也可以用于指导优化被检测的MEMS加速度传感器的闭环控制系统。
另外,当施加在所述被检测的MEMS加速度传感器芯片的上下两个固定电极的驱动电压为时钟信号时,减小甚至避免电弹簧效应对谐振频率的检测精度的影响,提高了谐振频率的测量精度。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中其它检测系统的技术方案,下面将对实施例或现有技术的其它检测系统描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种典型的MEMS加速度传感器芯片的力学模型示意图;
图2为理想情况下的MEMS加速度传感器芯片的开环频率特性曲线图;
图3为一种不理想情况下的MEMS加速度传感器芯片的开环频率特性曲线图;
图4为另一种不理想情况下的MEMS加速度传感器芯片的开环频率特性曲线图;
图5为本实用新型实施例一提供的一种检测MEMS加速度传感器芯片的特性的系统的结构图;
图6为信号采集装置中的一种检测电路的电路原理图;
图7为一种典型的电容式MEMS加速度传感器芯片的结构示意图;
图8为现有技术中检测MEMS加速度传感器芯片的品质因数和谐振频率的检测电路示意图;
图9为信号采集装置中的另一种检测电路的电路原理图;
图10为信号采集装置中的检测电路的时序图。
具体实施方式
请参阅图1所示,其为一种典型的MEMS加速度传感器芯片的力学模型示意图。其中,在惯性力的作用下,质量块200的位移是以加速度为激励的二阶线性系统响应,即:
d 2 x dt + b m dx dt + k m x = a
其中,x是质量块200的位移,a是质量块200的加速度,m是质量块200的质量,k是弹簧300的弹性系数,b是系统阻尼400的系数。
进一步可以得到上述二阶线性系统的开环传递函数,为:
H ( s ) = X ( s ) A ( s ) = 1 s 2 + b m s + k m = 1 s 2 + 2 ξ ω n s + ω n 2
幅/相频特性为:
H ( jω ) = 1 / ω n 2 1 + 2 ξj ω ω n - ω 2 ω n 2 = 1 / ω n 4 ( 1 - ω 2 ω n 2 ) 2 + ( 2 ξ ω ω n ) 2 e - j arctan ( 2 ξ ω ω n 1 - ω 2 ω n 2 )
对数幅频特性为:
L ( ω ) = 20 lgA ( ω ) = 20 lg ( 1 / ω n 4 ) - 20 lg ( 1 - ω 2 ω n 2 ) 2 + ( 2 ξ ω ω n ) 2
对数相频特性为:
φ ( ω ) = - arctan ( 2 ξ ω ω n 1 - ω 2 ω n 2 )
其中,ξ为阻尼比,ωn为无阻尼谐振频率,ω为振动频率。
关于对数幅频特性:
当在低频段,即 &omega; &omega; n < < 1 时, L 1 ( &omega; ) &ap; 20 lg ( 1 / &omega; n 4 ) .
当在高频段,即时,并且,MEMS加速度传感器芯片为欠阻尼系统时, L 2 ( &omega; ) = 20 lg ( 1 / &omega; n 4 ) - 20 lg &omega; 2 &omega; n 2 ( &omega; 2 &omega; n 2 + 4 &xi; 2 ) = 20 lg ( 1 / &omega; n 4 ) - 40 lg ( &omega; &omega; n ) .
如果频率变化10倍, L 2 ( 10 &omega; ) - L 2 ( &omega; ) = - 40 lg 10 ( &omega; &omega; n ) + 40 lg ( &omega; &omega; n ) = - 40 dB .
因此,如果是理想情况下的MEMS加速度传感器芯片(即,MEMS加速度传感器芯片的结构不存在问题),在低频段,幅频响应应该为一条的直线,而在高频段,幅频响应应该为一条斜率为-40dB/十倍频的直线。
关于对数相频特性:
ω=0,φ=00
&omega; = 1 T , &phi; = - 90 0
ω=∞,φ=-1800
请参见图2,其为理想情况下的MEMS加速度传感器芯片的开环频率特性曲线图。
本实用新型的发明人发现,在非理想情况下,即,MEMS加速度传感器芯片的结构存在问题时,其开环频率特性曲线图会与图2存在差异,例如,如图3所示,其为一种不理想情况下的MEMS加速度传感器芯片的开环频率特性曲线图,由于主导极点值的附近存在零点值,据此可以判定此MEMS加速度传感器芯片不满足误差允许范围,不符合设计要求。如图4所示,其也为一种不理想情况下的MEMS加速度传感器芯片的开环频率特性曲线图,但由于多余的极点和零点远离系统的主导极点,据此可以判定此MEMS加速度传感器芯片满足误差允许范围,因此,多余的极点和零点值可以用于指导优化MEMS加速度传感器的闭环控制系统,从而使闭环MEMS加速度传感器符合系统设计要求。
有鉴于此,本实用新型实施例提供了检测微电子机械系统加速度传感器芯片的特性的系统。本实用新型实施例的技术核心在于,检测MEMS(微电子机械系统)加速度传感器芯片的开环频率特性,即,幅频特性和相频特性,通过分析幅频特性和相频特性,确定MEMS加速度传感器芯片的结构是否存在问题。
请参阅图5,其为本实用新型实施例一提供的一种检测MEMS加速度传感器芯片的特性的系统的结构图,该系统包括:信号采集装置510和特性检测与控制装置520。下面结合该装置的工作原理进一步介绍其内部结构以及连接关系。
信号采集装置510包括振动台5101、振动传感器5102、被检测的MEMS加速度传感器芯片5103和检测电路5104,振动台5101分别与振动传感器5102和被检测的MEMS加速度传感器芯片5103刚性连接;
振动台5101,用于在不同频率的激励信号的作用下,产生不同频率的振动;
振动传感器5102,用于采集所述振动台的振动变化量,将所述振动变化量转换为电压信号,并将所述电压信号作为输入信号输出给所述特性检测与控制装置;
被检测的MEMS加速度传感器芯片5103,用于测量所述振动台的振动加速度,并将所述振动加速度转换为电容变化量;
检测电路5104,用于将所述电容变化量转换为电压信号,并将所述电压信号作为输出信号输出给所述特性检测装置;
特性检测与控制装置520,用于根据被检测的MEMS加速度传感器芯片在不同振动频率下的输入信号和输出信号,拟合所述被检测的MEMS加速度传感器芯片的开环频率特性,将所述被检测的MEMS加速度传感器芯片的开环频率特性与理想状态下的被检测的MEMS加速度传感器芯片的开环频率特性进行比较,确定所述被检测的MEMS加速度传感器芯片的结构是否存在问题。
如图6所示,其为一种检测电路的电路原理图。当然,除了图6所示的检测电路之外,还可以采用现有技术中的其它结构的检测电路实现本实施例的技术方案。
在电容式MEMS加速度传感器芯片中,可运动的质量块构成了可变电容的一个可动电极,当质量块受惯性力的作用而产生移动时,由固定电极和可动电极之间构成的电容量发生变化,因此,根据电容量的变化就可以确定加速度的大小。请参阅图7所示,其为一种典型的电容式MEMS加速度传感器芯片的结构示意图。其中,质量块200由一个或多个弹性梁300悬挂在MEMS加速度传感器芯片的框架100中,质量块200的运动敏感方向上下方向。质量块200上下两面有两个互相导通并与质量块200联动的平面电极,分别为第一电极201和第二电极202。与质量块200上下两面电极相对的固定框架面上分别有两个固定电极,分别为上固定电极101和下固定电极102。上固定电极101和下固定电极102与第一电极201和第二电极202平行并分别形成两个面积相等的平板电容器。这两个平板电容器的间距取决于质量块200的位置。在理想情况下,质量块200悬挂的平衡位置是使两个平板电容器的间距相等的位置。质量块200偏离平衡位置的位移会使两个平板电容器的间距产生差动变化,即一个平板电容器的间距增加,另一个平板电容器的间距减小。
请参阅图8所示,其为其它检测方法中检测MEMS加速度传感器芯片的品质因数和谐振频率的检测电路示意图。其中,VT和VB分别为施加在上下两个固定电极上的正向驱动电压和负向驱动电压,其值为:
VT=Vr+Vfsin(ωft)-Vcsin(ωct)
VB=Vr-Vfsin(ωft)+Vcsin(ωct)
Vr为偏置电压,Vfsin(ωft)为参考电压,Vcsin(ωct)为载波电压,ωf为参考电压的频率,ωc为载波电压的频率。
本实用新型的发明人发现,施加在差动电容结构上的驱动电压会产生与机械弹簧作用相反的电弹簧效应。
平板电容器的静电力为:
其中,ε为介电常数,A为电容极板的面积,d为电容极板的间距,VR为电容极板间的电势。
由于ωc>>ωn,因此,可以忽略载波电压的影响。而作用在平板型质量块200上的静电力为:
F e = &epsiv;A 2 { [ V r + V f sin ( &omega; f t ) ] 2 ( d 0 - x ) 2 - [ V r - V f sin ( &omega; f t ) ] 2 ( d 0 + x ) 2 }
其中,x为质量块200偏离中心位置的位移量,d0为质量块200处于中间位置时,上固定电极101与第一电极201之间的距离(或者是,下固定电极102与第二电极202之间的距离),如图7所示。
电弹簧系数为:
k e = &PartialD; F e &PartialD; x = - &epsiv;A 2 { ( - 2 ) &times; [ V r + V f sin ( &omega; f t ) ] 2 &times; ( - 1 ) ( d 0 - x ) 3 - ( - 2 ) &times; [ V r - V f sin ( &omega; f t ) ] 2 ( d 0 + x ) 3 } = - &epsiv;A &times; ( [ V r + V f sin ( &omega; f t ) ] 2 ( d 0 - x ) 3 + [ V r - V f sin ( &omega; f t ) ] 2 ( d 0 + x ) 3 )
当x<<d0时,上述电弹簧系数可简化为:
k e = &PartialD; F e &PartialD; x = - &epsiv;A { [ V r + V f sin ( &omega; f t ) ] 2 d 0 3 + [ V r - V f sin ( &omega; f t ) ] 2 d 0 3 } = - 2 &epsiv;A d 0 3 ( V r 2 + V f 2 sin 2 ( &omega; f t ) )
可见,电弹簧系数与机械弹簧系数符号相反,为负弹性系数。并且,主要跟偏置电压Vr和参考电压Vfsin(ωft)的大小有关。
由于电弹簧效应的影响,MEMS加速度传感器芯片的实际谐振频率为:
&omega; r = k + k e m = k m ( 1 + k e k ) = &omega; n ( 1 + k e k )
当ke<0时,可以得到
ωrn
由此可见,在电弹簧效应的影响下,检测到的实际谐振频率总是低于无阻尼谐振频率。其中,驱动电压越大,电弹簧效应越大,实际谐振频率更偏离于无阻尼谐振频率,即,谐振频率的检测精度越低。反之,驱动电压越小,电弹簧效应越小,实际谐振频率更接近于无阻尼谐振频率,即,谐振频率的检测精度越高。
因此,为了减小甚至避免电弹簧效应对谐振频率的检测精度的影响,与其它检测方法不同,在本实施例的一个优选方式中,施加在所述被检测的MEMS加速度传感器芯片的上下两个固定电极的驱动电压并不是一个持续信号,而是一个时钟信号。并且,在一个时钟周期的第一个时间段内,向所述被检测的MEMS加速度传感器芯片的上下两个固定电极上分别施加正向驱动电压和负向驱动电压,在一个时钟周期的第二个时间段内,向所述被检测的MEMS加速度传感器芯片的上下固定电极施加的驱动电压为零。
有鉴于此,在一种优选的实施方式中,信号采集装置1000还包括第一开关、第二开关、第三开关和第四开关,其中,
所述第一开关的一端接所述被检测的MEMS加速度传感器芯片的上固定电极,另一端接正向驱动电压;
所述第二开关的一端接所述被检测的MEMS加速度传感器芯片的上固定电极,另一端接地;
所述第三开关的一端接所述被检测的MEMS加速度传感器芯片的下固定电极,另一端接负向驱动电压;
所述第四开关的一端接所述被检测的MEMS加速度传感器芯片的下固定电极,另一端接地;
所述第一开关和第三开关的开关状态由第一时钟信号驱动;
所述第二开关和第四开关的开关状态由第二时钟信号驱动;
所述第一时钟信号和第二时钟信号互补。
例如,以图6所示的检测电路为基础,改进后的检测电路如图9所示。其中,开关Φ1、Φ2、Φ3和Φ4的时序图如图10所示。
在一种更优选的实施方式中,第一时钟信号的工作占空比为1/16。
在另一种优选的实施方式中,所述特性检测与控制装置20,还用于根据所述被检测的MEMS加速度传感器芯片的开环频率特性,得到所述被检测的MEMS加速度传感器芯片的开环传递函数的所有极点和零点值,如果根据所述被检测的MEMS加速度传感器芯片的开环频率特性确定所述被检测的MEMS加速度传感器芯片的结构不存在问题,从所有极点和零点值中筛选出两个主导极点值,并根据所述两个主导极点值确定被检测的MEMS加速度传感器芯片的近似开环传递函数,根据所述被检测的MEMS加速度传感器芯片的近似开环传递函数,计算得到所述被检测的MEMS加速度传感器芯片的谐振频率、阻尼比和品质因数。
由上述实施例可以看出,与现有技术相比,本实用新型的优点在于:
通过分析MEMS加速度传感器芯片的开环频率特性,可以确定MEMS加速度传感器芯片的结构是否存在问题。根据所述MEMS加速度传感器芯片的开环频率特性测试数据,进而计算得到所述MEMS加速度传感器芯片的开环传递函数的极点和零点值。如果MEMS加速度传感器芯片的结构不存在问题,就可以进一步根据所有极点和零点值中的主导极点值(两个)确定微电子机械系统加速度传感器芯片的近似开环传递函数,从而由近似开环传递函数计算得到MEMS加速度传感器芯片的谐振频率、阻尼比和品质因数。
另外,当施加在所述MEMS加速度传感器芯片的上下两个固定电极的驱动电压为时钟信号时,减小甚至避免电弹簧效应对谐振频率的检测精度的影响,提高了谐振频率的测量精度。
下面从理论上对本实施例的有益效果进行验证。
在一个时钟周期的第一时间段内,作用在MEMS加速度传感器芯片的平板型质量块上的静电力为(其中,VR和-VR分别为施加在上下两个固定电极上的正向驱动电压和负向驱动电压):
F es = &epsiv;A 2 ( V R 2 ( d 0 - x ) 2 - ( - V R ) 2 ( d 0 + x ) 2 )
电弹簧系数为:
k es = &PartialD; F es &PartialD; x = - &epsiv;A 2 { ( - 2 ) &times; V R 2 &times; ( - 1 ) ( d 0 - x ) 3 - ( - 2 ) &times; V R 2 ( d 0 + x ) 3 } = - &epsiv;A &times; ( V R 2 ( d 0 - x ) 3 + V R 2 ( d 0 + x ) 3 )
在一个时钟周期的第二时间段内,作用在MEMS加速度传感器芯片的平板型质量块上的静电力为:
F ef = &epsiv;A 2 ( 0 2 ( d 0 - x ) 2 - 0 2 ( d 0 + x ) 2 ) = 0
电弹簧系数为:
k ef = &PartialD; D es &PartialD; x = - &epsiv;A 2 ( 0 2 &times; 2 ( d - x ) 3 - 0 2 &times; ( - 2 ) ( d + x ) 2 ) = 0
当x<<d0时,上述电弹簧系数可以简化为:
k es = - &epsiv;A &times; ( V R 2 d 0 3 + ( - V R ) 2 d 0 3 ) = - 2 &epsiv;A V R 2 d 0 3 k ef = 0
考虑到第一时间段与一个时钟周期的比值T1和第二时间段与一个时钟周期的比值T2,平均电弹簧系数ke'为:
k e &prime; = k es T 1 + k ef T 2 = - 2 &epsiv;A V R 2 d 0 3 T 1 + 0 &times; T 2 = - 2 &epsiv;A V R 2 d 0 3 T 1
显然,|ke'|<|ke|。而由于电弹簧系数为负值,因此,即,ωr'>ωr。因此,与其它检测方法相比,通过本实施例的技术方案检测到的实际谐振频率ωr'更接近理想的无阻尼谐振频率ωn。并且,当电弹簧效应|ke'|越小时,越大,实际谐振频率ωr'越接近理想的无阻尼谐振频率ωn,导致检测精度就越高。反之,当电弹簧效应|ke'|越大时,越小,实际谐振频率ωr'越偏离理想的无阻尼谐振频率ωn,导致检测精度越低。
由于|ke'|的大小与第一时间段T1有关,即,T1越小,|ke'|就越小。在本实施例中,一种优选的实施方式是,第一时间段与一个时钟周期的比值为1/16。
在本实施例的一种优选实施方式中,特性检测与控制装置20,还用于针对筛选后剩余的极点和零点值,根据剩余的极点和零点值判断所述被检测的MEMS加速度传感器芯片是否满足误差允许范围,并根据所述剩余的极点和零点值指导优化所述被检测的MEMS加速度传感器的闭环控制系统。
以上对本实用新型所提供的检测微电子机械系统加速度传感器芯片的特性的系统进行了详细介绍,本文中应用了具体实施例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本实用新型的限制。

Claims (2)

1.一种检测微电子机械系统加速度传感器芯片的特性的系统,其特征在于,包括:信号采集装置和特性检测与控制装置;其中,所述信号采集装置包括振动台、振动传感器、被检测的MEMS加速度传感器芯片和检测电路,所述振动台分别与所述振动传感器和所述被检测的MEMS加速度传感器芯片刚性连接; 
所述振动台,用于在不同频率的激励信号的作用下,产生不同频率的振动; 
所述振动传感器,用于采集所述振动台的振动变化量,将所述振动变化量转换为电压信号,并将所述电压信号作为输入信号输出给所述特性检测与控制装置; 
所述被检测的MEMS加速度传感器芯片,用于测量所述振动台的振动加速度,并将所述振动加速度转换为电容变化量; 
所述检测电路,用于将所述电容变化量转换为电压信号,并将所述电压信号作为输出信号输出给所述特性检测与控制装置; 
所述特性检测与控制装置,用于根据被检测的MEMS加速度传感器芯片在不同振动频率下的输入信号和输出信号,拟合所述被检测的MEMS加速度传感器芯片的开环频率特性,将所述被检测的MEMS加速度传感器芯片的开环频率特性与理想状态下的MEMS加速度传感器芯片的开环频率特性进行比较,确定所述被检测的MEMS加速度传感器芯片的结构是否存在问题。 
2.根据权利要求1所述的系统,其特征在于,所述信号采集装置还包括第一开关、第二开关、第三开关和第四开关,其中, 
所述第一开关的一端接所述被检测的MEMS加速度传感器芯片的上固定电极,另一端接正向驱动电压; 
所述第二开关的一端接所述被检测的MEMS加速度传感器芯片的上固定电极,另一端接地; 
所述第三开关的一端接所述被检测的MEMS加速度传感器芯片的下固定电极,另一端接负向驱动电压; 
所述第四开关的一端接所述被检测的MEMS加速度传感器芯片的下固定电极,另一端接地; 
所述第一开关和第三开关的开关状态由第一时钟信号驱动; 
所述第二开关和第四开关的开关状态由第二时钟信号驱动; 
所述第一时钟信号和第二时钟信号互补。 
CN201420141705.0U 2014-03-26 2014-03-26 检测微电子机械系统加速度传感器芯片的特性的系统 Withdrawn - After Issue CN203811624U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420141705.0U CN203811624U (zh) 2014-03-26 2014-03-26 检测微电子机械系统加速度传感器芯片的特性的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420141705.0U CN203811624U (zh) 2014-03-26 2014-03-26 检测微电子机械系统加速度传感器芯片的特性的系统

Publications (1)

Publication Number Publication Date
CN203811624U true CN203811624U (zh) 2014-09-03

Family

ID=51450357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420141705.0U Withdrawn - After Issue CN203811624U (zh) 2014-03-26 2014-03-26 检测微电子机械系统加速度传感器芯片的特性的系统

Country Status (1)

Country Link
CN (1) CN203811624U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837706A (zh) * 2014-03-26 2014-06-04 中国科学院地质与地球物理研究所 检测微电子机械系统加速度传感器芯片的特性的方法、装置和系统
CN106644334A (zh) * 2016-09-14 2017-05-10 中国汽车工业工程有限公司 液压振动台激振力三折线对数分析方法
CN106932089A (zh) * 2017-04-27 2017-07-07 中国船舶重工集团公司第七〇九研究所 一种用于在线检测振动监测装置故障的装置和方法
CN111781399A (zh) * 2020-07-06 2020-10-16 广东工业大学 一种用于加速传感器的仿真测试平台

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837706A (zh) * 2014-03-26 2014-06-04 中国科学院地质与地球物理研究所 检测微电子机械系统加速度传感器芯片的特性的方法、装置和系统
CN106644334A (zh) * 2016-09-14 2017-05-10 中国汽车工业工程有限公司 液压振动台激振力三折线对数分析方法
CN106644334B (zh) * 2016-09-14 2019-02-15 中国汽车工业工程有限公司 液压振动台激振力三折线对数分析方法
CN106932089A (zh) * 2017-04-27 2017-07-07 中国船舶重工集团公司第七〇九研究所 一种用于在线检测振动监测装置故障的装置和方法
CN106932089B (zh) * 2017-04-27 2019-12-10 中国船舶重工集团公司第七一九研究所 一种用于在线检测振动监测装置故障的装置和方法
CN111781399A (zh) * 2020-07-06 2020-10-16 广东工业大学 一种用于加速传感器的仿真测试平台

Similar Documents

Publication Publication Date Title
CN103837706B (zh) 检测微电子机械系统加速度传感器芯片的特性的方法、装置和系统
CN203811624U (zh) 检测微电子机械系统加速度传感器芯片的特性的系统
CN101881785B (zh) 四折叠梁变面积差分电容结构微加速度传感器及制备方法
CN108761134B (zh) 一种弱耦合谐振式传感器的线性化输出检测方法
EP3306287B1 (en) Filter system including resonator
KR101208278B1 (ko) 각속도 센서
CN103528577B (zh) 一种z轴mems电容式陀螺仪
CN103842831B (zh) 静电电容检测电路
CN102466736B (zh) Z轴电容式加速度计
CN102252746B (zh) 一种基于大阻尼比的双参量速度和加速度输出拾振器
CN105043422A (zh) 高分辨率和宽动态范围的mems谐振式电荷传感器及检测方法
CN100498343C (zh) 电调谐谐振式差频加速度计
CN101819215B (zh) 一种弹性系数可调的微机械梳状栅电容加速度计
KR20170015891A (ko) 가속도계
CN103292799A (zh) 一种硅微机械结构振动幅度的电学测量方法
CN102901520B (zh) 一种用于提高电容式微机械传感器温度稳定性的方法及微机械传感器
US20050126288A1 (en) Sensor with symmetrical limiting of a signal
CN100405067C (zh) 微机械角加速度传感器
CN100570371C (zh) 由于改进的回归移动而具有减少的额外振动的加速度计
CN106940182B (zh) 一种四质量块耦合微机电陀螺仪
US20160003616A1 (en) Angular velocity sensor
CN101834065B (zh) 一种可调节微机械器件弹性系数的变面积电容结构
CN113917186B (zh) 一种加速度传感器
CN205066783U (zh) 一种高分辨率和宽动态范围的mems谐振式电荷传感器
CN202041541U (zh) 一种基于大阻尼比的双参量速度和加速度输出拾振器

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20140903

Effective date of abandoning: 20150506

AV01 Patent right actively abandoned

Granted publication date: 20140903

Effective date of abandoning: 20150506

RGAV Abandon patent right to avoid regrant