CN205177765U - 一种强流电子束径向向内发射无磁场高功率微波器件 - Google Patents

一种强流电子束径向向内发射无磁场高功率微波器件 Download PDF

Info

Publication number
CN205177765U
CN205177765U CN201521033879.6U CN201521033879U CN205177765U CN 205177765 U CN205177765 U CN 205177765U CN 201521033879 U CN201521033879 U CN 201521033879U CN 205177765 U CN205177765 U CN 205177765U
Authority
CN
China
Prior art keywords
aperture plate
inner conductor
electron beam
endless metal
coaxial inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201521033879.6U
Other languages
English (en)
Inventor
张运俭
孟凡宝
丁恩燕
李正红
马乔生
吴洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Applied Electronics of CAEP
Original Assignee
Institute of Applied Electronics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Applied Electronics of CAEP filed Critical Institute of Applied Electronics of CAEP
Priority to CN201521033879.6U priority Critical patent/CN205177765U/zh
Application granted granted Critical
Publication of CN205177765U publication Critical patent/CN205177765U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

本实用新型公开了一种强流电子束径向向内发射无磁场高功率微波器件,包括:阳极,其具有容纳腔;阴极,其通过绝缘子与阳极连接并位于容纳腔内;同轴内导体,其与阳极连接并位于容纳腔内;同轴内导体与容纳腔形成同轴结构;耦合板,其连接在同轴内导体的端面上;四个具有相同圆心不同半径的环形金属栅网,其固定连接在栅网支撑区及同轴内导体上,四个环形金属栅网与耦合板、同轴内导体组成谐振腔。将电子束发射方式改为径向,并利用金属栅网来分隔腔体,由于电子束径向发射,因此电子束的截面较大,能在电流密度较低的情况下传输更高的束流强度;同时径向结构使空间电荷效应较小,空间极限电流大,可允许有较大的束电流输入,而不产生虚阴极效应。

Description

一种强流电子束径向向内发射无磁场高功率微波器件
技术领域
本实用新型涉及高功率微波器件技术领域,具体涉及一种强流电子束径向向内发射无磁场高功率微波器件。
背景技术
无引导磁场器件研究逐步向高功率、高效率的方向发展。上世纪90年代,BarryM.Marder提出了基于渡越时间效应的分离腔振荡器,可以在较短的距离内对强流相对论电子束进行调制而且不需外加磁场。由于电流要轴向通过分离腔金属网,并且要防止虚阴极的形成,因此电流密度不能过大,所以这种器件为高阻器件,在一定程度上影响了其输出微波的功率。
实用新型内容
作为各种广泛且细致的研究和实验的结果,本实用新型的发明人已经发现,利用环形强流电子束向内发射,形成低阻抗器件,采用多层金属网引导电子束传输,形成分离振荡腔,能较大提高微波输出效率。基于这种发现,完成了本实用新型。
本实用新型的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
为了实现根据本实用新型的这些目的和其它优点,提供了一种强流电子束径向向内发射无磁场高功率微波器件,包括:
阳极,其为具有容纳腔的圆柱体;所述容纳腔的内部设置金属网支撑区;
阴极,其设置在所述容纳腔内并通过绝缘子连接在所述阳极的一个端面上;所述阴极为环形结构;所述环形结构的内表面上附着平绒以产生径向向内发射的环形电子束;
同轴内导体,其通过支撑杆连接在所述容纳腔内;所述同轴内导体的一端位于所述阴极的环形结构内;且所述同轴内导体与所述容纳腔形成同轴结构;所述同轴内导体的另一端连接模式转换器;
耦合板,其连接在所述同轴内导体的端面上并位于所述阴极的环形结构内;
第一环形金属栅网,其套设在所述同轴内导体上并与同轴内导体形成同轴结构;所述第一环形金属栅网通过金属网支撑区与所述阳极连接;所述第一环形金属栅网与所述耦合板连接,并位于所述平绒的下方;
第二环形金属栅网,其位于所述第一环形金属栅网内并与第一环形金属栅网形成间隔空腔;所述第三环形金属栅网通过金属网支撑区与所述阳极连接;
第三环形金属栅网,其位于所述第二环形金属栅网内并与第二环形金属栅网形成间隔空腔;所述第三环形金属栅网通过金属网支撑区与所述阳极连接;
第四环形金属栅网,其位于所述第三环形金属栅网内并与第三环形金属栅网和同轴内导体形成间隔空腔;所述第四环形金属栅网分别与所述耦合板、同轴内导体连接;
其中,所述第一环形金属栅网、第二环形金属栅网、第三环形金属栅网和第四环形金属栅网为具有相同圆心不同半径的金属栅网;且四个环形金属栅网与耦合板、同轴内导体组成谐振腔。
优选的是,所述绝缘子为增强尼龙绝缘子,其由增强尼龙制备而成。
优选的是,还包括:微波辐射天线,其连接在所述阳极的另一个端面上。
优选的是,所述微波辐射天线为圆锥喇叭天线,所述圆锥喇叭天线的天线窗由聚四氟乙烯制备而成。
优选的是,所述阳极为无磁不锈钢阳极,其由无磁不锈钢制备而成,所述金属网支撑区的上部采用凹陷结构。
优选的是,所述同轴内导体为无磁不锈钢同轴内导体,其由无磁不锈钢制备而成。
优选的是,所述第一环形金属栅网、第二环形金属栅网、第三环形金属栅网和第四环形金属栅网均为厚度为0.1cm的无磁不锈钢环形金属栅网,其由无磁不锈钢制备而成。
优选的是,所述第一环形金属栅网与第二环形金属栅网的间隔空间的距离为1.8cm;所述第二环形金属栅网与第三环形金属栅网的间隔空间的距离为1.8cm;所述第三环形金属栅网与第四环形金属栅网的间隔空间的距离大于1.8cm。
优选的是,所述第二环形金属栅网和第三环形金属栅网的一端均与所述阳极连接,另一端均悬空在所述容纳腔内并与所述耦合板间隔1cm。
优选的是,所述支撑杆有两根,两根支撑杆间隔四分之一传输微波波长;所述支撑杆为无磁不锈钢支撑杆,其由无磁不锈钢制备而成。
本实用新型至少包括以下有益效果:
(1)本实用新型针对分离腔振荡器这一弱点,将电子束发射方式由轴向改为径向,进而得到了一种无引导磁场紧凑型高功率微波器件。这种器件利用金属网来分隔腔体,由于电子束径向发射,因此电子束的截面较大,能在电流密度较低的情况下传输更高的束流强度;同时径向结构使空间电荷效应较小,空间极限电流大,即该器件允许有较大的束电流输入,而不致产生虚阴极效应。这些特点使得该器件比分离腔振荡器更高效率和更高功率的微波输出;
(2)利用环形强流电子束径向向内发射,形成低阻抗器件,采用多层金属网引导电子束传输,形成分离振荡腔,能较大提高微波输出效率;计算表明其微波输出频率主要与振荡腔结构有关,适应范围较宽,并且其输出采用同轴结构,微波模式较单一,利于微波提取及辐射;
(3)采用电子束向内发射,使器件整体结构紧凑,并且使微波提取和模式转换比较容易实现。微波输出频率主要与谐振腔结构有关,为使器件整体结构紧凑,可以通过同时调整谐振腔径向及轴向尺寸,实现一定频率的输出。对径向分离腔进行开放腔高频结构分析,计算表明腔内只存在角向均匀的TM模式;对进行束波互作用电磁场分析表明第二环形金属栅网和第三环形金属栅网形成的间隔空腔与第三环形金属栅网和第四环形金属栅网形成的间隔空腔内的场强分布是逐步过渡的,使电子束可以与微波场进行较多的能量交换,这是器件输出效率较高的主要原因。
本实用新型的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本实用新型的研究和实践而为本领域的技术人员所理解。
附图说明:
图1为本实用新型强流电子束径向向内发射无磁场高功率微波器件的正面剖视图。
具体实施方式:
下面结合附图对本实用新型做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
图1示出了本实用新型所述一种强流电子束径向向内发射无磁场高功率微波器件,包括:
阳极3,其为具有容纳腔13的圆柱体;所述容纳腔的内部设置金属网支撑区15;
阴极2,其设置在所述容纳腔13内并通过绝缘子1连接在所述阳极3的一个端面上;所述阴极2为环形结构;所述阴极2为无磁不锈钢阴极;所述环形结构的内表面上附着平绒4以产生径向向内发射的环形电子束;所述绝缘子1的作用是对器件的阴极及阳极进行电绝缘,并与其密封连接固定,形成真空腔;
同轴内导体9,其通过支撑杆10连接在所述容纳腔13内;所述同轴内导体9的一端位于所述阴极2的环形结构内;且所述同轴内导体9与所述容纳腔13形成同轴结构;所述同轴内导体9的另一端连接模式转换器11;
耦合板14,其连接在所述同轴内导体9的端面上并位于所述阴极2的环形结构内;
第一环形金属栅网5,其套设在所述同轴内导体9上并与同轴内导体9形成同轴结构;所述第一环形金属栅网5通过金属网支撑区15与所述阳极3连接,所述第一环形金属栅网5与所述耦合板14连接,并位于所述平绒4的下方;
第二环形金属栅网6,其位于所述第一环形金属栅网5内并与第一环形金属栅网5形成间隔空腔;所述第二环形金属栅网6通过金属网支撑区15与所述阳极3连接;
第三环形金属栅网7,其位于所述第二环形金属栅网6内并与第二环形金属栅网6形成间隔空腔;所述第三环形金属栅网7通过金属网支撑区15与所述阳极3连接;
第四环形金属栅网8,其位于所述第三环形金属栅网7内并与第三环形金属栅网7和同轴内导体9形成间隔空腔;所述第四环形金属栅网8分别与所述耦合板14、同轴内导体9连接;所述同轴内导体9位于第四环形金属栅网8内的部分的直径小于其他部分的直径,即电子吸收负载区16,且其与第四环形金属栅网8构成电子收集区,其主要作用是采用金属栅网将剩余电子引入吸收,电子吸收负载区的存在是为了防止进入电子收集区的电子径直穿过金属栅网重新进入反方向微波同轴提取区,进而降低微波输出功率。所述同轴内导体9直径较大的部分通过支撑杆与阳极外筒连接,以形成微波同轴提取区。
其中,所述第一环形金属栅网5、第二环形金属栅网6、第三环形金属栅网7和第四环形金属栅网8为具有相同圆心不同半径的金属栅网;且四个环形金属栅网(5,6,7,8)与耦合板14、金属支撑区15组成谐振腔。
在这种技术方案中,第一环形金属栅网5的作用是将平绒阴极发射产生的强流电子束引入到谐振腔内,第二环形金属栅网6、第三环形金属栅网7一端固定在器件阳极3,另外一端悬空,且与耦合板14存在一定间隔,其作用是引导强流电子束在谐振腔内传输并通过边耦合完成束波强相互作用,产生高功率微波。第四环形金属栅网8与耦合板14及同轴内导体9连接,其作用是将参与完束波互作用的电子束引入到电子吸收集内,防止电子束反射再重新进入谐振腔,影响微波输出。同轴内导体9的一端与耦合板14连接,另外一端通过两个前后间隔四分之一传输微波波长的支撑杆10与阳极3固定连接,其作用是使器件传输微波TEM模式。模式转换器11的作用是将TEM模式转换为TM01模式。
在这种技术方案中,用真空获得装置将强流电子束径向向内发射无磁场高功率微波器件内真空度处理到毫帕量级。阴阳极之间施加高电压,当电压强度达到阴极材料的电子发射阈值时,平绒阴极发射产生径向向内强流电子束。强流电子束在第一环形金属栅网引导下径向向内传输进入谐振腔,并在第二环形金属栅网6和第三环形金属栅网7的引导下,在谐振腔内完成束波互作用,电子束将能量交给微波场,产生高功率微波。剩余电子束经第四环形金属栅网8引导,被同轴内导体吸收。高功率微波以TEM模式通过同轴内导体与阳极外波导构成的同轴波导传输,并经模式转换器以TM01模式经天线辐射出去。
在上述技术方案中,所述绝缘子为增强尼龙绝缘子,其由增强尼龙制备而成。
在上述技术方案中,所述微波器件还包括:微波辐射天线12,其连接在所述阳极的另一个端面上用于将微波辐射出去。
在上述技术方案中,所述微波辐射天线为圆锥喇叭天线,所述圆锥喇叭天线的天线窗由聚四氟乙烯制备而成。
在上述技术方案中,所述阳极为无磁不锈钢阳极,其由无磁不锈钢制备而成,所述金属网支撑区的上部采用凹陷结构,以减少阴极尖端放电的可能性。
在上述技术方案中,所述同轴内导体为无磁不锈钢同轴内导体,其由无磁不锈钢制备而成。
在上述技术方案中,所述第一环形金属栅网、第二环形金属栅网、第三环形金属栅网和第四环形金属栅网均为厚度为0.1cm的无磁不锈钢环形金属栅网,其由无磁不锈钢制备而成。
在上述技术方案中,所述第一环形金属栅网5与第二环形金属栅网6的间隔空间的距离为1.8cm;所述第二环形金属栅网6与第三环形金属栅网7的间隔空间的距离为1.8cm;所述第三环形金属栅网7与第四环形金属栅网8的间隔空间的距离大于1.8cm;由四个环形金属栅网(5,6,7,8)径向分隔成的三个间隔空腔之间通过变耦合效应联系在一起,所述第三环形金属栅网7与第四环形金属栅网8的间隔空间的距离变大的原因是为了使电子有足够的减速空间,从而更好的把电子的动能转化为微波能量。
优选的是,所述第二环形金属栅网和第三环形金属栅网的一端均与所述阳极连接,另一端均悬空在所述容纳腔内并与所述耦合板间隔1cm。
优选的是,所述支撑杆有两根,两根支撑杆间隔四分之一传输微波波长;所述支撑杆为无磁不锈钢支撑杆,其由无磁不锈钢制备而成。
尽管本实用新型的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本实用新型的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本实用新型并不限于特定的细节和这里示出与描述的图例。

Claims (10)

1.一种强流电子束径向向内发射无磁场高功率微波器件,其特征在于,包括:
阳极,其为具有容纳腔的圆柱体,所述容纳腔的内部设置金属网支撑区;
阴极,其设置在所述容纳腔内并通过绝缘子连接在所述阳极的一个端面上;所述阴极为环形结构;所述环形结构的内表面上附着平绒以产生径向向内发射的环形电子束;
同轴内导体,其通过支撑杆连接在所述容纳腔内;所述同轴内导体的一端位于所述阴极的环形结构内;且所述同轴内导体与所述容纳腔形成同轴结构;所述同轴内导体的另一端连接模式转换器;
耦合板,其连接在所述同轴内导体的端面上并位于所述阴极的环形结构内;
第一环形金属栅网,其套设在所述同轴内导体上并与同轴内导体形成同轴结构;所述第一环形金属栅网通过金属网支撑区与所述阳极连接;所述第一环形金属栅网与耦合板连接,并位于所述平绒的下方;
第二环形金属栅网,其位于所述第一环形金属栅网内并与第一环形金属栅网形成间隔空腔;所述第二环形金属栅网通过金属网支撑区与所述阳极连接;
第三环形金属栅网,其位于所述第二环形金属栅网内并与第二环形金属栅网形成间隔空腔;所述第三环形金属栅网通过金属网支撑区与所述阳极连接;
第四环形金属栅网,其位于所述第三环形金属栅网内并与第三环形金属栅网和同轴内导体形成间隔空腔;所述第四环形金属栅网分别与所述耦合板、同轴内导体连接;
其中,所述第一环形金属栅网、第二环形金属栅网、第三环形金属栅网和第四环形金属栅网为具有相同圆心不同半径的金属栅网;且四个环形金属栅网与耦合板、同轴内导体组成谐振腔。
2.如权利要求1所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,所述绝缘子为增强尼龙绝缘子,其由增强尼龙制备而成。
3.如权利要求1所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,还包括:微波辐射天线,其连接在所述阳极的另一个端面上。
4.如权利要求3所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,所述微波辐射天线为圆锥喇叭天线,所述圆锥喇叭天线的天线窗由聚四氟乙烯制备而成。
5.如权利要求1所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,所述阳极为无磁不锈钢阳极,其由无磁不锈钢制备而成;所述金属网支撑区的上部采用凹陷结构。
6.如权利要求1所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,所述同轴内导体为无磁不锈钢同轴内导体,其由无磁不锈钢制备而成。
7.如权利要求1所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,所述第一环形金属栅网、第二环形金属栅网、第三环形金属栅网和第四环形金属栅网均为厚度为0.1cm的无磁不锈钢环形金属栅网,其由无磁不锈钢制备而成。
8.如权利要求1所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,所述第一环形金属栅网与第二环形金属栅网的间隔空间的距离为1.8cm;所述第二环形金属栅网与第三环形金属栅网的间隔空间的距离为1.8cm;所述第三环形金属栅网与第四环形金属栅网的间隔空间的距离大于1.8cm。
9.如权利要求1所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,所述第二环形金属栅网和第三环形金属栅网的一端均与所述阳极连接,另一端均悬空在所述容纳腔内并与所述耦合板间隔1cm。
10.如权利要求1所述的强流电子束径向向内发射无磁场高功率微波器件,其特征在于,所述支撑杆有两根,两根支撑杆间隔四分之一传输微波波长;所述支撑杆为无磁不锈钢支撑杆,其由无磁不锈钢制备而成。
CN201521033879.6U 2015-12-11 2015-12-11 一种强流电子束径向向内发射无磁场高功率微波器件 Active CN205177765U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201521033879.6U CN205177765U (zh) 2015-12-11 2015-12-11 一种强流电子束径向向内发射无磁场高功率微波器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201521033879.6U CN205177765U (zh) 2015-12-11 2015-12-11 一种强流电子束径向向内发射无磁场高功率微波器件

Publications (1)

Publication Number Publication Date
CN205177765U true CN205177765U (zh) 2016-04-20

Family

ID=55741721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201521033879.6U Active CN205177765U (zh) 2015-12-11 2015-12-11 一种强流电子束径向向内发射无磁场高功率微波器件

Country Status (1)

Country Link
CN (1) CN205177765U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551916A (zh) * 2015-12-11 2016-05-04 中国工程物理研究院应用电子学研究所 一种无引导磁场紧凑型高功率微波器件
CN109791046A (zh) * 2017-09-27 2019-05-21 微-埃普西龙测量技术有限两合公司 用于测量涂层的厚度的设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551916A (zh) * 2015-12-11 2016-05-04 中国工程物理研究院应用电子学研究所 一种无引导磁场紧凑型高功率微波器件
CN109791046A (zh) * 2017-09-27 2019-05-21 微-埃普西龙测量技术有限两合公司 用于测量涂层的厚度的设备

Similar Documents

Publication Publication Date Title
CN112885681B (zh) 一种双端发射阴极结构的相对论磁控管
JP5620396B2 (ja) 電力回生装置および電力回生方法、電力蓄電システムおよび電力蓄電方法、ならびに高周波装置
CN205881867U (zh) 一种高效重频低磁场高功率微波器件
US9425020B2 (en) Miniaturized all-metal slow-wave structure
CN103516327B (zh) 高功率同轴结构过模表面波振荡器及太赫兹波产生方法
CN105551916A (zh) 一种无引导磁场紧凑型高功率微波器件
CN104465275B (zh) 一种捷变频相对论返波管振荡器
CN108807115B (zh) 一种末端全反射高功率微波器件
CN105355528A (zh) 一种过模级联高频结构的双电子注太赫兹波辐射源
CN105161390A (zh) 新型超常材料高功率微波源
CN103219567B (zh) 一种超材料模式转换器
CN109616393A (zh) 一种l波段低引导磁场紧凑型高功率微波器件
CN205177765U (zh) 一种强流电子束径向向内发射无磁场高功率微波器件
CN109524283A (zh) 一种双波段低引导磁场紧凑型高功率微波器件
CN103779763A (zh) 一种基于阵列光栅结构的太赫兹功率源高频结构
CN103414028B (zh) 一种高功率微波谐振腔天线
CN109585242B (zh) 一种双频高功率微波产生器
Read et al. Design of a 10 MW, $ L $-Band, Annular Beam Klystron
CN108615665B (zh) 一种利用磁体尾场的相对论返波振荡器
Dang et al. Design and preliminary experiment of a disk-beam relativistic klystron amplifier for Ku-band long-pulse high power microwave radiation
CN103632908B (zh) 太赫兹回旋管
Chankapoe Wireless power transmission using horn antenna with 2.45 GHz magnetron
CN104332373B (zh) 一种产生圆柱形多注强流相对论电子束的冷阴极
CN109616394A (zh) 一种s波段低引导磁场紧凑型高功率微波器件
CN204156086U (zh) 一种一体化的宽带高功率贴片阵列天线

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant