CN203180014U - 一种超材料模式转换器 - Google Patents

一种超材料模式转换器 Download PDF

Info

Publication number
CN203180014U
CN203180014U CN 201320173343 CN201320173343U CN203180014U CN 203180014 U CN203180014 U CN 203180014U CN 201320173343 CN201320173343 CN 201320173343 CN 201320173343 U CN201320173343 U CN 201320173343U CN 203180014 U CN203180014 U CN 203180014U
Authority
CN
China
Prior art keywords
super material
mode converter
outer conductor
inner wire
array element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201320173343
Other languages
English (en)
Inventor
秦奋
王冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Applied Electronics of CAEP
Original Assignee
Institute of Applied Electronics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Applied Electronics of CAEP filed Critical Institute of Applied Electronics of CAEP
Priority to CN 201320173343 priority Critical patent/CN203180014U/zh
Application granted granted Critical
Publication of CN203180014U publication Critical patent/CN203180014U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本实用新型公布了一种超材料模式转换器,属于微波传输领域,该转换器包括内导体、外导体和超材料,所述内导体为圆柱形,外导体为圆筒形,内导体插入外导体之中并同轴心;所述超材料由金属阵元沿轴向周期排布构成并连接在外导体的内壁上;内、外导体的尺寸可调,超材料的金属阵元周期数、尺寸可调;本实用新型的模式转换器结构紧凑,具有较高的功率容量,可以在不增加系统横向尺寸的前提下在约1/3个波长的长度内完成模式转换,能很好地应用于体积小、质量轻的紧凑型窄带高功率微波传输与发射系统。

Description

一种超材料模式转换器
技术领域
本实用新型属于微波传输及微波天线技术领域,具体涉及一种超材料模式转换器,本实用新型可以应用于高功率微波技术领域的传输与发射系统。
背景技术
超材料(Metamaterials)是指运用人工工程方法构建出的具有一般天然材料所不具备的超常性质的材料。一般由金属、介质材料或者二者结合的特殊结构作为阵元,通过精心设计排布各阵元获得一般传统材料所不能获得的物理性质。与一般材料不同,超材料的性质不是由它的材料化学组分决定,而是由它的几何结构所决定;其阵元形状、尺寸、指向及排布方式等均会对通过其中的电磁波、声波等波动的传播产生奇特的影响。刻画超材料电磁学特性的参数如介电常数、磁导率及折射率等表现出一般天然材料所不具备的奇特性质,如负介电常数、负磁导率和负折射率等等。电磁超材料的本质就是通过对阵元及其排布方式的精心设计,达到操控材料电磁特性参数的目的。由于材料特性的“可操控性”,其在微波频段得到了广泛的研究和应用,如电磁隐身、赋形天线、滤波器等等。
高功率微波(High Power Microwave, HPM)是指峰值功率大于100MW,频率介于1 GHz到300 GHz之间的电磁波。它是本世纪70年代以来随着脉冲功率技术、相对论电子学和等离子体物理等学科的发展而发展起来的一个新的研究领域。随着等离子体技术、脉冲功率技术的进步以及复杂PIC模拟工具的发展,高功率微波技术也迅速地发展起来,尤其是在高功率微波源的研制方面取得了极大的进展,先后出现了很多种不同类型的高功率微波源。
大多数高功率微波源如轴向提取的虚阴极振荡器、相对论返波管、磁绝缘线振荡器、三腔渡越时间振荡器、多波契伦克夫发生器等都具有旋转对称的慢波结构,其微波输出模式多为圆波导或同轴波导轴对称模。由于其输出端口的口径场分布具有圆对称性,这些模式直接辐射会得到环状的远场方向图,辐射场能量分散,不利于高功率微波定向辐射。
为了得到方向集中的微波辐射,需要设计轴对称模式集中辐射天线。目前在紧凑型高功率微波源设计方面应用得比较成功的轴对称模式集中辐射天线设计方案是模式转换器和辐射喇叭的结构。名称为“同轴插板式TEM-TE11模式转换器的设计与实验研究”的文章(强激光与粒子束,2005年第17卷第6期,p897)提出一种插板式模式转换器,将同轴波导分成相速度不等的多个扇形波导分区,利用微波在各分区内相速度不同来实现模式转换。但是由于电磁波在各分区之间相速度差值有限,要实现TEM-TE11的模式转换需要很长的系统结构。为了缩短插板式结构的长度,名称为“L波段磁绝缘线振荡器一体化辐射天线”的文章(强激光与粒子束,2008年第20卷第3期,p435)提出了一种插板与介质移相相结合的结构,移相介质的引入使模式转换器长度大为减小,但是功率容量问题仍然是该类结构的瓶颈。因此需要设计功率容量更高的紧凑型模式转换器,促进高功率微波源的实用化。
实用新型内容
为了使模式转换器既能实现模式转换功能,又能具有较高的功率容量,同时还能做到结构紧凑,本实用新型提供了一种新型的超材料模式转换器。该模式转换器能实现TEM/ 模到 模的模式转换,且结构紧凑,功率容量高。
本实用新型采用如下技术方案:一种超材料模式转换器,包括内导体、外导体和超材料,所述内导体为圆柱形,外导体为圆筒形,内导体插入外导体之中并同轴心;所述超材料由金属阵元沿轴向周期排布构成并连接在外导体的内壁上;所述转换器沿微波传播方向分为输入口、模式转换区、输出口三部分;所述超材料位于模式转换区内,所述超材料周期性排列的多组金属阵元将模式转换区中的内导体、外导体组成的同轴波导沿圆周方向分成相等的两个区域。
在上述技术方案中,所述金属阵元由几何形状的栅格沿圆周方向周期排布于约180度范围内构成
在上述技术方案中,所述超材料的金属阵元周期数根据需要可调。
在上述技术方案中,所述内导体、外导体的尺寸可调。
在上述技术方案中,所述输入口没有内导体。
在上述技术方案中,所述输出口没有内导体。
在上述技术方案中,所述输入口、输出口均没有内导体。
在上述技术方案中,所述两个区域之间设置一金属板。
本实用新型的优点在于:本实用新型的模式转换器结构紧凑,具有较高的功率容量,可以在不增加系统横向尺寸的前提下在约1/3个波长的长度内完成模式转换,能很好地应用于体积小、质量轻的紧凑型窄带高功率微波传输与发射系统。
附图说明
本实用新型将通过实施例并参照附图的方式说明,其中:
图1是本实用新型横截面试图;
图2是本实用新型的实施例一的剖视图;
图3是本实用新型的实施例二的剖视图;
图4是本实用新型的实施例三的剖视图;
图5是本实用新型的实施例四的剖视图;
其中,1是外导体  2是内导体  3是超材料。
具体实施方式
下面结合附图对本实用新型做进一步的说明。
如图1所示,本实用新型主要由外导体1、内导体2、超材料3三部分组成,外导体1和内导体2均有传导率高、损耗低的金属组成,一般采用不锈钢或者铜或铝;外导体1为圆筒形,内导体2为圆柱形,内导体2置于外导体1之内,并且两者同轴心,超材料3由金属阵元沿轴向周期排布构成并和外导体1的内壁连接在一起。
如图2所述,转换器沿微波传播方向分为输入口、模式转换区、输出口三部分,超材料3位于模式转换区内,超材料3的金属阵元的周期数目根据实际需要是可调的,金属阵元由几何形状的栅格沿圆周方向周期排布于约180度范围内,几何形状可以是三角形、方形、扇形等 形状;栅格由横截面为方形、圆形或其他形状的金属杆构成,金属杆长度、大小、排布周期等尺度均可调。
超材料周期性排列的多组金属阵元将模式转换区中内、外导体组成的同轴波导沿圆周方向分成大致相等的两个区域;其中一个区域内分布有的金属周期阵元,形成扇形波导内的移相超材料;另一个区域内为扇形波导;两个区域之间可以在相交边界上通过金属板分开,也可以不设置金属板分隔。
在整个模式转换器中,模式转换区为沿圆周方向分布不同介电常数材料的同轴波导结构;输入口和输出口既可以为同轴波导结构,也可以为空心圆波导结构,内、外导体尺寸在三个功能区域可调。
本实用新型的模式转换器的工作原理是:TEM模式或 模式的微波通过输入口进入模式转换器,以TEM模进入模式变换区;TEM的微波模在模式转换区沿角向被分成两部分,一部分沿移相超材料区域传播,另一部分沿扇形波导区域传播。在同等传输距离,由于微波在两个区域相速度不同,两个区域微波会产生一定相位差;选择恰当的传输距离使两个区域的微波在到达模式转换区末端时产生180度的相位差,从而两部分微波在模式转换区末端合成同轴波导中的 模式,然后经由输出口向下游传输。
实施例1:
如图2所示,在转换器内每排金属阵元由两根半圆弧形金属杆及七根沿半径方向的直金属杆构成十二个扇形栅格沿圆周方向周期排布构成;在本实施例中,内导体半径68mm,外导体半径106mm;金属阵元轴向周期为20mm;在模式转换区中,每排金属阵元中的栅格张角相等均为30度;每排阵元分布于角向180度范围之内;半圆弧形金属杆及直金属杆横截面均为正方形,边长为4mm;两根半圆弧形金属杆中心半径分别为85mm和94.5mm。在仿真计算中,该模式转换器在中心频率1.53GHz上转换效率为97%,功率容量为2.5GW,模式转换区轴向长度约为0.33个微波波长。
实施例2:
如图3所示,本实施例与实施例1的基本结构相同,不同之处是输出口无内导体,用于匹配连接空心波导传输结构。
在本实施例中,内导体半径68mm,外导体半径106mm;模式转换区中,金属阵元轴向周期为20mm;每排金属阵元中的栅格张角相等均为30度;每排阵元分布于角向180度范围之内;半圆弧形金属杆及直金属杆横截面均为正方形,边长为4mm;两根半圆弧形金属杆中心半径分别为85mm和94.5mm;模式转换区后内导体为锥形结构,其顶端半径为40mm,长度为20mm,该模式转换器在中心频率1.54GHz上转换效率为96%,功率容量为2.5GW,模式转换区轴向长度约为0.33个微波波长。
实施例3:
如图4所示,本实施例与实施例1的基本结构相同,不同之处是输入口无内导体,用于匹配连接空心波导传输结构。
在本实施例中,内导体半径68mm,外导体半径106mm;模式转换区前内导体为锥形结构,其顶端半径为40mm,长度为20mm;模式转换区中,金属阵元轴向周期为20mm;每排金属阵元中的栅格张角相等均为30度;每排阵元分布于角向180度范围之内;半圆弧形金属杆及直金属杆横截面均为正方形,边长为4mm;两根半圆弧形金属杆中心半径分别为85mm和94.5mm。该模式转换器在中心频率1.54GHz上转换效率为96%,功率容量为2.5GW,模式转换区轴向长度约为0.33个微波波长。
实施例4:
如图5所示,本实施例与实施例1的基本结构相同,不同之处是输入口与输出口均无内导体,用于匹配连接空心波导传输结构。
在本实施例中,内导体半径68mm,外导体半径106mm;模式转换区前后内导体均为锥形结构,其顶端半径为20mm,长度为60mm;模式转换区中,金属阵元轴向周期为20mm;每排金属阵元中的栅格张角相等均为30度;每排阵元分布于角向180度范围之内;半圆弧形金属杆及直金属杆横截面均为正方形,边长为4mm;两根半圆弧形金属杆中心半径分别为85mm和94.5mm。该模式转换器在中心频率1.52GHz上转换效率为95%,功率容量为2.5GW,模式转换区轴向长度约为0.33个微波波长。
本说明书中公开的所有特征,除了互相排斥的特征以外,均可以以任何方式组合。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。 

Claims (8)

1.一种超材料模式转换器,其特征在于包括内导体、外导体和超材料,所述内导体为圆柱形,外导体为圆筒形,内导体插入外导体之中并同轴心;所述超材料由金属阵元沿轴向周期排布构成并连接在外导体的内壁上;所述转换器沿微波传播方向分为输入口、模式转换区、输出口三部分;所述超材料位于模式转换区内,所述超材料周期性排列的多组金属阵元将模式转换区中的内导体、外导体组成的同轴波导沿圆周方向分成相等的两个区域。
2.根据权利要求1所述的一种超材料模式转换器,其特征在于所述金属阵元由几何形状的栅格沿圆周方向周期排布于约180度范围内构成。
3.根据权利要求2所述的一种超材料模式转换器,其特征为超材料的金属阵元周期数根据需要可调。
4.根据权利要求1所述的一种超材料模式转换器,其特征为所述内导体、外导体的尺寸可调。
5.根据权利要求4所述的一种超材料模式转换器,其特征为所述输入口没有内导体。
6.根据权利要求4所述的一种超材料模式转换器,其特征为所述输出口没有内导体。
7.根据权利要求4所述的一种超材料模式转换器,其特征为所述输入口、输出口均没有内导体。
8.根据权利要求1所示的一种超材料模式转换器,其特征为所述两个区域之间设置一金属板。
CN 201320173343 2013-04-09 2013-04-09 一种超材料模式转换器 Expired - Fee Related CN203180014U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201320173343 CN203180014U (zh) 2013-04-09 2013-04-09 一种超材料模式转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201320173343 CN203180014U (zh) 2013-04-09 2013-04-09 一种超材料模式转换器

Publications (1)

Publication Number Publication Date
CN203180014U true CN203180014U (zh) 2013-09-04

Family

ID=49076674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201320173343 Expired - Fee Related CN203180014U (zh) 2013-04-09 2013-04-09 一种超材料模式转换器

Country Status (1)

Country Link
CN (1) CN203180014U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219567A (zh) * 2013-04-09 2013-07-24 中国工程物理研究院应用电子学研究所 一种超材料模式转换器
CN104038157A (zh) * 2014-06-20 2014-09-10 中国工程物理研究院应用电子学研究所 一种磁绝缘线振荡器
CN104466334A (zh) * 2014-12-01 2015-03-25 西南科技大学 基于分层介质的宽频带模式变换器
CN107039716A (zh) * 2017-06-16 2017-08-11 中国工程物理研究院应用电子学研究所 一种高功率微波可控多频介电介质移相型模式转换器
CN113506967A (zh) * 2021-09-10 2021-10-15 四川大学 一种超材料内导体及方同轴
CN114005716A (zh) * 2021-10-27 2022-02-01 西北核技术研究所 带双输出口的径向三腔渡越时间振荡器及微波产生方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219567A (zh) * 2013-04-09 2013-07-24 中国工程物理研究院应用电子学研究所 一种超材料模式转换器
CN103219567B (zh) * 2013-04-09 2016-04-20 中国工程物理研究院应用电子学研究所 一种超材料模式转换器
CN104038157A (zh) * 2014-06-20 2014-09-10 中国工程物理研究院应用电子学研究所 一种磁绝缘线振荡器
CN104466334A (zh) * 2014-12-01 2015-03-25 西南科技大学 基于分层介质的宽频带模式变换器
CN107039716A (zh) * 2017-06-16 2017-08-11 中国工程物理研究院应用电子学研究所 一种高功率微波可控多频介电介质移相型模式转换器
CN107039716B (zh) * 2017-06-16 2021-12-21 中国工程物理研究院应用电子学研究所 一种高功率微波可控多频介电介质移相型模式转换器
CN113506967A (zh) * 2021-09-10 2021-10-15 四川大学 一种超材料内导体及方同轴
CN113506967B (zh) * 2021-09-10 2021-11-16 四川大学 一种超材料内导体及方同轴
CN114005716A (zh) * 2021-10-27 2022-02-01 西北核技术研究所 带双输出口的径向三腔渡越时间振荡器及微波产生方法
CN114005716B (zh) * 2021-10-27 2023-07-21 西北核技术研究所 带双输出口的径向三腔渡越时间振荡器及微波产生方法

Similar Documents

Publication Publication Date Title
CN203180014U (zh) 一种超材料模式转换器
CN103219567B (zh) 一种超材料模式转换器
CN104064422B (zh) 一种小型全金属慢波器件
Wang et al. All-metal metamaterial slow-wave structure for high-power sources with high efficiency
CN102569950B (zh) 微波光子晶体模式转换器
Liang et al. Orbital angular momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications
CN103516327B (zh) 高功率同轴结构过模表面波振荡器及太赫兹波产生方法
CN105161390B (zh) 新型超常材料高功率微波源
CN104218325B (zh) 一种等效介电常数和磁导率近零的人工电磁材料
CN101119609B (zh) 狭缝与大缝结合式微波等离子体反应腔
CN103151620A (zh) 高功率微波径向线缝隙阵列天线
CN103337710A (zh) 一种基于新型人工电磁材料的宽频带低副瓣透镜天线
CN102739170A (zh) 一种用于太赫兹功率放大器的高频结构
CN106653525A (zh) 基于高次模式工作机制的毫米波段渡越时间振荡器
CN103956537A (zh) 高功率微波圆波导插板混合模式转换器
Kutsaev et al. Design and multiphysics analysis of a 176 MHz continuous-wave radio-frequency quadrupole
CN112751173B (zh) 基于切伦科夫辐射机制的超材料慢波结构单元及慢波结构
CN106207319B (zh) 一种高转换效率的宽带调频同轴插板式模式转换器
CN104183444B (zh) 一种具有内径尺寸递减电子注通道的折叠波导慢波结构
CN103414028A (zh) 一种高功率微波谐振腔天线
CN106602275A (zh) 一种电磁涡旋喇叭天线
CN204834880U (zh) 一种基于环形槽线的oam螺旋波束发生器
CN205177765U (zh) 一种强流电子束径向向内发射无磁场高功率微波器件
CN203895575U (zh) 一种低阶边廊模波导辐射器
CN102810767B (zh) 以类椭球型超材料为副反射面的超材料微波天线

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130904

Termination date: 20160409

CF01 Termination of patent right due to non-payment of annual fee