CN101881785B - 四折叠梁变面积差分电容结构微加速度传感器及制备方法 - Google Patents

四折叠梁变面积差分电容结构微加速度传感器及制备方法 Download PDF

Info

Publication number
CN101881785B
CN101881785B CN2010102051160A CN201010205116A CN101881785B CN 101881785 B CN101881785 B CN 101881785B CN 2010102051160 A CN2010102051160 A CN 2010102051160A CN 201010205116 A CN201010205116 A CN 201010205116A CN 101881785 B CN101881785 B CN 101881785B
Authority
CN
China
Prior art keywords
microns
finger
micro
bottom electrode
differential capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102051160A
Other languages
English (en)
Other versions
CN101881785A (zh
Inventor
董玮
周敬然
陈维友
张歆东
刘彩霞
阮圣平
郭文滨
沈亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN2010102051160A priority Critical patent/CN101881785B/zh
Publication of CN101881785A publication Critical patent/CN101881785A/zh
Application granted granted Critical
Publication of CN101881785B publication Critical patent/CN101881785B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

本发明属于微机电系统领域,涉及一种四折叠梁变面积差分电容结构微加速度传感器及其制备方法。由可动质量块、成对的弹簧折叠梁、插指状下电极和微加速度传感器外框组成;在外部载荷的作用方向上,可动质量块的前端和后端通过弹簧折叠梁连接在加速度传感器外框上,可动质量块、弹簧折叠梁、加速度传感器外框为一体结构;在可动质量块的下表面制作有上电极,上电极与插指状下电极间具有一定的空隙,从而组成平板差分电容,上电极通过加速度传感器外框与插指状下电极键合在一起。本发明所述的传感器结构,明显地解决了变间隙结构存在的非线性问题,利于后续检测电路的制作,同时使振动模态更好的分离,提高了器件的抗干扰能力并增加传感器的灵敏度。

Description

四折叠梁变面积差分电容结构微加速度传感器及制备方法
技术领域
本发明属于微机电系统领域,具体涉及一种四折叠梁、变面积差分电容结构的微加速度传感器及其制备方法。
背景技术
基于MEMS技术的传感器具有体积小、质量轻、响应快、灵敏度高、成本低、易生产等优点,近年在很多领域得到广泛应用。电容式加速度传感器具有灵敏度高、动态范围宽、温度效应小、阻尼特性好、结构简单和体积小等优点,因此是目前研究和应用最多的硅微加速度传感器。
变间隙差分电容加速度传感器的电容变化是非线性的,通常采用限制质量块的位移的方法,以近似获得线性关系,结果导致差分电容变化量很小,给后续处理电路带来较大的困难。一般需要采用在接口电路中加反馈信号,使传感器在闭环模式下工作,以保证高线性。本发明中采用了变面积的差分电容式结构,从而避免了差分电容变化的非线性。
发明内容
本发明的目的是提供一种涉及四弹簧折叠梁、变面积差分电容结构的微加速度传感器及其制备方法。
变面积差分电容结构加速度传感器的原理如图1所示。该结构的敏感单元是弹簧-质量块-弹簧二阶振动系统。在外部载荷作用下,作为上电极的可动质量块会在图1所示的水平方向上左右移动,上电极和下电极相对面积电容值C1随电极板的移动而变小,而上电极和下电极相对面积电容值C2随电极板的移动而增大。这将引起电容值C1减小ΔC1,而电容值C2增大ΔC2。这样,该传感器就将质量块的相对位移的微小变化转换为电容的微小变化,再通过外部检测电路将电容的微小变化转换为与其成正比的电压的微小变化,通过测量电压的微小变化从而可以测量加速度a。
本发明所述的微加速度传感器的正面剖视图如图1所示,由作为上电极的可动质量块、成对的弹簧折叠梁、插指状下电极和微加速度传感器外框组成,在外部载荷的作用方向上,可动质量块的前端和后端通过弹簧折叠梁连接在加速度传感器外框上,可动质量块、弹簧折叠梁、加速度传感器外框为一体结构,且均为低阻硅材料,作为上电极的可动质量块的下表面与插指状下电极间具有一定的空隙,从而组成平板差分电容,上电极通过加速度传感器外框与插指状下电极键合在一起,插指状下电极由在玻璃衬底上制作的金属电极构成。
可动质量块和弹簧折叠梁结构的俯视图和正面剖视图如图2和图3所示,为了提高加速度传感器的灵敏度,在可动质量块与插指状下电极相对的一侧,即在可动质量块的下表面通过刻蚀制作沟槽结构的上电极阵列;由于沟槽结构凹陷处的上电极与插指状下电极间的距离较大,因此可以认为只有沟槽凸起处的上电极与插指状下电极之间形成电容。插指状下电极的形状如图4所示,由多个电极对构成,每一个电极对由两个电极组成,这两个电极与对应的上电极形成如图1所示C1和C2差分电容结构,每一个电极对中相应位置的电极连在一起,从而形成并联电容结构。
本发明所述的器件的特点:
(1)采用变面积差分电容结构,明显地解决了变间隙结构存在的非线性问题,利于后续检测电路的制作。
(2)采用四折叠梁结构,使振动模态更好的分离,提高了器件的抗干扰能力。
(3)把相同结构的多个电容并联,可以增加传感器的灵敏度。
本发明所述的变面积差分电容结构的微机械加速度传感器采用键合、光刻、感应耦合等离子体(ICP)刻蚀、生长金属膜和金属膜的剥离等工艺制作。
本发明所述的变面积差分电容结构的微机械加速度传感器制备步骤如下:
A:插指状下电极的制作:选用厚度为150~300微米的Pyrex7740#硼硅玻璃,在硼硅玻璃的表面采用溅射的方法获得30~80nm的金层作为下电极,并采用剥离工艺来获得插指状的下电极图形,即先在玻璃上光刻出与插指状下电极结构互补的光刻胶图形,即光刻之后图4中黑色部分没有光刻胶,而白色部分有光刻胶,然后溅射金层,最后通过去掉光刻胶来获得图4所示的插指状下电极,插指状下电极的宽度为50~100微米,间距为20~40微米;
B:选用150~300微米厚的低阻硅材料,并对其进行刻蚀,形成具有外框结构的凹槽,凹槽的深度为3~15微米;
C:对凹槽内的低阻硅材料继续进行刻蚀,刻蚀出沟槽结构,沟槽的深度为20~40微米,沟槽的间距为50~200微米,沟槽的宽度为50~200微米,从而形成并联的上电极阵列;
D:将一个上电极和与其对应的一对插指状下电极对准后,将上电极通过加速度传感器外框和插指状下电极键合在一起;
E:在低阻硅材料的上表面继续进行刻蚀,进而制作出弹簧折叠梁和质量块,从而完成本发明所述的微加速度传感器的制作。
附图说明
图1:本发明所述加速度传感器正面剖视图;
图2:本发明所述加速度传感器弹簧折叠梁和质量块的俯视图;
图3:本发明所述加速度传感器质量块(上电极)的正面剖视图;
图4:本发明所述加速度传感器插指状下电极俯视图;
图5:本发明所述加速度传感器检测电路框图;
图6:本发明所述加速度传感器电荷放大器电路图;
图7:本发明所述加速度传感器加速度与电压关系曲线图。
如图1、图2、图3所示,各部件的名称为:质量块1,在质量块下表面上进一步刻蚀制作的沟槽状上电极(阵列)6,弹簧折叠梁2、2′,微加速度传感器外框5,玻璃衬底4,插指状下电极(阵列)3、3′,每一个上电极6都与对应的一对插指状下电极3、3′形成变差分电容C1、C2
具体实施方式
实施例1:
本发明所述的微加速度传感器的结构参数如表1,在可动质量块的下表面制作20个上电极阵列,与其对应的插指状下电极采用20对电极结构,从而形成20个同样的电容并联。
表1:质量块和折叠梁的参数
Figure BSA00000167816700031
Figure BSA00000167816700041
当器件的结构尺寸设计完成后,可以采用下面的方法制作器件。
A:下电极的制作
 1)选用厚度为200微米的Pyrex7740#硼硅玻璃;
2)通过光刻工艺,在玻璃上形成与需要制作的下电极结构互补的光刻胶图形,然后在光刻胶上溅射50nm的金层作为下电极材料;
3)采用剥离工艺,将光刻胶及其上面的金层去掉,在玻璃上留下的金层即形成插指状下电极,每个下电极的宽度为70微米,每两个下电极间的距离为30微米;
B:选取低阻硅材料作为弹簧拆叠梁、加速度传感器外框和可动质量块的材料,参数如表2,对低阻硅材料进行刻蚀,形成加速度传感器外框的同时在低阻硅材料内刻蚀出一方形的凹槽结构,深度为10微米;
表2:低阻硅材料的参数
参数  数值
直径(mm)  100
厚度(μm)  200
导电类型  N型
电阻率(Ω·cm)  0.02
晶向  <100>
C:在凹槽结构内继续对低阻硅材料进行刻蚀,从而在低阻硅材料的下表面刻蚀出多个沟槽结构作为平行板差分电容的上电极,每个上电极的宽度为100微米,每两个上电极的间距为100微米,沟槽深度为30微米,即形成如图3所示的结构;
D:采用键合工艺,将上电极通过外框与下电极键合在一起,键合时要将上、下电极对准;
E:在低阻硅材料的上表面一侧,通过ICP继续刻蚀低阻硅,从而制作出弹簧折叠梁结构和质量块结构,再引线、封装,从而完成加速度传感器的制作。
实施例2:
检测电路总体方案如图5所示,载波发生器为整个电路提供稳幅的正弦波,加速度传感器的差分电容(C1、C2)接在电荷放大器的输入端,电荷放大电路(如图6所示)将微小差分电容变化转换为电压变化,由于差分电容变化非常小,因此电压变化也很微弱。为了后续电路检测方便,通过直流放大器将信号进行放大,但此时的信号仍然带有高频噪声和其他一些干扰,经过高Q的带通滤波器将干扰滤除使波形变好。此时的信号和经移相电路后的信号作为相敏解调电路的输入,当两信号同频反相或同相时,其输出信号经低通滤波器后变为直流信号,放大后输出,就到可以通过电压变化计算来获得加速度值。
加速度与电压的变化关系测试数据如表3所示,当把加速度反向放置,即可得到电压的相反变化,把数据绘制成图7所示的曲线,在实际测量时,即可以根据此曲线,由测得的电压值得到对应的微加速度的值。本发明所制作的加速度传感器的量程为±12g(g=9.8m/s2),灵敏度为86mV/g,精度高于±5%。
表3:加速度传感器的测试数据
  序号   加速度(g)   电压变化量(V)
  1   2.3721   0.23
  2   3.7348   0.34
  3   4.2439   0.39
  4   4.8719   0.43
  5   5.3145   0.48
  6   5.7765   0.52
  7   6.4057   0.56
  8   7.5988   0.66
  9   8.7769   0.76
  10   9.8544   0.84
  11   12.1279   1.0
实施例3:
电荷放大电路设计:如图6所示,C1、C2是加速度传感器两个差分电容,C3是运放的反馈电容,C4的作用是去除噪声干扰,R1和反馈电容C3并联。
选定好了相关的电路元件参数后,对电路进行分析列方程得:
V &prime; - V o 1 s C 3 / / R 1 + V &prime; - V i 1 s C 1 = 0 V &prime; + V i 1 s C 2 + V &prime; R 2 = 0 - - - ( 1 )
考虑到电路中R2远小于R1,同时令s=jω,计算得Vo与Vi间关系式:
Vo=(C2-C1)ωR1Vi    (2)
正弦载波信号作为波电荷放大电路的激励,两路信号是反相的,电压值为±Vsinωt,负值的信号通过反相电路得到。
在理想状态下,未施加加速度时,电路中微加速度传感器的两个等效电容C1和C2的值相等(=C),而施加加速度后,电容发生变化,变化后电容值分别为C1=C-ΔC,C2=C+ΔC,则由式(2)可得输出电压Vo=2ΔCVωR1sinωt。

Claims (5)

1.四折叠梁变面积差分电容结构微加速度传感器,其特征在于:由可动质量块(1)、成对的弹簧折叠梁(2、2′)、插指状下电极(3、3′)和微加速度传感器外框(5)组成;在外部载荷的作用方向上,可动质量块(1)的前端和后端通过弹簧折叠梁(2、2′)连接在加速度传感器外框(5)上,可动质量块(1)、弹簧折叠梁(2、2′)、加速度传感器外框(5)为一体结构;在可动质量块(1)的下表面制作有上电极(6),上电极(6)与插指状下电极(3、3′)间具有一定的空隙,从而组成平板差分电容,上电极(6)通过加速度传感器外框(5)与插指状下电极(3、3′)键合在一起。
2.如权利要求1所述的四折叠梁变面积差分电容结构微加速度传感器,其特征在于:上电极(6)为沟槽结构的上电极阵列。
3.如权利要求2所述的四折叠梁变面积差分电容结构微加速度传感器,其特征在于:插指状下电极(3,3′)的宽度为50~100微米,间距为20~40微米。
4.如权利要求2或3所述的四折叠梁变面积差分电容结构微加速度传感器,其特征在于:沟槽结构的深度为20~40微米,间距为50~200微米,宽度为50~200微米。
5.权利要求4所述的变面积差分电容结构的微机械加速度传感器的制备方法,其步骤如下:
A:插指状下电极的制作:选用厚度为150~300微米的硼硅玻璃,在硼硅玻璃的表面采用溅射的方法获得30~80nm的金层作为下电极,并采用剥离工艺来获得插指状下电极(3,3′),即先在玻璃上光刻出与插指状下电极结构互补的光刻胶图形,然后溅射金层,最后通过去掉光刻胶以及光刻胶上面的金层来获得插指状下电极,插指状下电极的宽度为50~100微米,间距为20~40微米;
B:选用150~300微米厚的低阻硅材料,在其下表面对其进行刻蚀,形成具有外框(5)结构的凹槽,凹槽的深度为3~15微米;
C:对凹槽内的低阻硅材料继续进行刻蚀,刻蚀出沟槽结构,沟槽的深度为20~40微米,沟槽的间距为50~200微米,沟槽的宽度为50~200微米,从而形成并联的上电极阵列(6);
D:将一个上电极(6)和与其对应的一对插指状下电极(3,3′)对准,然后将器件键合在一起;
E:在低阻硅材料的上表面继续进行刻蚀,进而制作出弹簧折叠梁(2、2′)和可动质量块(1),从而得到变面积差分电容结构的微机械加速度传感器。
CN2010102051160A 2010-06-22 2010-06-22 四折叠梁变面积差分电容结构微加速度传感器及制备方法 Expired - Fee Related CN101881785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102051160A CN101881785B (zh) 2010-06-22 2010-06-22 四折叠梁变面积差分电容结构微加速度传感器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102051160A CN101881785B (zh) 2010-06-22 2010-06-22 四折叠梁变面积差分电容结构微加速度传感器及制备方法

Publications (2)

Publication Number Publication Date
CN101881785A CN101881785A (zh) 2010-11-10
CN101881785B true CN101881785B (zh) 2011-11-30

Family

ID=43053846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102051160A Expired - Fee Related CN101881785B (zh) 2010-06-22 2010-06-22 四折叠梁变面积差分电容结构微加速度传感器及制备方法

Country Status (1)

Country Link
CN (1) CN101881785B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045073A (zh) * 2017-02-07 2017-08-15 中国科学院上海微系统与信息技术研究所 单硅片双面对称折叠梁结构微加速度传感器及其制作方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095489B (zh) * 2010-12-10 2012-08-08 中北大学 矢量水听器用抗流噪声型敏感体
US8555719B2 (en) * 2011-01-24 2013-10-15 Freescale Semiconductor, Inc. MEMS sensor with folded torsion springs
CN102768470B (zh) * 2011-05-05 2014-12-17 上海微电子装备有限公司 掩模台垂向测量装置
CN102494759B (zh) * 2011-12-29 2013-06-19 北京遥测技术研究所 一种差容式微振动传感器接口电路
CN104453857B (zh) * 2014-11-02 2018-02-16 中国石油集团钻井工程技术研究院 一种小井斜下井斜和工具面角动态测量方法及装置
CN106500942A (zh) * 2016-11-25 2017-03-15 北京强度环境研究所 一种竖立状态结构简易模态试验系统
CN106771361B (zh) * 2016-12-15 2023-04-25 西安邮电大学 双电容式微机械加速度传感器及基于其的温度自补偿系统
CN109188021B (zh) * 2018-08-30 2020-06-16 太原理工大学 低频微加速度传感器的多孔弹簧悬臂敏感结构
CN111505398B (zh) * 2020-04-23 2021-07-27 华中科技大学 一种基于运动观测的孤立导体电荷估计方法和系统
CN111741419B (zh) * 2020-08-21 2020-12-04 瑶芯微电子科技(上海)有限公司 骨传导声音处理系统、骨传导麦克风及其信号处理方法
CN112033277B (zh) * 2020-09-08 2021-10-08 东南大学 一种基于折纸结构的曲率传感器
CN113970655B (zh) * 2021-12-23 2022-04-12 杭州麦新敏微科技有限责任公司 一种mems加速度计及其形成方法
CN116148499A (zh) * 2023-04-20 2023-05-23 中北大学 一种力反馈高灵敏moems集成加速度传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2424450Y (zh) * 2000-06-02 2001-03-21 中国科学院上海冶金研究所 微机械梳状电容式加速度传感器
JP5165294B2 (ja) * 2007-07-06 2013-03-21 三菱電機株式会社 静電容量式加速度センサ
CN100487461C (zh) * 2007-07-12 2009-05-13 上海交通大学 金属电容式微加速度计
CN101858931A (zh) * 2010-05-28 2010-10-13 南京理工大学 框架式电容硅微机械加速度计

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045073A (zh) * 2017-02-07 2017-08-15 中国科学院上海微系统与信息技术研究所 单硅片双面对称折叠梁结构微加速度传感器及其制作方法
CN107045073B (zh) * 2017-02-07 2019-07-09 中国科学院上海微系统与信息技术研究所 单硅片双面对称折叠梁结构微加速度传感器及其制作方法

Also Published As

Publication number Publication date
CN101881785A (zh) 2010-11-10

Similar Documents

Publication Publication Date Title
CN101881785B (zh) 四折叠梁变面积差分电容结构微加速度传感器及制备方法
CN109655674B (zh) 基于弱耦合微机械谐振器的微弱静电场测量装置及方法
CN204495495U (zh) 一种三维力电容式触觉传感器单元
US9551621B2 (en) Pressure sensor having cantilever and displacement measurement unit
US6456477B1 (en) Linear capacitance detection circuit
CN109341744B (zh) 一种变面积式位移电容的检测装置
CN108375371B (zh) 一种基于模态局部化效应的四自由度弱耦合谐振式加速度计
CN106526235B (zh) 一种低g值电容式MEMS加速度计及其模态局域化测量电路
CN110221098A (zh) 硅微谐振式加速度计及其自测试方法
CN100498343C (zh) 电调谐谐振式差频加速度计
CN102252746B (zh) 一种基于大阻尼比的双参量速度和加速度输出拾振器
CN205861876U (zh) 一种基于超磁致伸缩薄膜的悬臂梁叉指电容磁场传感探头
CN105652334A (zh) 一种基于位移差分的mems重力梯度仪
CN204256053U (zh) 一种微机械振动式电场传感器
CN104406525B (zh) 光栅组微位移传感器及其测量位移的方法
CN203811624U (zh) 检测微电子机械系统加速度传感器芯片的特性的系统
CN202032998U (zh) 一种纳米级微小位移测量装置
CN204128506U (zh) 光栅组微位移传感器
CN102538650A (zh) 一种纳米级微小位移测量装置
CN103308721B (zh) 一种惯性检测元件的电容读出电路
CN202041541U (zh) 一种基于大阻尼比的双参量速度和加速度输出拾振器
CN204269076U (zh) 脉冲微位移传感器
Edalatfar et al. Dual mode resonant capacitive MEMS accelerometer
CN104614550B (zh) 脉冲微机械加速度传感器及其测量加速度的方法
CN105158576B (zh) 一种探测不同深度介质的方法及电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111130

Termination date: 20140622

EXPY Termination of patent right or utility model