CN203191281U - 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置 - Google Patents

生产环境微纳米气溶胶湿式紫外吸收法在线检测装置 Download PDF

Info

Publication number
CN203191281U
CN203191281U CN 201320092821 CN201320092821U CN203191281U CN 203191281 U CN203191281 U CN 203191281U CN 201320092821 CN201320092821 CN 201320092821 CN 201320092821 U CN201320092821 U CN 201320092821U CN 203191281 U CN203191281 U CN 203191281U
Authority
CN
China
Prior art keywords
micro
nano
wet
production environment
gasoloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201320092821
Other languages
English (en)
Inventor
杨毅
茆平
范柏超
王连军
冯曙艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIANYUNGANG RESEARCH INSTITUTE OF NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
Nanjing University of Science and Technology
Original Assignee
LIANYUNGANG RESEARCH INSTITUTE OF NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIANYUNGANG RESEARCH INSTITUTE OF NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY, Nanjing University of Science and Technology filed Critical LIANYUNGANG RESEARCH INSTITUTE OF NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
Priority to CN 201320092821 priority Critical patent/CN203191281U/zh
Application granted granted Critical
Publication of CN203191281U publication Critical patent/CN203191281U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开了一种生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,包括湿法采样系统、捕集液检测系统和控制系统,控制系统与捕集液检测系统的紫外分光光度计连接;在湿法采样系统的储液槽上开两孔,利用连接水管与捕集液检测系统的第一电磁阀门和循环水泵连接,形成检测回路;循环水泵设置在第二电池阀门和湿法采样系统之间;样品池设置在紫外分光光度计的检测光路中,保证测样光线顺利通过样品池。本实用新型既能实现微纳米气溶胶的在线检测,又能对其进行高效捕获,便于进一步进行气溶胶粒子的理化分析测试;且技术原理简单,相对于传统的微震荡系统和光散射检测仪器,成本低廉,操作简便,实现自动化控制。

Description

生产环境微纳米气溶胶湿式紫外吸收法在线检测装置
技术领域
本实用新型属于微纳米气溶胶的在线检测技术,特别是一种针对生产环境中利用湿法和紫外吸收法的在线检测空气中微纳米气溶胶浓度的装置。
背景技术
微纳米气溶胶是指漂浮、飞散于空气中至少一维粒度尺寸为微米、亚微米或纳米量级的固体或(和)液体微粒与气体载体共同组成的多相体系。微纳米气溶胶可以通过呼吸、皮肤接触等方式进入生物体内,参与生物体的消化系统和血液循环系统中,从而对生物体的健康造成极大的危害。
目前生产环境中的微纳米气溶胶在线检测的原理基本属于称重法或光散射法两种。其中滤膜称重法是测定空气中气溶胶(颗粒物)质量浓度的最基本方法。TEOM震荡微天平根据集聚于滤膜上气溶胶粒子的质量与微天平震荡频率之间的关系,通过将频率转换为电信号来测量气溶胶浓度,它的缺点是装置体积比较大,不适合携带至现场做测试,且价格比较昂贵;某些基于光散射的测量仪器利用气溶胶粒子在经过激光照射区域时会造成光线的散射,通过测量散射光的强度来检测粉尘的浓度,散射光的叠加会对粉尘测量结果造成较大的误差,且光学系统较为复杂。
在现有基于滤膜称重法的在线检测手段中,主要存在以下几个问题:对微天平精确度要求高;检测数据受客观因素影响较大;对高湿度或挥发性的气溶胶检测精度低。基于光散射法的检测技术中,主要存在技术原理复杂;另外,操作繁琐;难以获得微纳米气溶胶粒子样品,不便于深入研究分析微纳米气溶胶的理化特性。
中国专利号ZL 200810020527.5公开了一种空气中微纳米粉尘的高效捕集设备,利用去离子水、低挥发性的有机溶剂或含有0.1%~1.0%wt表面活性剂的去离子水,实现空气中的微纳米粉尘颗粒的高效采集。此设备虽实现空气中微纳米粉尘的高效采集,但仅获得粉尘颗粒样品,仍需离线检测才能获得空气中粉尘的浓度数值,所测数据具有滞后性。针对突发性气溶胶污染事件,易丧失采取有效合理措施的最佳时间。但由于其具有高效捕集微纳米粉尘的能力,可作为本实用新型的湿法采样系统。
发明内容
本实用新型的目的是提供一种生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,可有效解决现有检测技术中存在的上述问题。
一种生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,包括湿法采样系统、捕集液检测系统和控制系统,所述捕集液检测系统包括第一电磁阀门、第二电磁阀门、样品池、紫外分光光度计、循环水泵和连接水管;控制系统通过串口通信数据线与捕集液检测系统的紫外分光光度计连接,利用数据线与捕集液检测系统的第一电磁阀门、第二电磁阀门和循环水泵连接;在湿法采样系统的储液槽上开两孔,利用连接水管与捕集液检测系统的第一电磁阀门和循环水泵连接,形成检测回路;所述的第一电磁阀门设置在样品池的出液口和湿法采样系统之间;所述的第二电池阀门设置在样品池的进液口和湿法采样系统之间;所述的循环水泵设置在第二电池阀门和湿法采样系统之间;所述样品池设置在紫外分光光度计的检测光路中,保证测样光线顺利通过样品池。
所述控制系统包括单片机、液晶显示终端、SD卡存储模板、继电器和串口通信数据线。
所述样品池的主体材料采用不透明、不与捕集液或气溶胶粒子反应的金属材料或高分子材料,两端封口,封口材料为石英玻璃片。
所述样品池采用下进水上出水结构。
所述样品池的两端设置法兰。
所述的循环水泵设置有可调节流量的流量计。
上述技术方案可进一步改进为:所述控制系统中液晶显示终端采用触摸屏显示终端。
上述技术方案可进一步改进为:所述控制系统中液晶显示终端还包含有一报警提示系统。
为了降低在线检测技术对客观因素的要求和检测设备的结构复杂性与成本,提高针对高湿度或半挥发性微纳米气溶胶的检测精度,高效获得微纳米气溶胶粒子样品。本实用新型提出了一种针对微纳米气溶胶的湿式紫外吸收法在线检测方法,包括以下步骤:
a. 利用湿法采样系统将生产环境中的微纳米气溶胶粒子高效采集并分散于捕集液中;
b. 利用控制系统中的单片机控制继电器的闭合,驱使捕集液检测系统中的第一电磁阀门、第二电磁阀门和循环水泵的开关,使得捕集液定时在紫外分光光度计的检测光路中循环流动;
c. 单片机通过串口通线控制紫外分光光度计的运作,实时获取紫外分光光度计的实时原始数据后,经解析计算转换为实时空气中微纳米气溶胶的浓度值,显示于液晶显示终端并保存于SD卡中。
步骤b所述的检测回路中捕集液流量小于10ml/min时,回路为连续进样循环。
步骤b所述的检测回路中捕集液流量大于或等于10ml/min时,回路为间歇式进样,检测周期为40s。
步骤c中所述的解析计算公式采用
Figure BDA0000286853391
其中,η表示湿法采样系统1的采集效率,%;
c0表示采样点处空气中微纳米气溶胶粒子浓度,g/L;
VL表示湿法采样系统1中捕集液的体积,L;
vG表示进入湿法采样系统1的气体流速,L/s;
t表示在线检测时间,s;
A表示被测物质的紫外吸光度;
Figure BDA0000286853392
表示吸收参数;
n表示误差系数。
本实用新型既可用于职业场所的生产环境中的单一成分的气溶胶在线检测,也可用于在线检测复杂气溶胶环境中的具有紫外吸收波长的特定气溶胶粒子。
本实用新型与现有技术相比,具有如下优点和突出性效果:
1、技术原理简单,相对于传统的微震荡系统和光散射检测仪器,成本低廉,操作简便,实现自动化控制;
2、可实现高湿度或具有半挥发性微纳米气溶胶的有效检测;
3、既能实现微纳米气溶胶的在线检测,又能对其进行高效捕获,便于进一步进行气溶胶粒子的理化分析测试;
4、鉴于紫外吸收检测具有特征检测波长,因此可有效针对生产粉尘进行检测,不受其它来源粉尘的干扰;
附图说明
图1是本实用新型控制系统的结构示意图。
图2是本实用新型的所述装置的整体结构示意图。
图3是本实用新型样品池4的正视图。
图4是本实用新型样品池4的侧视图。
具体实施方式
本实用新型生产环境微纳米气溶胶湿式紫外吸收法在线检测,包括湿法采样系统1、控制系统和捕集液检测系统。控制系统控制检测路线的闭合、数据的读取、转换、计算、显示和存储。湿法采样系统1负责微纳米气溶胶的湿法采集。捕集液检测系统是利用紫外分光光度计2实时检测捕集液中样品的吸光度。
湿法采样系统1是基于专利号为ZL200810020527.5公开的高效捕集设备。在设备的储液槽上开两孔,利用连接水管与捕集液检测系统的第一电磁阀门3和循环水泵6连接,形成检测回路。捕集液检测系统包括第一电磁阀门3、第二电磁阀门5、样品池4、紫外分光光度计2、循环水泵6和连接水管;循环水泵6带有可调节流量的流量计。控制系统通过串口通信数据线与捕集液检测系统的紫外分光光度计2连接,利用数据线与捕集液检测系统的第一电磁阀门3、第二电磁阀门5和循环水泵6连接;第一电磁阀门3设置在样品池4的出液口和湿法采样系统1之间;第二电池阀门5设置在样品池4的进液口和湿法采样系统1之间;循环水泵6设置在第二电池阀门5和湿法采样系统1之间;样品池4设置在紫外分光光度计2的检测光路中,保证测样光线顺利通过样品池4。样品池4采用下进水上出水结构,并两端设置法兰;其主体材料采用不透明、不与捕集液或气溶胶粒子反应的金属材料或高分子材料,两端封口,封口材料为石英玻璃片。
图1所示的是本实用新型的控制系统示意图。控制系统包括单片机、液晶显示终端、SD卡存储模板、继电器和串口通信数据线。控制系统中液晶显示终端采用触摸屏显示终端,液晶显示终端还包含有一报警提示系统。
在常温常压下,将装置的各部件按照图1和图2的结构进行装配和连接。利用螺丝将样品池4的法兰固定在紫外分光光度计2的测样室的两端,保证测样光线顺利通过样品池4,样品池4的正视图和侧视图见图3、4。
对于生产环境微纳米气溶胶粒子的浓度与湿法采样系统1中溶液的粒子溶度存在以下关系:
η = m L m G × 100 % = c L · V L c 0 · V G × 100 % - - - ( 1 )
式中:η——湿法采样系统1的采集效率,%;
c0——采样点处空气中微纳米气溶胶粒子浓度,g/L;
mL、cL——湿法采样系统1中捕集液的捕集到的粒子质量、浓度,g、g/L;
VL——湿法采样系统1中捕集液的体积,L;
mG——进入湿法采样系统1的空气中气溶胶粒子质量,g;
VG——进入湿法采样系统1的气体体积,L。
因此,生产环境微纳米气溶胶粒子的浓度计算公式为:
c 0 = c L · V L η V G × 100 % = c L · V L η V G t × 100 % - - - ( 2 )
式中:vG——进入湿法采样系统1的气体流速,L/s;
t——在线检测时间,s。
因为被测物质的吸光度与浓度存在以下关系:
A=KLcL(3)
式中:A——被测物质的紫外吸光度。
K——被测溶液的吸收系数;
L——被测物质的厚度(一般与样品池的厚度有关)。
但在通过实际标准溶液测试时,存在一定误差,因此(3)式可转换为
c L = A KL + n = mA + n
式中:m——吸收参数,n——误差系数,以标准液溶度为横坐标,其吸光度为纵坐标,作图求出最佳线性方程式,即可得出m、n值。
因此(2)式可转换为:
c 0 = ( mA + n ) · V L η V G t × 100 % - - - ( 4 )
将公式(4)编入控制系统的程序中,输入参数m、n、VL、vG和η,参数A直接实时从紫外分光光度计2中读取,参数t值自动计时读取,可获得生产环境微纳米气溶胶粒子的浓度c0
实施例1
实时监测纳米二氧化钛粉末生产车间。
在实验室中分别配置0mol/L、1mol/L、2mol/L、3mol/L、4mol/L和5mol/L的纳米二氧化钛标准溶液,利用紫外分光光度计2分别测出标准溶液的吸光度值分别为0、0.378、0.739、1.108、1.434和1.8355。以横坐标为标准液溶度,纵坐标为吸光度,然后利用Excel求出最佳线性方程式,即得到m、n的值,即计算出标准曲线为:
cL=0.3633A+0.0076,R2=0.9995
在湿法采样系统1中加入800ml去离子水。基于专利号为ZL200810020527.5公开的高效湿法采样系统1,针对纳米二氧化钛粉末的生产环境的采集效率平均约为95.96%。调节湿法采样系统1中的空气流量计流量为0.1L/s。将以上各参数输入控制系统。
利用单片机开启循环水泵6、第一电磁阀门3和第二电磁阀门5,调节液体流量计流量为8ml/min,将紫外分光光度计调零。随后,启动湿法采样系统1开始采样。单片机通过串口通信数据线自动读取紫外分光光度计2发送的吸光度数值,通过公式计算出空气中的微纳米二氧化钛气溶胶的浓度,并将所得采样时间、吸光度、气溶胶浓度等实时数值显示于液晶显示屏中并存储于SD卡中。
从SD卡中读取结果如下:
采样时间(s) 吸光度值 浓度(g/L)
1 0.0293 0.1523
2 0.0794 0.1520
3 0.1310 0.1535
4 0.1808 0.1528
5 0.2308 0.1525
200 10.0556 0.1526
实施例2
在纳米氧化锌粉末生产车间,在湿法采样系统1中加入去离子水。利用单片机开启循环水泵6、第一电磁阀门3和第二电磁阀门5,调节流量计流量为20ml/min,循环捕集液流动30s后,关闭循环水泵6、第一电磁阀门3和第二电磁阀门5,将紫外分光光度计2调零。随后,启动湿法采样系统1开始采样,并自动打开循环水泵6、第一电磁阀门3和第二电磁阀门5。每隔30s,单片机自动关闭循环水泵6、第一电磁阀门3和第二电磁阀门5后,静止5s,通过串口通信数据线读取紫外分光光度计发送的吸光度数值三次后,再次打开循环水泵6、第一电磁阀门3和第二电磁阀门5。所得数值取平均数后通过公式计算出空气中微纳米氧化锌气溶胶的浓度,并将所得采样时间、吸光度和气溶胶溶度数值储存于SD卡中和显示于液晶显示屏中。
为了得到更友好的人机界面实现操作的便捷,本发明微纳米气溶胶的湿式紫外吸光法在线检测的显示终端可采用触摸屏显示终端,可实现检测系统的参数设置输入、部件控制和检测数据读取。同时,在本发明中,还可以添加一报警系统,所述报警提示系统在对所检测的数据进行判断后,当气溶胶粒子浓度大于上限时,显示报警信息并报警提示,以便相关人员及时采取相关措施。

Claims (8)

1.一种生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,其特征在于所述装置包括湿法采样系统(1)、捕集液检测系统和控制系统,所述捕集液检测系统包括第一电磁阀门(3)、第二电磁阀门(5)、样品池(4)、紫外分光光度计(2)和循环水泵(6);控制系统通过串口通信数据线与捕集液检测系统的紫外分光光度计(2)连接,利用数据线与捕集液检测系统的第一电磁阀门(3)、第二电磁阀门(5)和循环水泵(6)连接;在湿法采样系统(1)的储液槽上开两孔,利用连接水管与捕集液检测系统的第一电磁阀门(3)和循环水泵(6)连接,形成检测回路;所述的第一电磁阀门(3)设置在样品池(4)的出液口和湿法采样系统(1)之间;所述的第二电池阀门(5)设置在样品池(4)的进液口和湿法采样系统(1)之间;所述的循环水泵(6)设置在第二电池阀门(5)和湿法采样系统(1)之间;所述样品池(4)设置在紫外分光光度计(2)的检测光路中。
2.根据权利要求1所述的生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,其特征在于所述控制系统包括单片机、液晶显示终端、SD卡存储模板、继电器和串口通信数据线。
3.根据权利要求1所述的生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,其特征在于所述样品池(4)的主体材料采用不透明、不与捕集液或气溶胶粒子反应的金属材料或高分子材料,其两端封口,封口材料为石英玻璃片。
4.根据权利要求1所述的生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,其特征在于所述样品池(4)采用下进水上出水结构。
5.根据权利要求1所述的生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,其特征在于所述样品池(4)的两端设置法兰。
6.根据权利要求1所述的生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,其特征在于所述的循环水泵(6)设置有可调节流量的流量计。
7.根据权利要求1所述的生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,其特征在于所述控制系统中液晶显示终端采用触摸屏显示终端。
8.根据权利要求1所述的生产环境微纳米气溶胶湿式紫外吸收法在线检测装置,其特征在于所述控制系统中液晶显示终端设置报警提示系统。
CN 201320092821 2013-02-28 2013-02-28 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置 Expired - Fee Related CN203191281U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201320092821 CN203191281U (zh) 2013-02-28 2013-02-28 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201320092821 CN203191281U (zh) 2013-02-28 2013-02-28 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置

Publications (1)

Publication Number Publication Date
CN203191281U true CN203191281U (zh) 2013-09-11

Family

ID=49108134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201320092821 Expired - Fee Related CN203191281U (zh) 2013-02-28 2013-02-28 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置

Country Status (1)

Country Link
CN (1) CN203191281U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020087A (zh) * 2013-02-28 2014-09-03 南京理工大学连云港研究院 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置
CN105044012A (zh) * 2015-07-15 2015-11-11 南京理工大学 大气颗粒物湿式紫外吸收法在线检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020087A (zh) * 2013-02-28 2014-09-03 南京理工大学连云港研究院 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置
CN104020087B (zh) * 2013-02-28 2016-03-23 南京理工大学连云港研究院 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置
CN105044012A (zh) * 2015-07-15 2015-11-11 南京理工大学 大气颗粒物湿式紫外吸收法在线检测方法

Similar Documents

Publication Publication Date Title
CN104020119B (zh) 生产环境微纳米气溶胶湿式紫外吸收法在线检测方法
CN104931440B (zh) 一种基于微流控芯片的便携式重金属高灵敏度检测装置
CN106546550A (zh) 车辆实际驾驶条件下尾气排放测量方法及装置
CN103728229A (zh) 测量大气颗粒物的平均粒径和浓度的测量装置及测量方法
CN112504922B (zh) 一种大气颗粒物粒径分布的在线测量系统及方法
CN205049510U (zh) 一种空气质量监测仪
CN203191281U (zh) 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置
CN201837585U (zh) 一种水浑浊程度实时在线监测装置
CN103940468A (zh) 一种智慧型手持式快速环境监测系统
CN201788149U (zh) 具有湿度校正的光散射式颗粒物在线监测仪
CN204142624U (zh) 一种基于复合光谱测量的在线水质监测装置
CN208888104U (zh) 一种便携式机动车尾气检测仪
CN104020087B (zh) 生产环境微纳米气溶胶湿式紫外吸收法在线检测装置
CN104330371B (zh) 一种定量分析溴化银团簇光催化性能的方法
CN205229042U (zh) 便携式原位紫外光谱烟气分析仪
CN103868834A (zh) Pm2.5室内外环境监测采集器
CN105044012A (zh) 大气颗粒物湿式紫外吸收法在线检测方法
CN102692396A (zh) 一种内毒素检测系统及其定量检测方法
CN204177731U (zh) 一种抗水分干扰的便携式红外烟气分析仪
CN208224234U (zh) 一种水质污染源在线监控装置
CN110525315A (zh) 一种智能型环境监测专用车及使用方法
CN207096039U (zh) 一种微颗粒物在线检测系统
CN206489128U (zh) 一种测定大气碳酸盐的连续自动采样分析装置
CN105115868A (zh) 大气颗粒物湿式间隙检测装置
CN105021779A (zh) 一种小型化的空气质量监测装置及用小型化的空气质量监测装置检测空气质量的方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130911

Termination date: 20150228

EXPY Termination of patent right or utility model