CN108761134B - 一种弱耦合谐振式传感器的线性化输出检测方法 - Google Patents

一种弱耦合谐振式传感器的线性化输出检测方法 Download PDF

Info

Publication number
CN108761134B
CN108761134B CN201810356917.3A CN201810356917A CN108761134B CN 108761134 B CN108761134 B CN 108761134B CN 201810356917 A CN201810356917 A CN 201810356917A CN 108761134 B CN108761134 B CN 108761134B
Authority
CN
China
Prior art keywords
resonator
mode
output
amplitude difference
weak coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810356917.3A
Other languages
English (en)
Other versions
CN108761134A (zh
Inventor
常洪龙
张和民
钟纪明
杨晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Publication of CN108761134A publication Critical patent/CN108761134A/zh
Application granted granted Critical
Publication of CN108761134B publication Critical patent/CN108761134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Abstract

本发明涉及一种基于模态局部化的弱耦合谐振式传感器的线性化输出检测方法,属于微机电系统(MEMS)领域。该方法具体操作时包括如下步骤:步骤一:判断双谐振器为同相驱动或反相驱动状态,如为同相驱动,则选取一阶模态作为工作模态,如为反相驱动,则选取二阶模态作为工作模态;步骤二:检测两谐振器的振幅差(|X1(jω)‑X2(jω)|),得到振幅差与待检测量之间的关系。本发明提出了一种基于模态局部化的弱耦合谐振式传感器的线性化输出方法,其采用了双谐振器驱动条件下的两个谐振器振幅差而不是振幅比作为传感器输出,其首次实现了弱耦合谐振式传感器的在分离点两侧的输出线性化。

Description

一种弱耦合谐振式传感器的线性化输出检测方法
所属领域:
本发明涉及一种基于模态局部化的弱耦合谐振式传感器的线性化输出检测方法,属于微机电系统(MEMS)领域。
背景技术:
MEMS谐振式传感器以其精度高、体积小、重量轻、功耗小、成本低、易集成、可批量生产、可直接数字化输出等优点在越来越多的领域发挥着越来越重要的作用。
近年来基于模态局部化的弱耦合谐振式传感器以其高灵敏度和高鲁棒性的特点,逐渐成为谐振式传感器领域中的一个研究热点。模态局部化是指在两个弱耦合谐振器系统中,当其中的一个谐振器的结构参数由于外界干扰而发生变化的时候,系统的特征值、特征向量等参数均会发生变化。基于模态局部化的弱耦合谐振式传感器采用多自由度系统中振幅比而不是谐振频率作为传感器的输出,可以大幅度提高谐振式传感器的灵敏度,振幅比灵敏度比谐振频率灵敏度高了2/κ倍,其中κ为耦合系数,也就是耦合刚度与谐振器有效刚度的比值,通过设计使得κ<<1(一般将κ<0.01的系统称为弱耦合系统),可以将灵敏度提高两到三个数量级。西北工业大学常洪龙教授团队与2016年在论文“An accelerationsensing method based on the mode localization of weakly coupled resonators”中首次将模态局部化原理应用于谐振式加速度计领域,其基于振幅比的灵敏度比基于频率的灵敏度高了302倍。
但是,弱耦合谐振式传感器的谐振频率和振幅比输出在全量程范围内是不是线性的,而是分段线性的。其原因解释如下:在如图1所示的一个双自由度振动系统的等效质量刚度阻尼模型中,101表示谐振器Ⅰ的弹性梁,其刚度表示为k1,102表示谐振器Ⅰ的质量块,其质量表示为m1,103表示耦合弹性梁,其刚度表示为kc,104表示谐振器Ⅱ的质量块,其质量表示为m2,105表示谐振器Ⅱ的弹性梁,其刚度表示为k2,f1表示谐振器I受到的驱动力,f2表示谐振器II受到的驱动力。理想情况下假设两个谐振器的参数相同,即:k1=k2=k,m1=m2=m。根据牛顿第二定律得到该双自由度振动系统的无阻尼自由振动(受力f1=f2=0)的动力学方程:
其中x1,x2分别表示谐振器Ⅰ和谐振器Ⅱ的振动位移。ω表示驱动频率,κ=kc/k为耦合系数,m为谐振器有效质量,δ=Δk/k表示的是谐振器2受到的刚度干扰。根据公式(1)计算的弱耦合谐振器的谐振频率公式为
Figure BDA0001634922010000022
其中
Figure BDA0001634922010000023
ωi表示的是第i阶振动模态的谐振频率。根据公式(2)我们可以绘制出谐振频率随刚度干扰(δ)变化的曲线,如图2所示。从图2中可以看出,随着刚度干扰从δ<0的区域增加到δ>0的区域,两个模态谐振频率先是逐渐接近并在越过δ=0处之后逐渐分离,我们将δ=0的点称为分离点,将该现象称为模态分离现象。
根据公式(1)所推算的弱耦合谐振器的振幅比公式为:
Figure BDA0001634922010000024
根据公式(2)我们可以绘制出谐振频率随刚度干扰(δ)变化的曲线,如图3所示。从图3可以看出,弱耦合谐振器的振幅比输出也存在模态分离现象,这就导致一阶模态的线性工作区间被局限在δ<0的范围内,而二阶模态的线性工作区间被局限在δ>0的区域内。因此对于谐振器的任一模态来说,其振幅比和频率输出不能实现分离点两侧的线性化输出:即从δ<0到δ>0范围内的线性化输出,因此,现有技术中采用的弱耦合谐振器的振幅比输出检测方法,严重限制了传感器的使用范围。
发明内容:
本发明的目的是为弱耦合微机械谐振式传感器提供一种全量程范围内线性化输出的检测方法,它采用弱耦合谐振器的振幅差输出来实现分离点两侧的线性化输出检测,其实现条件是弱耦合谐振器采用双谐振器驱动模式。
其所依据的基本原理如下,在一个如图1所示的一个双自由度振动系统的等效质量刚度阻尼模型中,其受迫振动方程表示为:
Figure BDA0001634922010000031
这里我们分析了弱耦合谐振器在单谐振器驱动(f1=0,f2≠0)、双谐振器同相驱动(f1=f2=f)、双谐振器反相驱动(f1=-f2=f)三种条件,根据传递函数,得到三种情况下的振动位移为:
Figure BDA0001634922010000032
其中,
Figure BDA0001634922010000033
,|XS1|和|XS2|分别表示谐振器1和谐振器2在单谐振器驱动情况下的振幅,|XD1|和|XD2|表示谐振器1和谐振器2在双谐振器同相驱动条件下的振幅,|XDO1|和|XDO2|表示谐振器1和谐振器2在双谐振器反相驱动条件下的振幅,Q为谐振器的品质因数。根据将谐振点频率
Figure BDA0001634922010000041
i=1,2代入公式(5),可以得到三种情况下的在谐振频率点1(一阶模态)处的振幅。我们据此绘制了两谐振器的振幅差(|X1(jω)-X2(jω)|)随刚度干扰δ变化的曲线,如图4、图5所示。从图4中可以看出,单谐振器驱动条件下,两个谐振器的振幅差在分离点(δ=0)两侧依然是非线性的。但是从图5中可以看出,在双谐振器驱动条件下,振幅差输出可以实现在分离点两侧范围内(|δ|<κ)的线性化。而双谐振器同相驱动需选取一阶模态作为工作模态(如图5(a)所示),双谐振器反相驱动需选取二阶模态作为工作模态(如图5(d)所示)。因此,采用双谐振器驱动条件下振幅差输出的检测方法,可以实现了弱耦合微机械传感器在分离点(δ=0)两侧一定范围内(|δ|<κ)的线性化输出检测。
依据以上分析过程,本发明提出的双谐振器驱动条件下振幅差输出的检测方法,具体操作时包括如下步骤:
步骤一:判断双谐振器为同相驱动或反相驱动状态,如为同相驱动,则选取一阶模态作为工作模态,如为反相驱动,则选取二阶模态作为工作模态;
步骤二:检测两谐振器的振幅差(|X1(jω)-X2(jω)|),得到振幅差与待检测量之间的关系。
本发明的有益效果:本发明提出了一种基于模态局部化的弱耦合谐振式传感器的线性化输出方法,其采用了双谐振器驱动条件下的两个谐振器振幅差而不是振幅比作为传感器输出,其首次实现了弱耦合谐振式传感器的在分离点两侧的输出线性化。
附图说明:
图1二自由度弱耦合谐振器等效弹簧-质量-阻尼模型。
图2弱耦合谐振器的两模态谐振频率随刚度干扰变化曲线。
图3弱耦合谐振器的两模态振幅比随刚度干扰变化曲线。
图4单谐振器驱动条件下的一阶模(a)和二阶模态(b)的幅值差输出与刚度干扰之间的关系曲线。
图5双谐振器同相驱动条件下的一阶模态(a)和二阶模态(b),双谐振器反相驱动条件下的一阶模态(a)和二阶模态(b)的振幅差输出与刚度干扰之间的关系曲线。
图6一种弱耦合谐振器的双谐振器的振幅差输出驱动检测方法。
图中,101为谐振器I的刚度模型,102为谐振器I质量等效,103为机械耦合梁的刚度等效,104为谐振器II的质量等效,105为谐振器II的刚度等效。
601为谐振器固定锚点,602为谐振器I,603为谐振器II,604为机械耦合梁,605为谐振器I的驱动电极,606为谐振器I的检测电极,607为可动质量块,608为谐振器II驱动电极,609为谐振器II的检测电极,610为直流电源,611为交流电源,612为反相放大器,613为跨阻放大器I,614为跨阻放大器II,615为差分仪表放大器。
具体实施方式:
图6出示了本实施例中的一个弱耦合微机械谐振式加速度传感器的振幅差输出检测方法。一个弱耦合谐振式加速度传感器包含了一个可动质量块、一个弱耦合谐振器系统及其双谐振器同相驱动检测电路。谐振器I602和谐振器II603通过一个机械耦合梁604耦合在一起形成一个弱耦合谐振器系统。605为谐振器I的驱动电极,606为谐振器I的检测电极,607为可动质量块,608为谐振器II驱动电极,609为谐振器II的检测电极。
该弱耦合谐振式加速度传感器采用静电驱动、电容检测的驱动检测方法。来自直流电源610的直流电压加载在谐振器固定锚点601上形成静电驱动的直流偏置。交流电源610的信号分为两路,一路连接谐振器II603的驱动电极608,一路经过反相放大器612之后连接谐振器I602的驱动电极605。因此谐振器I602和谐振器II603所受到的驱动力大小相等、方向相同,即弱耦合谐振器系统采用的是双端同相驱动方法。本实施例中所施加的驱动力的频率与弱耦合谐振器系统的同相模态频率相同,因此弱耦合谐振器工作于同相模态。
当有加速度作用于可动质量块上时,可动质量块607发生位移,可动质量块607与谐振器I602之间的平板电容发生变化,静电负刚度效应导致谐振器I602的有效刚度发生变化,从而导致谐振器I602与谐振器II603的刚度不一致,因此谐振器I602与谐振器II603的振动幅值发生变化。谐振器I602的振动位移通过检测电极606连接到跨阻放大器613上,将电流信号转换为电压信号;谐振器II603的振动位移通过检测电极609连接到跨阻放大器614上,将电流信号转换为电压信号。跨阻放大器613和614的输出信号连接到差分仪表放大器615上做差分,差分仪表放大器615的输出即表示了两个弱耦合谐振器的振幅差信息,幅值差输出与加速度之间成一个线性关系,因此通过振幅差的输出检测方法实现了弱耦合谐振式加速度传感器的线性化输出。

Claims (1)

1.一种双谐振器驱动条件下弱耦合谐振式传感器振幅差线性化输出的检测方法,其特征在于:包括如下步骤:
步骤一:判断双谐振器为同相驱动或反相驱动状态,如为同相驱动,则选取一阶模态作为工作模态,如为反相驱动,则选取二阶模态作为工作模态;
步骤二:检测两谐振器的振幅差(|X1(jω)-X2(jω)|),通过振幅差的检测方法实现了弱耦合谐振式传感器的线性化输出,得到了振幅差与待检测量之间的关系。
CN201810356917.3A 2017-06-22 2018-04-20 一种弱耦合谐振式传感器的线性化输出检测方法 Active CN108761134B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710480026 2017-06-22
CN2017104800264 2017-06-22

Publications (2)

Publication Number Publication Date
CN108761134A CN108761134A (zh) 2018-11-06
CN108761134B true CN108761134B (zh) 2020-02-14

Family

ID=64011303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810356917.3A Active CN108761134B (zh) 2017-06-22 2018-04-20 一种弱耦合谐振式传感器的线性化输出检测方法

Country Status (1)

Country Link
CN (1) CN108761134B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905086B (zh) * 2019-02-26 2021-05-18 华中科技大学 一种基于多谐振器耦合结构的mems振荡器
CN110542869A (zh) * 2019-06-21 2019-12-06 西北工业大学 基于模态局部化效应的微弱磁场测量装置及方法
WO2020258177A1 (zh) * 2019-06-27 2020-12-30 瑞声声学科技(深圳)有限公司 一种差分谐振器及mems传感器
CN111487435B (zh) * 2020-05-14 2022-03-11 东南大学 基于弱耦合谐振器组三种工作方式的空气流速测量装置
CN111766405B (zh) * 2020-05-14 2022-03-11 东南大学 一种基于谐振器能量局部化效应的双轴硅微加速度计
CN112710382B (zh) * 2020-12-22 2023-04-07 北京大学 微音叉谐振器振动敏感性片上测试结构和方法
CN113514666B (zh) * 2021-04-29 2022-08-02 东南大学 一种基于pt对称谐振器的微机械加速度计及其检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360962B4 (de) * 2003-12-23 2007-05-31 Litef Gmbh Verfahren zur Quadraturbias-Kompensation in einem Corioliskreisel sowie dafür geeigneter Corioliskreisel
GB2413710B (en) * 2004-04-26 2007-03-21 Transense Technologies Plc Split-ring coupler incorporating dual resonant sensors
FR2958417B1 (fr) * 2010-04-06 2012-03-23 Senseor Procede d'interrogation rapide de capteurs d'ondes elastiques
US8763441B2 (en) * 2011-11-22 2014-07-01 Georgia Tech Research Corporation Method and apparatus for self-calibration of gyroscopes
US9903718B2 (en) * 2015-05-28 2018-02-27 Invensense, Inc. MEMS device mechanical amplitude control
CN106323155B (zh) * 2015-07-06 2019-08-27 中国科学院上海微系统与信息技术研究所 耦合谐振的谐振式应变传感器
CN106629571B (zh) * 2016-09-20 2019-04-09 西北工业大学 一种基于模态局部化效应的弱耦合mems谐振式加速度计

Also Published As

Publication number Publication date
CN108761134A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108761134B (zh) 一种弱耦合谐振式传感器的线性化输出检测方法
CN106645999B (zh) 一种超高灵敏度的微机械谐振式静电计
CN107643423B (zh) 一种基于模态局部化效应的三自由度弱耦合谐振式加速度计
CN106629571B (zh) 一种基于模态局部化效应的弱耦合mems谐振式加速度计
CN109061226B (zh) 静电负刚度式加速度计的设计方法
CN108375371B (zh) 一种基于模态局部化效应的四自由度弱耦合谐振式加速度计
KR20130052059A (ko) 평행판 전극 타입 공진형 센서의 온도 보상 방법과 온도 및 공진 제어루프 시스템
EP2577324B1 (en) Mems inertial sensor and method of inertial sensing
CN104395695B (zh) 改进的振动陀螺仪
Peng et al. A sensitivity tunable accelerometer based on series-parallel electromechanically coupled resonators using mode localization
Zhang et al. A novel resonant accelerometer based on mode localization of weakly coupled resonators
CN107860403B (zh) 一种模态局部化传感器的线性化输出方法
CN104596496B (zh) 自适应时滞反馈控制微机械陀螺仪系统
Kang et al. A mode-localized accelerometer based on four degree-of-freedom weakly coupled resonators
Zhao et al. Comparative study of different output metrics for a three weakly coupled resonator sensor
CN107449491B (zh) 一种弱耦合谐振式传感器的扰动位置确定方法
CN109752120B (zh) 压阻拾振的微谐振器、激振/拾振电路及压力传感器
Zu et al. A novel mode-localized accelerometer employing a tunable annular coupler
CN113092817B (zh) 检测模式可切换的高精度、大量程加速度传感器及其控制方法
Zhang et al. Algebraic summation of eigenstates as a novel output metric to extend the linear sensing range of mode-localized sensors
Pandit et al. Reduction of amplitude ratio dependence on drive level in mode localized resonant MEMS sensors
Pandit et al. Nonlinear cancellation in weakly coupled MEMS resonators
RU2566655C1 (ru) Способ измерения кажущегося ускорения и пьезоэлектронный акселерометр для его реализации
Chen et al. A novel three degree-of-freedom resonator with high stiffness sensitivity utilizing mode localization
US9631929B2 (en) Inertial sensor with nested seismic masses and method for manufacturing such a sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant