CN203135735U - 直流电源装置 - Google Patents

直流电源装置 Download PDF

Info

Publication number
CN203135735U
CN203135735U CN 201320054301 CN201320054301U CN203135735U CN 203135735 U CN203135735 U CN 203135735U CN 201320054301 CN201320054301 CN 201320054301 CN 201320054301 U CN201320054301 U CN 201320054301U CN 203135735 U CN203135735 U CN 203135735U
Authority
CN
China
Prior art keywords
output
rectifier bridge
current plant
diode
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN 201320054301
Other languages
English (en)
Inventor
辛杰文
李强
罗宇华
滕建文
刘全德
游志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
Guangdong Midea Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Midea Refrigeration Equipment Co Ltd filed Critical Guangdong Midea Refrigeration Equipment Co Ltd
Priority to CN 201320054301 priority Critical patent/CN203135735U/zh
Application granted granted Critical
Publication of CN203135735U publication Critical patent/CN203135735U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Abstract

本实用新型属于电源装置领域,尤其涉及一种直流电源装置。本实用新型提供的适用于变频空调室外机的直流电源装置,可以有效地降低谐波和提高供电系统的电压;并且采用本实用新型提供的直流电源装置,可以减少电压和电流之间的夹角,有效地提供直流电源装置的功率因数。特别地,在现有直流电源装置的强制短路单元与交流电源之间增加一个保险丝,可以在直流电源装置的其他各个单元的保护作用失效、出现电流过大的情形时立即熔断,防止元器件进一步毁坏或起火。并且功率因素校正部分的整流桥和后续交流电整流滤波单元中的整流桥分开,能够减小共用一个整流桥引起的功耗发热,安全可靠。

Description

直流电源装置
技术领域
本实用新型属于电源装置领域,尤其涉及一种直流电源装置。
背景技术
变频空调等家电在其内部有把交流电压转换成直流电压的整流电路,以此形成直流电源,再把电力供到各电子电路中。这些整流电路大多数为电容输入型,其输入电流只在峰值电压波形附近流通、并呈脉冲状电流波形,从而产生出不同程度的谐波。谐波的出现会导致电压波形出现畸变、进相电容异常发热及电机或变压器的噪音增大、受电设备的容量降低等问题。因此IEC以及世界各国都设有限度值来控制谐波。
另一方面,由于电机里永久磁铁的存在,当电机转动时,电机自身会感应出动生电动势,并且有转速越大、动生电动势就越大。要想电机在更高的转速上运行,就需要更高的电压来驱动,但市电额定值220V是固定的,要想电机在更宽的频率范围内运行,必须人为地提高电路系统中的电压。
再则,在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,功率因数越高,系统利用能量的效率越好。在一般的非纯电阻电路中,功率因数都小于1,原因是由于电路中电感和电容的存在,使得交流电压与交流电流之间的相位差不等于零。
以上所述即为业界使用功率因数校正(PFC,Power Factor Correction)电路的主要原因,业界中使用的功率因数校正一般有以下几种:无源PFC、部分有源PFC、有源PFC。
实用新型内容
本实用新型的目的在于提供一种直流电源装置,以安全可靠地解决现有技术中存在的需要控制供电系统的谐波电流以及提高其工作电压和功率因数的技术问题。
为了实现上述目的,本实用新型采用的技术方案为:
一种直流电源装置,用于给变频空调室外机的功率系统供电,除了依次连接的交流电源、电抗器和交流电整流滤波单元,还包括:
分别与所述交流电源的火线、零线相接的过零信号检测单元和与所述交流电源的火线相接的交流电流检测单元;
第一端接所述电抗器的输出端、第二端通过一保险丝与所述交流电源的零线相接、强制对所述电抗器进行短路通电的强制短路单元;
输入端接所述交流电整流滤波单元的输出端、对经整流后的直流电压进行检测的直流电压检测单元;
连接在所述直流电压检测单元与强制短路单元之间、当直流电压过高时对所述强制短路单元输出硬件保护信号的过压检测保护单元;以及
分别与所述过零信号检测单元、交流电流检测单元、直流电压检测单元和过压检测保护单元的输出端相连,接收上述各个单元发送的信号、并发送PWM控制信号给所述强制短路单元的微处理器控制单元。
具体地,所述强制短路单元包括:由二极管D1、二极管D2、二极管D3和二极管D4组成的整流桥BR1、绝缘栅双极晶体管G1、压敏电阻R1、推挽输出型光耦IC1和PNP型三极管Q1;所述整流桥BR1的两个输入端分别接所述交流电源的火线和保险丝,所述整流桥BR1的输出端接所述绝缘栅双极晶体管G1的集电极,所述压敏电阻R1并接在所述绝缘栅双极晶体管G1的集电极与发射极之间,所述整流桥BR1的接地端与所述绝缘栅双极晶体管G1的发射极都接地,所述绝缘栅双极晶体管G1的栅极接所述推挽输出型光耦IC1的输出端,所述推挽输出型光耦IC1输入端的发光二极管的阳极接所述PNP型三极管Q1的集电极,所述推挽输出型光耦IC1的输入端的发光二极管的阴极接所述过压检测保护单元的输出端,所述PNP型三极管Q1的发射极接工作电压VCC,所述PNP型三极管Q1的基极接所述微处理器控制单元的PWM控制信号输出端。
进一步地,所述强制短路单元还包括:下拉电阻R10、抗干扰电阻R11和限流电阻R12;所述下拉电阻R10接在所述绝缘栅双极晶体管G1的栅极与地之间,所述抗干扰电阻R11连接在所述绝缘栅双极晶体管G1的栅极与所述推挽输出型光耦IC1的输出端之间,所述限流电阻R12接在所述推挽输出型光耦IC1输入端的发光二极管的阳极与所述PNP型三极管Q1的集电极之间。
更具体地,所述直流电压检测单元包括采样电阻R2、采样电阻R3和采样电阻R4;所述采样电阻R2、采样电阻R3和采样电阻R4依次串接在所述交流电整流滤波单元的输出端与地之间,所述采样电阻R3与采样电阻R4的公共连接端作为所述直流电压检测单元的输出端、分别接所述过压检测保护单元和所述微处理器控制单元的输入端。
更具体地,所述过压检测保护单元包括运算放大器IC2、分压电阻R5、分压电阻R6和上拉电阻R7;所述运算放大器IC2的正相输入端接所述直流电压检测单元的输出端,所述运算放大器IC2的反相输入端通过所述分压电阻R5接工作电压VCC,所述分压电阻R6接在所述运算放大器IC2的反相输入端与地之间,所述运算放大器IC2的输出端作为所述过压检测保护单元的输出端、同时接所述强制短路单元和所述微处理器控制单元的输入端。
更具体地,所述交流电整流滤波单元包括由二极管D5、二极管D6、二极管D7和二极管D8组成的整流桥BR2、电解电容E1和电解电容E2;所述整流桥BR2的两个输入端分别接所述交流电源的火线和零线,所述整流桥BR2的输出端作为所述交流电整流滤波单元的输出端、接所述功率系统的输入端,所述整流桥BR2的接地端接地,所述电解电容E1的正极和所述电解电容E2的正极分别接所述整流桥BR2的输出端,所述电解电容E1的负极和所述电解电容E2的负极都接地。
进一步地,所述电抗器为单个串接在所述交流电源火线上的电抗器L1;或者为分别串接在所述交流电源火线和零线上的电抗器L2和电抗器L3,并且作为优选,电抗器L2和电抗器L3的感量相同。
本实用新型提供的适用于变频空调室外机的直流电源装置,可以有效地降低谐波和提高供电系统的电压;并且采用本实用新型提供的直流电源装置,可以减少电压和电流之间的夹角,有效地提供直流电源装置的功率因数。特别地,在现有直流电源装置的强制短路单元与交流电源之间增加一个保险丝,可以在直流电源装置的其他各个单元的保护作用失效、出现电流过大的情形时立即熔断,防止元器件进一步毁坏或起火,强制将电抗器的强制短路单元从原直流电源装置中剥离出来,不影响其他后续电路的正常运行,安全可靠。
附图说明
图1是本实用新型提供的直流电源装置的结构框图;
图2是本实用新型优选实施例提供的直流电源装置的示例电子元器件图。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
本实用新型的目的在于提供一种直流电源装置,适用于变频空调室外机的供电电路,可以有效地降低谐波和提高供电系统的电压;并且可以减少电压和电流之间的夹角,有效地提供直流电源装置的功率因数。
图1是本实用新型提供的直流电源装置的结构框图;为了便于说明,仅示出了与本实施例相关的部分,如图所示:
一种直流电源装置,接变频空调室外机的功率系统,除了包括依次连接的交流电源10、电抗器20和交流电整流滤波单元30,还包括:分别与交流电源10的火线L、零线N相接的过零信号检测单元40;与交流电源10的火线L相接的交流电流检测单元50;一端接电抗器20的输出端、一端通过一保险丝60与交流电源10的零线N相接的强制短路单元70;输入端接交流电整流滤波单元30的输出端的直流电压检测单元80;连接在直流电压检测单元80与强制短路单元70之间的过压检测保护单元90;以及分别与过零信号检测单元40、交流电流检测单元50、直流电压检测单元80和过压检测保护单元90的输出端相连的微处理器控制单元100。
其中,过零信号检测单元40用于检测交流电源10的频率和交流电压的过零点,交流电流检测单元50则用于检测交流电流的大小,一般可以采取在电抗器20与交流电整流滤波单元30之间串接一个电流互感器的方式来获取交流电流的大小。过零信号检测单元40和交流电流检测单元50可以为微处理器控制单元100提供交流电流大小信号和交流电过零信号,协助微处理器控制单元100实现对强制短路单元70的脉宽控制及过电流保护作用。
强制短路单元70用于对电抗器20进行强制短路通电,在本实用新型实施例中,强制短路单元70主要包括功率开关管、通过保险丝与零线N相接的、对功率开关管起整流作用的整流桥以及用于驱动功率开关管的驱动模块;这里的保险丝60为重要的系统保护元器件之一,当过零信号检测单元40、交流电流检测单元50和过压检测保护单元90等的保护功能都失效,导致对电抗器20交流短路时的电流过大时,保险丝60会立即熔断,防止元器件进一步毁坏或起火。当保险丝60熔断时,能够将强制短路单元70从原电路中剥离出来,而不影响其他后续电路单元的正常运行。
直流电压检测单元80与功率系统都接在交流电整流滤波单元30的输出端。交流电整流滤波单元30对交流电源10进行全波整流和平滑滤波后,形成稳定的直流电压,共给后续功率系统使用。直流电压检测单元80则用于对该直流电压进行检测,将信号输出给过压检测保护单元90和微处理器控制单元100。过压检测保护单元90在直流电压过高时,一方面可以使强制短路单元70断开连接,具有快速的硬件保护能力;另一方面又可以给微处理器控制单元100一个信号,使微处理器控制单元100停止对强制短路单元70的脉宽控制,具有软件保护的能力。
图2是本实用新型优选实施例提供的直流电源装置的示例电子元器件图。为了便于说明,仅示出了与本实施例相关的部分,如图所示:
作为本实用新型的一实施例,交流电整流滤波单元30包括由二极管D5、二极管D6、二极管D7和二极管D8组成的整流桥BR2、电解电容E1和电解电容E2;整流桥BR2的两个输入端(二极管D5和D7连接处、二极管D6和D8的连接处)分别接交流电源的火线L和零线N,整流桥BR2的输出端(二极管D5和D6的连接处)作为交流电整流滤波单元30的输出端接功率系统,整流桥BR2的接地端(二极管D7和D8的连接处)接地,电解电容E1的正极和电解电容E2的正极分别接整流桥BR2的输出端,电解电容E1的负极和电解电容E2的负极都接地。
作为本实用新型的一实施例,通过一保险丝60与交流电源10的零线N相接的强制短路单元70包括:由二极管D1、二极管D2、二极管D3和二极管D4组成的整流桥BR1、绝缘栅双极晶体管G1、用于保护绝缘栅双极晶体管G1过压用的压敏电阻R1、用于隔离和驱动绝缘栅双极晶体管G1的推挽输出型光耦IC1和用于驱动光耦IC1的PNP型三极管Q1;整流桥BR1的两个输入端(二极管D1和D3连接处、二极管D2和D4的连接处)分别接交流电源10的火线L和保险丝60,整流桥BR1的输出端(二极管D1和D2的连接处)接绝缘栅双极晶体管G1的集电极,压敏电阻R1并接在绝缘栅双极晶体管G1的集电极与发射极之间,整流桥BR1的接地端(二极管D3和D4的连接处)与绝缘栅双极晶体管G1的发射极都接地,绝缘栅双极晶体管G1的栅极接推挽输出型光耦IC1的输出端,推挽输出型光耦IC1输入端的发光二极管的阳极接PNP型三极管Q1的集电极,推挽输出型光耦IC1的输入端的发光二极管的阴极接过压检测保护单元90的输出端,PNP型三极管Q1的发射极接工作电压VCC,PNP型三极管Q1的基极接微处理器控制单元100的PWM控制信号输出端。
由图2及以上描述可知,在本实用新型中,功率因素校正部分的整流桥BR1和后续交流电整流滤波单元30中的整流桥BR2能使功率因素校正部分的电流回路和交流电整流回路的电流分开,能够减小共用一个整流桥引起的功耗发热。另外,在本实施例中,强制短路单元70中对电抗器20交流短路用的功率开关管选用的是绝缘栅双极晶体管G1。当然,本领域的技术人员都容易想到,在功率范围允许的情况下,晶闸管和场效应管也是可以实现相同或类似功能的。
作为本实用新型的一优选实施例,强制短路单元70还包括:下拉电阻R10、抗干扰电阻R11和限流电阻R12;下拉电阻R10接在绝缘栅双极晶体管G1的栅极与地之间,抗干扰电阻R11连接在绝缘栅双极晶体管G1的栅极与推挽输出型光耦IC1的输出端之间,限流电阻R12接在推挽输出型光耦IC1输入端的发光二极管的阳极与PNP型三极管Q1的集电极之间。
作为本实用新型的一实施例,直流电压检测单元80包括采样电阻R2、采样电阻R3和采样电阻R4;采样电阻R2、采样电阻R3和采样电阻R4依次串接在交流电整流滤波单元的输出端与地之间,所述采样电阻R3与采样电阻R4的公共连接端作为所述直流电压检测单元的输出端、分别接所述过压检测保护单元和所述微处理器控制单元的输入端。
作为本实用新型的一实施例,过压检测保护单元90包括运算放大器IC2、分压电阻R5、分压电阻R6和上拉电阻R7;运算放大器IC2的正相输入端接直流电压检测单元80的输出端,运算放大器IC2的反相输入端通过分压电阻R5接工作电压VCC,分压电阻R6接运算放大器IC2的反相输入端与地之间,运算放大器IC2的输出端作为过压检测保护单元90的输出端、同时接强制短路单元70和微处理器控制单元100的输入端。
正常工作下,运算放大器IC2的输出端输出低电平。当微处理器控制单元100发送PWM控制信号到PNP型三极管Q1的基极进行开关控制,使三极管Q1导通或截止。当PNP型三极管Q1导通时,电流从VCC流经PNP型Q1、再流经推挽输出型光耦IC1的发光二极管流出来,再由运算放大器IC2的输出端下拉到地。当有电流流经光耦IC1的输入端(发光二极管)时,使光耦IC1导通从而驱动功率开关管G1(在本实施例中即为绝缘栅双极晶体管G1)。
绝缘栅双极晶体管G1处于导通阶段时:当交流电处于正半周期时,交流电流经电抗器20后再流经二极管D1、通过绝缘栅双极晶体管G1后,再流经二极管D4,最后通过保险丝60回流到零线N上;当交流电处于负半周期时,交流电从零线N通过保险丝60流经二极管D2、通过绝缘栅双极晶体管G1后,再流经二极管D3,最后通过电抗器60回流到火线L上。也就是说,绝缘栅双极晶体管G1导通时,电抗器20交流短路,此时电抗器20将电能转化为磁能。当绝缘栅双极晶体管G1关闭时,二极管D1、D2、D3和D4和绝缘栅双极晶体管G1均没有电流通过,由绝缘栅双极晶体管G1导通期间存储的磁能释放为电能供后续的功率系统使用。从上述的工作原理可以看出,在绝缘栅双极晶体管G1导通期间,电流均匀流经二极管D1、D2、D3和D4,这样可以保证元器件发热均匀。
当经交流电整流滤波单元30整流滤波后的直流电压过高时,运算放大器IC2的正相输入端电压比反相输入端电压高,运算放大器IC2的输出端输出高电平,使推挽输出型光耦IC1的输入端的发光二极管的阴极置高电平,从而使推挽输出型光耦IC1截止,具有快速的硬件保护功能。与此同时,推挽输出型光耦IC1的输出端输入信号到微处理器控制单元100,使微处理器控制单元100停止对PNP型三极管Q1的PWM脉宽控制,具有软件保护的能力。
还需特别说明的是,本实用新型提供的直流电源装置,可以根据电流的波形和发热量以及电流的最大值来选取电抗器20的感量。对于EMC(ElectroMagnetic Compatibility,电磁兼容性)要求不高的方案,可以使用一个合适电感量的电抗器L1串接在火线中;对于EMC要求高的方案,可以使用2个电抗器L2和L3分别串接在火线和零线中,作为优选,电抗器L2和电抗器L3的感量相同。
本实用新型提供的适用于变频空调室外机的直流电源装置,可以有效地降低谐波和提高供电系统的电压;并且采用本实用新型提供的直流电源装置,可以减少电压和电流之间的夹角,有效地提供直流电源装置的功率因数。特别地,在现有直流电源装置的强制短路单元与交流电源之间增加一个保险丝,可以在直流电源装置的其他各个单元的保护作用失效、出现电流过大的情形时立即熔断,防止元器件进一步毁坏或起火。并且功率因素校正部分的整流桥和后续交流电整流滤波单元中的整流桥分开,能够减小共用一个整流桥引起的功耗发热,安全可靠。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,尽管参照前述实施例对本实用新型进行了较详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改、或者对其中部分技术特征进行等同替换。凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。

Claims (8)

1.一种直流电源装置,用于给变频空调室外机的功率系统供电,包括依次连接的交流电源、电抗器和交流电整流滤波单元,其特征在于,所述直流电源装置还包括:
分别与所述交流电源的火线、零线相接的过零信号检测单元和与所述交流电源的火线相接的交流电流检测单元;
第一端接所述电抗器的输出端、第二端通过一保险丝与所述交流电源的零线相接、强制对所述电抗器进行短路通电的强制短路单元;
输入端接所述交流电整流滤波单元的输出端、对经整流后的直流电压进行检测的直流电压检测单元;
连接在所述直流电压检测单元与强制短路单元之间、当直流电压过高时对所述强制短路单元输出硬件保护信号的过压检测保护单元;以及
分别与所述过零信号检测单元、交流电流检测单元、直流电压检测单元和过压检测保护单元的输出端相连,接收上述各个单元发送的信号、并发送PWM控制信号给所述强制短路单元的微处理器控制单元。
2.如权利要求1所述的直流电源装置,其特征在于,所述强制短路单元包括:由二极管D1、二极管D2、二极管D3和二极管D4组成的整流桥B R1、绝缘栅双极晶体管G1、压敏电阻R1、推挽输出型光耦IC1和PNP型三极管Q1;
所述整流桥BR1的两个输入端分别接所述交流电源的火线和保险丝,所述整流桥BR1的输出端接所述绝缘栅双极晶体管G1的集电极,所述压敏电阻R1并接在所述绝缘栅双极晶体管G1的集电极与发射极之间,所述整流桥BR1的接地端与所述绝缘栅双极晶体管G1的发射极都接地,所述绝缘栅双极晶体管G1的栅极接所述推挽输出型光耦IC1的输出端,所述推挽输出型光耦IC1输入端的发光二极管的阳极接所述PNP型三极管Q1的集电极,所述推挽输出型光耦IC1的输入端的发光二极管的阴极接所述过压检测保护单元的输出端,所述PNP型三极管Q1的发射极接工作电压VCC,所述PNP型三极管Q1的基极接所述微处理器控制单元的PWM控制信号输出端。
3.如权利要求2所述的直流电源装置,其特征在于,所述强制短路单元还包括:下拉电阻R10、抗干扰电阻R11和限流电阻R12;
所述下拉电阻R10接在所述绝缘栅双极晶体管G1的栅极与地之间,所述抗干扰电阻R11连接在所述绝缘栅双极晶体管G1的栅极与所述推挽输出型光耦IC1的输出端之间,所述限流电阻R12接在所述推挽输出型光耦IC1输入端的发光二极管的阳极与所述PNP型三极管Q1的集电极之间。
4.如权利要求1-3任一项所述的直流电源装置,其特征在于,所述直流电压检测单元包括采样电阻R2、采样电阻R3和采样电阻R4;
所述采样电阻R2、采样电阻R3和采样电阻R4依次串接在所述交流电整流滤波单元的输出端与地之间,所述采样电阻R3与采样电阻R4的公共连接端作为所述直流电压检测单元的输出端、分别接所述过压检测保护单元和所述微处理器控制单元的输入端。
5.如权利要求4所述的直流电源装置,其特征在于,所述过压检测保护单元包括运算放大器IC2、分压电阻R5、分压电阻R6和上拉电阻R7;
所述运算放大器IC2的正相输入端接所述直流电压检测单元的输出端,所述运算放大器IC2的反相输入端通过所述分压电阻R5接工作电压VCC,所述分压电阻R6接在所述运算放大器IC2的反相输入端与地之间,所述运算放大器IC2的输出端作为所述过压检测保护单元的输出端、同时接所述强制短路单元和所述微处理器控制单元的输入端。
6.如权利要求5所述的直流电源装置,其特征在于,所述交流电整流滤波单元包括由二极管D5、二极管D6、二极管D7和二极管D8组成的整流桥BR2、电解电容E1和电解电容E2;
所述整流桥BR2的两个输入端分别接所述交流电源的火线和零线,所述整流桥BR2的输出端作为所述交流电整流滤波单元的输出端、接所述功率系统的输入端,所述整流桥BR2的接地端接地,所述电解电容E1的正极和所述电解电容E2的正极分别接所述整流桥BR2的输出端,所述电解电容E1的负极和所述电解电容E2的负极都接地。
7.如权利要求1所述的直流电源装置,其特征在于,所述电抗器为单个串接在所述交流电源火线上的电抗器L1。
8.如权利要求1所述的直流电源装置,其特征在于,所述电抗器为分别串接在所述交流电源火线和零线上的、感量相同的电抗器L2和电抗器L3。
CN 201320054301 2013-01-30 2013-01-30 直流电源装置 Withdrawn - After Issue CN203135735U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201320054301 CN203135735U (zh) 2013-01-30 2013-01-30 直流电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201320054301 CN203135735U (zh) 2013-01-30 2013-01-30 直流电源装置

Publications (1)

Publication Number Publication Date
CN203135735U true CN203135735U (zh) 2013-08-14

Family

ID=48943674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201320054301 Withdrawn - After Issue CN203135735U (zh) 2013-01-30 2013-01-30 直流电源装置

Country Status (1)

Country Link
CN (1) CN203135735U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546085A (zh) * 2013-11-13 2014-01-29 苏州工业园区艾思科技有限公司 一种恒功率吸尘器及其控制方法
CN103973134A (zh) * 2013-01-30 2014-08-06 广东美的制冷设备有限公司 直流电源装置及提高其功率因数的pwm脉冲控制方法
CN107611948A (zh) * 2017-10-26 2018-01-19 绵阳高新区探索科技有限责任公司 充电枪缆上控制盒用短路保护电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973134A (zh) * 2013-01-30 2014-08-06 广东美的制冷设备有限公司 直流电源装置及提高其功率因数的pwm脉冲控制方法
CN103973134B (zh) * 2013-01-30 2016-09-07 广东美的制冷设备有限公司 直流电源装置及提高其功率因数的pwm脉冲控制方法
CN103546085A (zh) * 2013-11-13 2014-01-29 苏州工业园区艾思科技有限公司 一种恒功率吸尘器及其控制方法
CN107611948A (zh) * 2017-10-26 2018-01-19 绵阳高新区探索科技有限责任公司 充电枪缆上控制盒用短路保护电路

Similar Documents

Publication Publication Date Title
CN203445604U (zh) Pfc电路和pfc变频器
CN201110615Y (zh) 空调控制器的过零信号检测电路及一种空调
CN107276388B (zh) Pfc电路及变频空调器
CN203840210U (zh) 交流逆变电路
CN103973134B (zh) 直流电源装置及提高其功率因数的pwm脉冲控制方法
CN205304229U (zh) 继电器控制保护电路及家电设备
CN203135735U (zh) 直流电源装置
CN102638024B (zh) 中线断线保护器
CN105515415A (zh) 一种功率转换电路、方法及空调器
CN205453116U (zh) 一种残余电压泄放电路及电饭煲
CN110022055A (zh) 运行控制方法、装置、电路、家电设备和计算机存储介质
CN110416975A (zh) 一种电源保护电路及新能源汽车
CN102843049B (zh) 摩托车用整流调压器
CN211656001U (zh) 一种pfc控制电路及空调器
CN104218535A (zh) 一种有源pfc过电流保护电路
CN205725554U (zh) 基于矩阵变换器的永磁同步电机驱动系统
CN106787048A (zh) 具备自动识别输入电压功能的充电器
CN208352968U (zh) 一种pfc过压保护电路及装置
CN107370354B (zh) 一种交流输入电流浪涌抑制系统
CN110133359A (zh) 空调器过零检测电路、电控装置和空调器
CN2595063Y (zh) 低成本有源功率因数校正器
WO2018129835A1 (zh) 一种基于维也纳pfc的智能型半桥正弦波电压转换电路
CN209497399U (zh) 驱动控制电路和家电设备
CN204442193U (zh) 一种新型智能逆变器
CN209448667U (zh) 一种针对逆变器交流容性负载快变的自适应控制电路

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20130814

Effective date of abandoning: 20160907

C25 Abandonment of patent right or utility model to avoid double patenting