CN103516327B - 高功率同轴结构过模表面波振荡器及太赫兹波产生方法 - Google Patents

高功率同轴结构过模表面波振荡器及太赫兹波产生方法 Download PDF

Info

Publication number
CN103516327B
CN103516327B CN201310445994.3A CN201310445994A CN103516327B CN 103516327 B CN103516327 B CN 103516327B CN 201310445994 A CN201310445994 A CN 201310445994A CN 103516327 B CN103516327 B CN 103516327B
Authority
CN
China
Prior art keywords
wave
coaxial
outer tube
inner core
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310445994.3A
Other languages
English (en)
Other versions
CN103516327A (zh
Inventor
陈再高
王建国
王光强
李爽
王玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute of Nuclear Technology
Original Assignee
Northwest Institute of Nuclear Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute of Nuclear Technology filed Critical Northwest Institute of Nuclear Technology
Priority to CN201310445994.3A priority Critical patent/CN103516327B/zh
Publication of CN103516327A publication Critical patent/CN103516327A/zh
Application granted granted Critical
Publication of CN103516327B publication Critical patent/CN103516327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明设计的轴对称结构同轴高功率过模表面波振荡器以波‑束互作用产生太赫兹波段的电磁波辐射为基本工作原理,依据强流相对论电子束与过模同轴慢波结构发生波‑束强相互作用,产生高功率太赫兹波。同轴过模表面波振荡器由无箔二极管、过模同轴慢波结构、过渡波导以及同轴结构的输出波导构成。过模表面波振荡器在波‑注互作用区的工作模式为TM01模式,经过过渡波导的模式转换,在表面波振荡器的输出波导端以TEM模式传输,采用这种结构设计了0.14THz的同轴表面波振荡器,输出端口的峰值功率可以达到115MW。该过模表面波振荡器适用于产生太赫兹波段的高功率电磁波。

Description

高功率同轴结构过模表面波振荡器及太赫兹波产生方法
技术领域
本发明属于高功率太赫兹源设计方案,具体涉及一种产生太赫兹波段(太赫兹,Terahertz,1THz=1012Hz)电磁波的轴对称高功率同轴结构的过模表面波振荡器。
背景技术
太赫兹(THz)波是指频率在0.1~10THz范围内的电磁波。由于该波段兼有亚毫米波与红外可见光两个区域的特性,因而融合了亚毫米波和红外可见光的优点,特别是适中的波束宽度、宽的系统带宽和大的多普勒频移特性,十分有利于目标的探测识别和干扰对抗。这些特点为太赫兹波在军事上的应用提供了巨大潜力,使得全世界许多国家都给予极大的关注,并投入了大量的人力物力进行太赫兹技术的研究。但是,由于所处波段的特殊性,太赫兹信号在产生方面存在着一定的困难,尤其是高功率太赫兹源的发展相对滞后,这严重阻碍了太赫兹技术在军事方面的应用。
到目前为止,真空电子学的方法是室温下产生高功率太赫兹辐射的最常用手段。对于真空电子器件辐射源来说,它的最高功率水平一般都反比于频率的平方律。然而,在0.1THz以上,对可移动和紧凑型装置而言,其最大功率随频率的标度远远偏离了频率的平方律,这导致了所谓的高功率源技术的太赫兹空隙。当前,不论是美国还是其它国家,尚都缺少具有足够功率水平、实用的辐射源及高灵敏度的检测器件,美国国家航空航天局(NASA)特别重视发展瓦级以上功率水平的太赫兹源及焦平面阵列检测器件。因此,对于太赫兹信号产生而言,技术的发展重点之一是提高源的功率水平;二是降低系统的体积、重量和功耗。
在大功率或高功率真空电子器件辐射源中,有一类基于切仑科夫(Cerenkov)辐射原理的器件,统称为相对论切仑科夫器件,其主要器件有相对论返波振荡器(BWO)、相对论行波管(TWT)、表面波振荡器(SWO)和多波切仑科夫发生器(MWCG)等。它们的共同特点是采用了某种慢波结构,其作用是将器件中轴向传播的电磁波相速度降到略低于注入的电子速度,此时,电子在器件中会产生辐射,这类似于介质中运动电子的速度超过介质中光速时会产生切仑科夫辐射。此类源具有高功率、高效率、适合重复频率工作和结构紧凑等优点。
随着器件尺寸的缩小,其内部的功率密度不断提高,场强随之增强,而器件内过强的场强具有破坏效应,导致器件效率严重下降,甚至电磁波辐射终止,出现脉冲缩短现象。解决这个问题的一个可行途径是增加器件的横向尺寸,即采用过模结构。这样可以降低相同功率下器件内部的场强,降低电子束电流密度,从而避免脉冲缩短问题。同时相对于单模结构,过模结构的另外一个突出优点是在相同的频率下,过模结构的横向尺寸相对于单模结构大得多,这将极大降低对器件加工的要求。同时解析分析表明同轴波导中空间电荷限制流高于普通圆波导,同轴器件中的电子束可具有相对高的动能,有利于获得高效率。
圆柱结构的过模表面波振荡器能用于产生太赫兹电磁波,输出的模式为TM01模,首先该结构采用无箔二极管产生环状电子束,环状电子束在外加磁场的引导下到达慢波结构区域,引导磁场沿着z方向和r方向的表达式分别为:
B z = 5.0 / ( 1 + e ( z - 3.79 e - 2 ) / 0.5 e - 3 ) - - - ( 1 )
B r = 5.0 / ( 2 × 0.5 e - 3 ) × r × e ( z - 3.79 e - 2 ) / 0.5 e - 3 / ( ( 1 + e ( z - 3.79 e - 2 ) / 0.5 e - 3 ) 2 ) - - - ( 2 )
其次,利用圆柱结构的慢波系统与电子束相互作用,TM01的结构波得到激励,并不断的放大,迅速达到饱和;最后,在经过过渡波导段时,电子束在外加磁场的引导下打到外金属壁上被回收,TM01模式的电磁波则通过圆柱波导辐射出去。当工作频率为0.14THz时,输出的功率水平可以达到兆瓦。
发明内容
本发明提出了一种高功率同轴结构过模表面波振荡器,其采用过模同轴慢波结构过模表面波振荡器的设计方案,并采用该方案设计了0.14THz的同轴过模表面波振荡器,器件在慢波互作用区工作在TM01模式,并以较纯的TEM模式进行功率输出,峰值功率可达到115MW。
本表面波振荡器设计方案的解决方案为:
横截面示意图如图1,它由无箔二极管阴极杆1、注入腔2、截止颈外筒3、过模同轴慢波结构外筒4、过渡波导外筒5、输出波导外筒6、截止颈内筒7、过模同轴慢波结构内筒8、同轴漂移波导内筒9、过渡波导内筒10、输出波导内筒11、同轴漂移波导外筒12组成。无箔二极管阴极杆1位于结构的最前端,用于产生环形强流相对论电子束;注入腔2、截止颈外筒3、过模同轴慢波结构外筒4、同轴漂移波导外筒12、过渡波导外筒5和输出波导外筒6组成外管体,作为表面波振荡器的阳极;截止颈内筒7、过模同轴慢波结构内筒8、同轴漂移波导内筒9、过渡波导内筒10和输出波导内筒11组成了同轴表面波振荡器的内管体。
同轴过模表面波振荡器处于真空工作状态,在表面波振荡器的左测的无箔二极管阴极杆1和注入腔2构成的注入波端口以及右侧由输出波导外筒6和输出波导内筒11构成的输出端口均采用介质密封的形式,防止电子在运动的过程中发生放电击穿现象。器件左端同轴结构的波导将外部的TEM模式的电压波引入,外管体的电压为正,使得器件的阴极能够产生能量比较单一的电子束,均匀同轴结构的慢波结构系统由过模同轴慢波结构外筒4和过模同轴慢波结构内筒8构成,在左端有一段同轴结构的截止颈,由截止颈外筒3和截止颈内筒7构成。右端通过一段同轴波导与过渡波导相连,过渡波导的另一段与输出波导段的一端相连,其中同轴波导由同轴漂移波导内筒9和同轴漂移波导外筒12构成,过渡波导段由过渡波导内筒10和过渡波导外筒5构成,输出波导段由输出波导内筒11和输出波导外筒6组成。过渡波导段的作用使得器件产生太赫兹波的模式转化成为TEM模式。开展辐射输出实验时,需要对内管体进行同轴支撑,由于重力以及加工误差等因素的影响,需要在内管体前端以及后端同时进行支撑。同时为了减少支撑杆导致的回波损耗以及对传输的影响,支撑杆采用表面覆了石墨的金属杆。
其基本工作过程为:以0.14THz同轴过模表面波振荡器为本发明的实施例,采用同轴结构的波导将外部的TEM波模式的电压引入,当电压达到电子发射阈值后,阴极面采用爆炸发射的模式开始发射电子束,最后稳定产生平均电流大小为1.68kA的电子束,电子枪阴阳间之间的电压也达到稳定的312kV,电子束通过截止颈后进入过模同轴慢波结构,与器件的结构波产生相互作用,在其中激励起TM01模式的电磁波,电子束不断与该模式的太赫兹波发生强相互作用,将能量传递给太赫兹波,最终剩下的电子束在外加磁场的引导下,将打在外导体壁上被收集,产生的TM01模式的电磁波经过过渡波导段时,模式转化为TEM模式,沿着输出波导进行高功率的太赫兹波输出。采用粒子模拟软件UNIPIC的计算结果如图6-7所示。
这种设计不仅成功解决了随着真空电子器件工作频率的升高,器件的横截面的尺寸变小、功率容量降低的问题,同时采用过模同轴慢波结构提高器件的输出功率水平,最后采用同轴波导进行太赫兹波的TEM模式输出,使得在太赫兹波段的各种应用成为可能。
各种设计参数,如表面波振荡器的几何结构尺寸以及电参数,包括慢波结构的高度、宽度、周期数和二极管电压等,都对其表面波振荡器有很大影响,开发工艺研究时,必须保证足够精度。输出平均功率随着敏感结构参数的变化如图3-5所示,慢波结构的色散曲线和电子束的多普勒线如图8所示。
本发明的优点:
1、能产生太赫兹波段的电磁波。本发明提出的一种同轴结构表面波振荡器,通过对过模同轴慢波结构的高度、周期长度、半径的设计使得该器件能够辐射太赫兹波段的电磁波。
2、输出功率高。采用同轴结构的过模表面波振荡器,并且通过对阴极半径、阴极与内筒之间的间距以及输出端口的设计,使得器件的瞬态功率的峰值达到兆瓦,以0.14THz表面波振荡器为实施例,输出峰值功率达到115MW。
3、模式纯度高。采用同轴结构的输出波导,并且对过渡波导段进行了详细的设计,使得器件从慢波结构中的TM01模式,以非常高的纯度转化为TEM模式。
4、输出功率为TEM模式。在输出端采用同轴结构的输出波导,通过对结构的详细设计,使得器件的功率输出为TEM模式,采用最低次模进行功率输出,方便以后进行模式的转化。
附图说明
图1是本发明同轴结构表面波振荡器整体结构模型;
图2是本发明过模同轴慢波结构尺寸示意图;
图3是本发明振荡器输出平均功率与内筒半径的关系;
图4是本发明振荡器输出平均功率与阴极宽度的关系;
图5是本发明振荡器平均输出功率随输出端口内径的关系;
图6是本发明振荡器平均输出功率随时间变化的图像;
图7是本发明振荡器输出径向电场的频谱分布图;
图8是本发明振荡器过模同轴慢波结构的色散曲线。
具体实施方式
本发明横截面示意图如图1,图1为采用本发明设计方案的0.14THz同轴过模表面波振荡器实施例的结构示意图;它由无箔二极管阴极杆1、注入腔2、截止颈外筒3、过模同轴慢波结构外筒4、过渡波导外筒5、输出波导外筒6、截止颈内筒7、过模同轴慢波结构内筒8、同轴漂移波导内筒9、过渡波导内筒10、输出波导内筒11、同轴漂移波导外筒12组成。
无箔二极管阴极杆1位于结构的最前端,用于产生环形强流相对论电子束;注入腔2、截止颈外筒3、过模同轴慢波结构外筒4、同轴漂移波导外筒12、过渡波导外筒5和输出波导外筒6组成外管体,作为表面波振荡器的阳极;截止颈内筒7、过模同轴慢波结构内筒8、同轴漂移波导内筒9、过渡波导内筒10和输出波导内筒11组成了同轴表面波振荡器的内管体。
同轴过模表面波振荡器处于真空工作状态,在表面波振荡器的左测的无箔二极管阴极杆1和注入腔2构成的注入波端口以及右侧由输出波导外筒6和输出波导内筒11构成的输出端口均采用介质密封的形式,防止电子在运动的过程中发生放电击穿现象。器件左端同轴结构的波导将外部的TEM模式的电压波引入,外管体的电压为正,使得器件的阴极能够产生能量比较单一的电子束,均匀同轴结构的慢波结构系统由过模同轴慢波结构外筒4和过模同轴慢波结构内筒8构成,在左端有一段同轴结构的截止颈,由截止颈外筒3和截止颈内筒7构成。右端通过一段同轴波导与过渡波导相连,过渡波导的另一段与输出波导段的一端相连,其中同轴波导由同轴漂移波导内筒9和同轴漂移波导外筒12构成,过渡波导段由过渡波导内筒10和过渡波导外筒5构成,输出波导段由输出波导内筒11和输出波导外筒6组成。过渡波导段的作用使得器件产生太赫兹波的模式转化成为TEM模式。开展辐射输出实验时,需要对内管体进行同轴支撑,由于重力以及加工误差等因素的影响,需要在内管体前端以及后端同时进行支撑。同时为了减少支撑杆导致的回波损耗以及对电子束传输的影响,支撑杆采用表面覆了石墨的金属杆。
其基本工作过程为:以0.14THz同轴过模表面波振荡器为本发明的实施例,采用同轴结构的波导将外部的TEM波模式的电压引入,当电压达到电子发射阈值后,阴极面采用爆炸发射的模式开始发射电子束,最后稳定产生平均电流大小为1.68kA的电子束,电子枪阴阳间之间的电压也达到稳定的312kV,电子束通过截止颈后进入过模同轴慢波结构,与器件的结构波产生相互作用,在其中激励起TM01模式的电磁波,电子束不断与该模式的太赫兹波发生强相互作用,将能量传递给太赫兹波,最终剩下的电子束在外加磁场的引导下,将打在外导体壁上被收集,产生的TM01模式的电磁波经过过渡波导段时,模式转化为TEM模式,沿着输出波导进行高功率的太赫兹波输出。采用粒子模拟软件UNIPIC的计算结果如图6-7所示。
这种设计不仅成功解决了随着真空电子器件工作频率的升高,器件的横截面的尺寸变小、功率容量降低的问题,同时采用过模同轴慢波结构提高器件的输出功率水平,最后采用同轴波导进行太赫兹波的TEM模式输出,使得在太赫兹波段的各种应用成为可能。
各种设计参数,如表面波振荡器的几何结构尺寸以及电参数,包括慢波结构的高度、宽度、周期数和二极管电压等,都对其表面波振荡器有很大影响,开发工艺研究时,必须保证足够精度。输出平均功率随着敏感结构参数的变化如图3-5所示,慢波结构的色散曲线和电子束的多普勒线如图8所示。
图1为采用本发明设计方案的0.14THz同轴过模表面波振荡器实施例的结构示意图。
1、器件的整体结构示意图
横截面示意图如图1,它由无箔二极管阴极杆1、注入腔2、截止颈外筒3、过模同轴慢波结构外筒4、过渡波导外筒5、输出波导外筒6、截止颈内筒7、过模同轴慢波结构内筒8、同轴漂移波导内筒9、过渡波导内筒10、输出波导内筒11、同轴漂移波导外筒12组成。无箔二极管阴极杆1位于结构的最前端,用于产生环形强流相对论电子束;注入腔2、截止颈外筒3、过模同轴慢波结构外筒4、同轴漂移波导外筒12、过渡波导外筒5和输出波导外筒6组成外管体,作为表面波振荡器的阳极;截止颈内筒7、过模同轴慢波结构内筒8、同轴漂移波导内筒9、过渡波导内筒10和输出波导内筒11组成了同轴表面波振荡器的内管体。
2、无箔二极管
横截面示意图如图1,无箔二极管包括二极管的阴极、阳极以及截止颈。选取的无箔二极管阳极(注入腔)的外半径为6.0mm,长度为17.0mm,截止颈为同轴结构,沿着z方向的起始位置为17.0mm,外半径为3.0mm,长度为4.0mm,内半径为1.6mm,长度为3.65mm。无箔二极管阴极为阴极杆,阴极杆外径为2.5mm,外径的长度为5.0mm,内径为2.0mm,内径的长度为3.0mm,电子发射面位于阴极杆的前端,宽度为0.5mm。
3、过渡波导段
示意见图1,采用直线渐变的过渡形式:沿着z方向的起始位置为35.9mm,一端的外半径为3.0mm,内半径为1.6mm,与慢波结构相连接;另一端的外半径为4.0mm,内半径为0.5mm,过渡波导段沿着z方向的长度为4mm。过渡波导可确保绝大部分电磁波传输中从TM01模式转化成为TEM模式。
4、输出波导段
示意图如图1,设计参数包括:同轴结构的输出波段内半径为0.5mm,外半径为4.0mm,沿着z方向的起始位置为39.9mm,长度为10.1mm。
5、过模同轴慢波结构
示意图如图2所示,过模同轴慢波结构的外圆筒沿着z方向的起始位置为21.0mm,总长度为10.85mm,包含了16个矩形结构的慢波槽,槽底部的高度R3为3.0mm,槽底部到顶部的高度与R1相同为0.3mm,宽度与L2相同为0.35mm,相邻槽起始位置之间的间距L1为0.7mm;内圆筒沿着z方向的起始位置为20.65mm,总长度为10.85mm,槽顶部的高度R2为1.6mm,包含了16个矩形结构的慢波槽,槽顶部到底部的高度R1为0.3mm,宽度L2为0.35mm,相邻槽起始位置之间的间距与L1相同为0.7mm;通过一段内径为1.6mm,外径为3.0mm的同轴波导分别与过渡段波段和截止颈相连。

Claims (4)

1.一种高功率同轴结构过模表面波振荡器,其特征在于:
包括无箔二极管阴极杆(1)、外管体和内管体;所述无箔二极管阴极杆(1)的最前端作为表面波振荡器的阴极;所述阴极用于产生环形强流相对论电子束;
所述外管体包括依次连接的注入腔(2)、截止颈外筒(3)、过模同轴慢波结构外筒(4)、同轴漂移波导外筒(12)、过渡波导外筒(5)和输出波导外筒(6);所述外管体作为表面波振荡器的阳极,其上电压为正;
所述内管体包括依次连接的截止颈内筒(7)、过模同轴慢波结构内筒(8)、同轴漂移波导内筒(9)、过渡波导内筒(10)和输出波导内筒(11);所述内管体通过支撑装置与外管体构成同轴结构;
所述无箔二极管阴极杆(1)和注入腔(2)构成注入波端口;所述输出波导外筒(6)和输出波导内筒(11)构成输出端口;所述注入波端口和输出端口均采用介质密封;所述注入波端口用于引入外部的TEM模式电压波;
所述截止颈外筒(3)和截止颈内筒(7)构成同轴结构的截止颈;
所述过模同轴慢波结构外筒(4)包含多个矩形结构的慢波槽,所述过模同轴慢波结构内筒(8)包含多个矩形结构的慢波槽,所述过模同轴慢波结构外筒(4)和过模同轴慢波结构内筒(8)构成均匀同轴结构的慢波结构系统;所述同轴漂移波导内筒(9)和同轴漂移波导外筒(12)构成同轴波导段;
所述过渡波导内筒(10)和过渡波导外筒(5)构成过渡波导段;所述过渡波导段采用内径逐渐变大的喇叭口结构;
所述输出波导内筒(11)和输出波导外筒(6)构成输出波导段。
2.根据权利要求1所述的高功率同轴结构过模表面波振荡器,其特征在于:
所述支撑装置包括设置在内管体前端以及后端的支撑杆,所述支撑杆采用表面覆盖石墨的金属杆。
3.根据权利要求1所述的高功率同轴结构过模表面波振荡器,其特征在于:
所述慢波槽的槽宽与槽高相同。
4.一种使用权利要求1所述的同轴结构过模表面波振荡器产生高功率太赫兹波的方法,其特征在于:包括以下步骤:
1】用同轴结构的波导将外部的TEM波模式的电压波引入;
2】当电压达到电子发射阈值后,无箔二极管阴极面采用爆炸发射的模式开始发射电子束,最后稳定产生电子束;
3】电子束通过截止颈后进入过模同轴慢波结构,与器件的结构波产生相互作用,在其中激励起TM01模式的电磁波;
4】产生的TM01模式的电磁波经过过渡波导段时,模式转化为TEM模式,沿着输出波导进行高功率的太赫兹波输出。
CN201310445994.3A 2013-09-26 2013-09-26 高功率同轴结构过模表面波振荡器及太赫兹波产生方法 Active CN103516327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310445994.3A CN103516327B (zh) 2013-09-26 2013-09-26 高功率同轴结构过模表面波振荡器及太赫兹波产生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310445994.3A CN103516327B (zh) 2013-09-26 2013-09-26 高功率同轴结构过模表面波振荡器及太赫兹波产生方法

Publications (2)

Publication Number Publication Date
CN103516327A CN103516327A (zh) 2014-01-15
CN103516327B true CN103516327B (zh) 2017-01-25

Family

ID=49898488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310445994.3A Active CN103516327B (zh) 2013-09-26 2013-09-26 高功率同轴结构过模表面波振荡器及太赫兹波产生方法

Country Status (1)

Country Link
CN (1) CN103516327B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901145A (zh) * 2015-06-24 2015-09-09 西北核技术研究所 一种连续波太赫兹表面波振荡器
CN105141276B (zh) * 2015-07-24 2017-09-29 西安空间无线电技术研究所 一种定向宽带高效率表面波激励装置
CN105244248B (zh) * 2015-10-26 2017-02-01 西北核技术研究所 一种径向结构连续波太赫兹振荡器
CN105810537B (zh) * 2016-05-03 2017-06-09 中国人民解放军国防科学技术大学 采用环形束冷阴极的x波段高阻抗相对论速调管放大器
CN106098510B (zh) * 2016-07-04 2018-03-16 中国工程物理研究院应用电子学研究所 一种重频低磁场轴向c波段高功率微波器件
CN106997838B (zh) * 2017-04-18 2018-05-18 电子科技大学 一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件
CN107591604B (zh) * 2017-09-01 2020-01-21 电子科技大学 一种可输出双频te11模式电磁波的双电子注相对论返波振荡器
CN108807112B (zh) * 2018-06-13 2020-09-18 中国工程物理研究院应用电子学研究所 一种同轴双电介质叉指排列高功率微波器件
CN108831815B (zh) * 2018-06-13 2020-09-22 中国工程物理研究院应用电子学研究所 一种周期性电介质填充同轴高功率微波器件
CN110416041B (zh) * 2019-06-21 2020-11-20 中国科学院电子学研究所 一种嵌入式双电子注太赫兹返波振荡器
CN110797243B (zh) * 2019-11-05 2020-10-09 电子科技大学 一种嵌套式同轴发射异步电子注的电子光学系统
CN114883162B (zh) * 2022-05-19 2023-01-03 中国人民解放军国防科技大学 基于大半径环形电子束的l波段高功率长脉冲rbwo

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987360B1 (en) * 2004-03-31 2006-01-17 “Calabazas Creek Research, Inc” Backward wave coupler for sub-millimeter waves in a traveling wave tube
CN102940935A (zh) * 2012-11-15 2013-02-27 中国科学院深圳先进技术研究院 太赫兹波发生装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987360B1 (en) * 2004-03-31 2006-01-17 “Calabazas Creek Research, Inc” Backward wave coupler for sub-millimeter waves in a traveling wave tube
CN102940935A (zh) * 2012-11-15 2013-02-27 中国科学院深圳先进技术研究院 太赫兹波发生装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
同轴型相对论返波管的粒子模拟研究;文光俊 等;《电子学报》;19991231;第27卷(第12期);第132-134页 *
大功率0.34Thz辐射源中慢波结构的优化设计;李爽 等;《物理学报》;20130623;第62卷(第12期);第1-7页 *
高效同轴相对论返波管研究;滕雁;《中国博士学位论文全文数据库》;20110815(第8期);第7-16页 *

Also Published As

Publication number Publication date
CN103516327A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN103516327B (zh) 高功率同轴结构过模表面波振荡器及太赫兹波产生方法
CN205881867U (zh) 一种高效重频低磁场高功率微波器件
CN105355528B (zh) 一种过模级联高频结构的双电子注太赫兹波辐射源
CN105810537B (zh) 采用环形束冷阴极的x波段高阻抗相对论速调管放大器
CN107527781B (zh) 一种可直接输出te11模式电磁波的双频相对论返波振荡器
CN105261541B (zh) 高功率径向线相对论速调管放大器
CN110752131B (zh) 一种具有三角函数轮廓的多电子注通道慢波结构
CN103779763B (zh) 一种基于阵列光栅结构的太赫兹功率源高频结构
CN103632909B (zh) 级联高频结构的双电子注太赫兹波辐射源
CN109148244B (zh) 一种轴向可调谐相对论磁控管
CN109872935B (zh) 一种基于冷阴极的多注高次模阵列式高频互作用系统
CN108831815B (zh) 一种周期性电介质填充同轴高功率微波器件
CN105470074B (zh) 一种磁绝缘线振荡器
CN108807112B (zh) 一种同轴双电介质叉指排列高功率微波器件
CN109801823B (zh) 一种基于冷阴极的多注高次模注波互作用结构
CN115954249A (zh) 一种基于超辐射机制的同轴型相对论返波管
CN105719925A (zh) 一种高频段磁绝缘线振荡器
CN103606504B (zh) 一种t形交错双栅慢波器件
CN106783476B (zh) 一种双频径向连续波太赫兹斜注管
CN104901145A (zh) 一种连续波太赫兹表面波振荡器
CN205319119U (zh) 一种磁绝缘线振荡器
CN109585242A (zh) 一种双频高功率微波产生器
CN205177765U (zh) 一种强流电子束径向向内发射无磁场高功率微波器件
Franzi et al. Coaxial all cavity extraction in the recirculating planar magnetron
Gong et al. A high order mode sheet-beam extended interaction oscillator at Ka-band

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant