CN202276060U - Self-Raman frequency conversion self-locking mode solid laser - Google Patents
Self-Raman frequency conversion self-locking mode solid laser Download PDFInfo
- Publication number
- CN202276060U CN202276060U CN2011201751762U CN201120175176U CN202276060U CN 202276060 U CN202276060 U CN 202276060U CN 2011201751762 U CN2011201751762 U CN 2011201751762U CN 201120175176 U CN201120175176 U CN 201120175176U CN 202276060 U CN202276060 U CN 202276060U
- Authority
- CN
- China
- Prior art keywords
- laser
- self
- crystals
- mirror
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 13
- 239000007787 solid Substances 0.000 title abstract description 4
- 239000013078 crystal Substances 0.000 claims abstract description 56
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- -1 rare earth ion Chemical class 0.000 claims abstract description 18
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 17
- 238000005086 pumping Methods 0.000 claims abstract description 7
- 238000002834 transmittance Methods 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 22
- 230000003287 optical effect Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
Description
技术领域 technical field
本实用新型属于激光器设计技术领域,尤其涉及一种固体激光器及其谐振腔。 The utility model belongs to the technical field of laser design, in particular to a solid laser and a resonant cavity thereof. the
背景技术 Background technique
固体激光器是指以固体激光材料作为谐振腔工作物质的激光器,其广泛应用于军事、加工、医疗和科学研究等领域。 Solid-state lasers refer to lasers that use solid-state laser materials as the working substance of the resonator, and are widely used in military, processing, medical and scientific research fields. the
而作为激光及非线性光学领域的一个重要分支,光学频率变换技术的应用使得激光器的输出激光光谱得到有效拓展,从而进一步拓宽了激光器的应用领域。其中,拉曼介质的受激拉曼散射(Stimulate Raman Scattering,SRS)技术由于效率高、能够改善光束质量、无需相位匹配等优点而获得了极高的关注。经拉曼介质散色后的激光光谱遍及紫外线到近红外线,拓宽了激光光谱的范围。 As an important branch of the field of laser and nonlinear optics, the application of optical frequency conversion technology can effectively expand the output laser spectrum of the laser, thereby further broadening the application field of the laser. Among them, the stimulated Raman scattering (Stimulate Raman Scattering, SRS) technology of Raman media has attracted a lot of attention due to its advantages of high efficiency, improved beam quality, and no need for phase matching. The laser spectrum after being dispersed by the Raman medium extends from ultraviolet to near infrared, broadening the range of the laser spectrum. the
为此,现有技术提供的固体激光器采用了拉曼晶体作为拉曼介质,使得固体激光器由于结构紧凑、效率高、稳定性好等优点,而更加广泛地应用在信息、交通、测量、医疗、国防和工农业等领域。然而,现有技术提供的采用了拉曼晶体的固体激光器虽然拓宽了激光器输出激光的光谱的范围,却无法产生主要应用于超高速光通讯、海量信息存储、光合作用研究、化学反应过程等领域的、具有超短脉冲的激光,应用领域有限。 For this reason, the solid-state laser provided by the prior art adopts Raman crystal as the Raman medium, so that the solid-state laser is more widely used in information, transportation, measurement, medical treatment, National defense and industrial and agricultural fields. However, although the solid-state lasers using Raman crystals provided by the prior art broaden the range of the laser output laser spectrum, they cannot produce lasers that are mainly used in ultra-high-speed optical communications, massive information storage, photosynthesis research, chemical reaction processes and other fields. Lasers with ultrashort pulses have limited applications. the
实用新型内容 Utility model content
本实用新型的目的在于提供一种固体激光器,旨在解决现有技术提供的采用了拉曼晶体的固体激光器无法产生具有超短脉冲的激光,应用领域有限的问题。 The purpose of the utility model is to provide a solid-state laser, aiming to solve the problem that the solid-state laser using Raman crystals provided by the prior art cannot produce laser with ultrashort pulses and has limited application fields. the
本实用新型是这样实现的,一种自拉曼变频自锁模固体激光器,包括:泵浦源和谐振腔,所述谐振腔内具有激光增益介质,所述激光增益介质为掺稀土离子的钒酸盐晶体;所述激光增益介质的前后两个通光面不垂直于激光光路。 The utility model is achieved in this way, a self-Raman frequency conversion self-mode-locked solid-state laser, including: a pump source and a resonant cavity, the resonant cavity has a laser gain medium, and the laser gain medium is vanadium doped with rare earth ions acid salt crystal; the front and rear two light-passing surfaces of the laser gain medium are not perpendicular to the laser light path. the
进一步地,所述谐振腔包括一泵浦端腔镜和一输出镜;所述泵浦端腔镜对泵浦光高透射、对基频光和一阶斯托克斯光高反射,所述输出镜对基频光高反射、对一阶斯托克斯光有透过率。 Further, the resonant cavity includes a pump-end cavity mirror and an output mirror; the pump-end cavity mirror has high transmittance to pump light, high reflection to fundamental frequency light and first-order Stokes light, and the The output mirror is highly reflective to the fundamental frequency light and has transmittance to the first-order Stokes light. the
进一步地,所述谐振腔是直腔、三镜折叠腔、Z型折叠腔或X型折叠腔。 Further, the resonant cavity is a straight cavity, a three-mirror folded cavity, a Z-shaped folded cavity or an X-shaped folded cavity. the
进一步地,所述掺稀土离子的钒酸盐晶体包括Nd:YVO4晶体、Nd:GdVO4晶体、Nd:LuVO4晶体、Nd:GdxY1-xVO4晶体、Nd:LuxY1-xVO4晶体、Nd:LuxGd1-xVO4晶体、Yb:YVO4晶体、Yb:GdVO4晶体或Yb:LuVO4晶体。 Further, the vanadate crystals doped with rare earth ions include Nd:YVO 4 crystals, Nd:GdVO 4 crystals, Nd:LuVO 4 crystals, Nd:Gd x Y 1-x VO 4 crystals, Nd:Lux Y 1 -x VO 4 crystals, Nd:Lu x Gd 1-x VO 4 crystals, Yb:YVO 4 crystals, Yb:GdVO 4 crystals or Yb:LuVO 4 crystals.
进一步地,所述泵浦源包括:激光二极管、光纤耦合输出半导体激光系统或者其它激光光源。 Further, the pumping source includes: a laser diode, a fiber-coupled output semiconductor laser system or other laser light sources. the
进一步地,所述谐振腔的腔镜为楔型镜、平面镜、平凸镜或平凹镜。 Further, the cavity mirror of the resonant cavity is a wedge mirror, a plane mirror, a plano-convex mirror or a plano-concave mirror. the
本实用新型采用了掺稀土离子的钒酸盐晶体作为谐振腔的工作介质,且设置激光增益介质的前后两个通光面不垂直于激光光路,从而可以避免由于标准具效应影响锁模的效果。因此该掺稀土离子的钒酸盐晶体在对入射激光产生受激拉曼散射效应的同时,还可以通过克尔透镜效应或者可饱和拉曼增益对受激拉曼散射光脉冲的选择,实现对激光器的自锁模,从而获得具有超短脉冲的激光。 The utility model adopts the vanadate crystal doped with rare earth ions as the working medium of the resonant cavity, and the front and rear light-passing surfaces of the laser gain medium are not perpendicular to the laser light path, thereby avoiding the influence of the mode-locking effect due to the etalon effect . Therefore, the vanadate crystal doped with rare earth ions not only produces the stimulated Raman scattering effect on the incident laser light, but also can realize the selection of the stimulated Raman scattering light pulse through the Kerr lens effect or saturable Raman gain. Self-mode-locking of lasers to obtain lasers with ultrashort pulses. the
附图说明 Description of drawings
图1是本实用新型提供的固体激光器的原理结构图。 Fig. 1 is a schematic structural diagram of a solid-state laser provided by the present invention. the
具体实施方式 Detailed ways
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本实用新型,并不用于限定本实用新型。 In order to make the purpose, technical solution and advantages of the utility model clearer, the utility model will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the utility model, and are not intended to limit the utility model. the
本实用新型采用了掺稀土离子的钒酸盐晶体作为谐振腔的工作介质,并将激光增益介质的前后两个通光面设置为不垂直于激光光路,该掺稀土离子的钒酸盐晶体在对入射激光产生受激拉曼散射效应的同时,还可产生较强的克尔透镜效应,从而获得具有超短脉冲的激光。 The utility model adopts the vanadate crystal doped with rare earth ions as the working medium of the resonant cavity, and sets the front and rear light-passing surfaces of the laser gain medium to be non-perpendicular to the laser light path. The vanadate crystal doped with rare earth ions is While generating the stimulated Raman scattering effect on the incident laser light, it can also generate a strong Kerr lens effect, thereby obtaining laser light with ultrashort pulses. the
图1示出了本实用新型提供的固体激光器的原理结构,为了便于说明,仅示出了与本实用新型相关的部分。 Fig. 1 shows the principle structure of the solid-state laser provided by the present invention, and for the convenience of description, only the parts related to the present invention are shown. the
本实用新型提供的固体激光器包括泵浦源1和谐振腔2,其中谐振腔2的内部具有激光增益介质22。泵浦源1用于产生泵浦光并将泵浦光聚焦到谐振腔2中的工作介质22上,其中谐振腔2可以是直腔、三镜折叠腔、Z型折叠腔、X型折叠腔;激光增益介质22为掺稀土离子的钒酸盐晶体,包括Nd:YVO4晶体、Nd:GdVO4晶体、Nd:LuVO4晶体、Nd:GdxY1-xVO4晶体、Nd:LuxY1-xVO4晶体、Nd:LuxGd1-xVO4晶体、Yb:YVO4晶体、Yb:GdVO4晶体、Yb:LuVO4晶体中的一种或多种。
The solid-state laser provided by the utility model includes a pump source 1 and a
上述泵浦源1可以包括激光二极管、光纤耦合输出半导体激光系统或者其它激光光源,图1中以光纤耦合输出半导体激光系统为例示出了泵浦源1的结构,包括光纤输出端11和聚焦耦合系统12。
Above-mentioned pumping source 1 can comprise laser diode, fiber-coupled output semiconductor laser system or other laser light sources, the structure of pumping source 1 is shown in Fig.
上述谐振腔2还包括一泵浦端腔镜21和一输出镜23,泵浦端腔镜21对泵浦光高透射、对基频光和一阶斯托克斯光高反射,而输出镜23对基频光高反射、对一阶斯托克斯光则有透过率。
The
上述泵浦端腔镜21可以是楔型镜、平面镜、平凸镜或平凹镜,为了避免形成标准具效应,提高谐振腔内振荡的纵模数量,从而提高锁模效果,本实用新型中,激光增益介质22的前后两个通光面221和222中至少有一个不垂直于激光光路,具体可设置泵浦端腔镜21与激光增益介质22之间相对的面不平行,和/或激光增益介质22和输出镜23之间相对的面不平行。
The above-mentioned pump end cavity mirror 21 can be a wedge-shaped mirror, a plane mirror, a plano-convex mirror or a plano-concave mirror. In order to avoid forming the etalon effect, increase the number of longitudinal modes oscillating in the resonant cavity, thereby improving the mode-locking effect, in the utility model , at least one of the front and rear light-
本实用新型采用了掺稀土离子的钒酸盐晶体作为谐振腔2的工作介质,掺 稀土离子钒酸盐晶体的自锁模特性基于钒酸盐晶体的克尔透镜锁模,或基于可饱和拉曼增益对受激拉曼散射光脉冲的选择。众所周知,掺稀土离子的钒酸盐晶体具有优良的三阶非线性特性,可以对入射激光在可见光和近红外光光谱范围内产生受激拉曼散射效应,实现自拉曼变频激光的输出,且该种结构有利于实现基频光和斯托克斯光的模式匹配,降低阈值,提高系统的稳定性和转换效率,简化谐振腔的腔型结构。而为了应用该固体激光器产生具有超短脉冲的激光(即对激光实现锁模),需工作介质具有大的非线性系数,以提供足够强的自聚焦效应,由此,掺稀土离子的钒酸盐晶体在对入射激光产生受激拉曼散射效应的同时,还可产生较强的克尔透镜效应(Kerr-lens effect),从而实现克尔透镜锁模(Ker-lens mode locking,KLM),以获得具有超短脉冲的激光。
The utility model adopts the vanadate crystal doped with rare earth ions as the working medium of the
以钒酸盐晶体是YVO4晶体为例,实验数据可得,YVO4晶体的非线性折射率为1.9*10-15cm2/W,约是现有常用的产生克尔透镜效应的钛宝石晶体的6倍,由于该非线性折射率是一个表征由克尔透镜效应引起的自聚焦效应强弱的参量,因此,YVO4晶体是一种高效的克尔透镜自锁模工作介质。 Taking the vanadate crystal as YVO 4 crystal as an example, the experimental data shows that the nonlinear refractive index of YVO 4 crystal is 1.9*10 -15 cm2/W, which is about the same as that of the commonly used Ti:sapphire crystal that produces the Kerr lens effect. Since the nonlinear refractive index is a parameter that characterizes the strength of the self-focusing effect caused by the Kerr lens effect, the YVO 4 crystal is a highly efficient Kerr lens self-mode-locking working medium.
在本实用新型的一个实施例中,输出镜23将经自身受激拉曼散射效应和克尔透镜锁模效应的,波长为1.17μm、重复频率为GHz量级、脉冲宽度为皮秒量级的超短脉冲激光输出到基于钒酸盐晶体的谐振腔13的腔外,为此,泵浦源1产生的泵浦光的波长为808nm;泵浦端腔镜21镀有对808nm入射激光高透、对1064nm入射激光和1.17μm入射激光高反的介质膜;激光增益介质22上沿聚焦耦合系统12聚焦后的泵浦光光路的入射通光端面和出射通光端面分别镀有对808nm入射激光、1064nm入射激光和1.17μm入射激光高透的介质膜;输出镜23镀有对1064nm入射激光高反和对1.17μm入射激光部分反射的介质膜。
In one embodiment of the present utility model, the
本实用新型该实施例提供的固体激光器发出的超短脉冲激光再经倍频后,可产生应用于医疗、光谱分析等领域的波长为588nm的超短脉冲黄光激光。 The ultra-short pulse laser emitted by the solid-state laser provided by this embodiment of the utility model can produce an ultra-short pulse yellow laser with a wavelength of 588nm for medical treatment, spectral analysis and other fields after frequency doubling. the
在本实用新型的另一个实施例中,输出镜23将经自身受激拉曼散射效应和克尔透镜锁模效应的,波长为1.52μm、重复频率为GHz量级、脉冲宽度为皮秒 量级的超短脉冲激光输出到基于钒酸盐晶体的谐振腔13的腔外,为此,泵浦源1产生的泵浦光的波长为808nm;泵浦端腔镜131镀有对808nm入射激光和1064nm入射激光高透、对1342nm入射激光和1.52μm入射激光高反的介质膜;激光增益介质22上沿聚焦耦合系统12聚焦后的泵浦光光路的入射通光端面和出射通光端面分别镀有对808nm入射激光、1064nm入射激光、1342nm入射激光和1.52μm入射激光高透的介质膜;输出镜23镀有对1064nm入射激光高透、对1342nm入射激光高反和对1.52μm入射激光部分反射的介质膜。本实用新型该实施例发出的固体激光器发出的超短脉冲激光可应用于光通信领域、或用作超短脉冲激光放大器的种子源。
In another embodiment of the present utility model, the
本实用新型采用了掺稀土离子的钒酸盐晶体作为谐振腔的工作介质,该掺稀土离子的钒酸盐晶体的前后两个通光面中至少有一个不垂直于激光光路,在对入射激光产生受激拉曼散射效应的同时,还可以通过克尔透镜效应或者可饱和拉曼增益对受激拉曼散射光脉冲的选择,实现对激光器的自锁模,从而获得具有超短脉冲的激光。 The utility model adopts the vanadate crystal doped with rare earth ions as the working medium of the resonant cavity. At least one of the front and rear light-passing surfaces of the vanadate crystal doped with rare earth ions is not perpendicular to the laser light path. While the stimulated Raman scattering effect is generated, the self-mode-locking of the laser can be realized through the selection of the stimulated Raman scattering light pulse by the Kerr lens effect or the saturable Raman gain, thereby obtaining a laser with an ultrashort pulse . the
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。 The above descriptions are only preferred embodiments of the present utility model, and are not intended to limit the present utility model. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present utility model shall be included in this utility model. within the scope of protection of utility models. the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011201751762U CN202276060U (en) | 2011-05-26 | 2011-05-26 | Self-Raman frequency conversion self-locking mode solid laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011201751762U CN202276060U (en) | 2011-05-26 | 2011-05-26 | Self-Raman frequency conversion self-locking mode solid laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202276060U true CN202276060U (en) | 2012-06-13 |
Family
ID=46196398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011201751762U Expired - Fee Related CN202276060U (en) | 2011-05-26 | 2011-05-26 | Self-Raman frequency conversion self-locking mode solid laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202276060U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102801102A (en) * | 2012-09-07 | 2012-11-28 | 长春理工大学 | 3.9 mu m mid infrared laser |
CN104505706A (en) * | 2014-11-19 | 2015-04-08 | 中国科学院光电研究院 | YVO4 femtosecond laser device capable of emitting laser having wavelength around 1134 nm |
WO2018040019A1 (en) * | 2016-08-31 | 2018-03-08 | 深圳大学 | Generation device, generation method and application for 2.9-micron wave band pulse laser |
WO2018040021A1 (en) * | 2016-08-31 | 2018-03-08 | 深圳大学 | GENERATION DEVICE AND METHOD FOR 2.1 μM WAVEBAND PULSE LASER AND USE THEREOF |
WO2018040018A1 (en) * | 2016-08-31 | 2018-03-08 | 深圳大学 | Generation device, generation method and application for 2.3-micron wave band pulse laser |
-
2011
- 2011-05-26 CN CN2011201751762U patent/CN202276060U/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102801102A (en) * | 2012-09-07 | 2012-11-28 | 长春理工大学 | 3.9 mu m mid infrared laser |
CN104505706A (en) * | 2014-11-19 | 2015-04-08 | 中国科学院光电研究院 | YVO4 femtosecond laser device capable of emitting laser having wavelength around 1134 nm |
CN104505706B (en) * | 2014-11-19 | 2018-11-02 | 中国科学院光电研究院 | A kind of 1134nm wavelength Yb:YVO4 femto-second lasers |
WO2018040019A1 (en) * | 2016-08-31 | 2018-03-08 | 深圳大学 | Generation device, generation method and application for 2.9-micron wave band pulse laser |
WO2018040021A1 (en) * | 2016-08-31 | 2018-03-08 | 深圳大学 | GENERATION DEVICE AND METHOD FOR 2.1 μM WAVEBAND PULSE LASER AND USE THEREOF |
WO2018040018A1 (en) * | 2016-08-31 | 2018-03-08 | 深圳大学 | Generation device, generation method and application for 2.3-micron wave band pulse laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102244361A (en) | Self-Raman frequency conversion self-mode locking solid laser | |
CN104852260A (en) | Dual-wavelength Q-switched pulse fiber laser | |
CN105449510A (en) | All solid state mid-infrared optical parametric oscillator | |
CN209281121U (en) | An optical difference frequency terahertz generation device based on DFB laser | |
CN202276060U (en) | Self-Raman frequency conversion self-locking mode solid laser | |
CN105514779A (en) | High-power narrow-linewidth continuous wave visible light optical parametric oscillator | |
CN103022869A (en) | Passive mode-locking guide gain-modulated dual-wavelength pulse fiber laser | |
CN102368588B (en) | Method for improving contrast of ultrashort pulse | |
CN105226491A (en) | Selenium-gallium-barium optical parametric oscillator of 3-micron waveband solid laser pumping | |
CN105846302A (en) | Novel Kerr-lens mode-locking Cr: ZnS femtosecond laser | |
CN207753292U (en) | Two-frequency laser | |
CN103401135B (en) | Adopt raman frequency conversion by the method for laser amplifier and device thereof | |
CN103001113B (en) | 473nm electro-optic q-switch laser | |
CN100555053C (en) | All-solid-state CW tunable yellow-orange coherent light source | |
CN107611760A (en) | A kind of torsional pendulum chamber pure-tone pulse laser | |
CN107565358A (en) | A kind of high power kerr lenses self mode-locked laser of optical fiber laser pump | |
CN105098589A (en) | Dual-wavelength Raman mode locked laser | |
WO2018040018A1 (en) | Generation device, generation method and application for 2.3-micron wave band pulse laser | |
CN213278684U (en) | A laser with adjustable power ratio and pulse interval | |
CN104600554A (en) | Broadband high-efficiency laser amplification device | |
CN106532422A (en) | Passively Q-switched c-cut Nd:YVO4 self-Raman all-solid-state laser with six-wavelength output | |
CN208241070U (en) | THz wave oscillator | |
CN105896261A (en) | All-solid-state wide-tuning long-wave infrared laser source | |
CN206099036U (en) | A device for generating pulsed laser in the 2.3 micron band | |
CN205355521U (en) | Continuous wave visible light optical parametric oscillator of high power narrow linewidth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120613 Termination date: 20130526 |