CN202017535U - 压缩释放型发动机制动装置 - Google Patents
压缩释放型发动机制动装置 Download PDFInfo
- Publication number
- CN202017535U CN202017535U CN2011200620148U CN201120062014U CN202017535U CN 202017535 U CN202017535 U CN 202017535U CN 2011200620148 U CN2011200620148 U CN 2011200620148U CN 201120062014 U CN201120062014 U CN 201120062014U CN 202017535 U CN202017535 U CN 202017535U
- Authority
- CN
- China
- Prior art keywords
- braking
- boss
- compression
- valve
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
一种压缩释放型发动机制动装置,在阀桥内设置有由液压通道相连的主活塞孔和副活塞孔,利用凸轮的制动凸台驱动活塞孔内的主活塞和副活塞,打开一个排气门制动。在制动过程中,利用制动凸轮在最大制动升程的等高段,保持主活塞的缩回位置,关闭主活塞孔和副活塞孔之间的液压通道,副活塞上的制动载荷传递给位于阀桥上面的制动支架、而不返回主活塞。利用凸轮上的集成式排气凸台进一步驱动主活塞,主活塞驱动阀桥运动并与制动支架分离,打开阀桥内卸油通道卸油,使副活塞回到缩回位置,制动排气门移向关闭位置。本实用新型将压缩释放型制动机构与现有气门驱动链集成,利用制动支架承担制动载荷和重置制动阀升,减小了制动载荷,增加了制动功率。
Description
技术领域:
本实用新型涉及机械领域,尤其涉及车辆发动机的气门驱动领域,特别是一种压缩释放型发动机制动装置。
背景技术:
发动机制动可以分为压缩释放型制动和泄气型制动。发动机的压缩释放型制动在发动机活塞压缩冲程的后期打开排气门,在膨胀冲程的前期(一般在排气门正常开启之前)关闭排气门。压缩释放型制动器的一个先例由康明斯(Cummins)于1965年在美国专利号3220392披露。制动系统经过液压回路将机械输入传递到要打开的排气门。液压回路上通常包括在主活塞孔内往复运动的主活塞,该往复运动来自于发动机的机械输入,比如说发动机喷油凸轮的运动或相邻排气凸轮的运动。主活塞的运动通过液压流体传递到液压回路上的副活塞,使其在副活塞孔内往复运动,副活塞直接或间接地作用在排气门上,产生发动机制动运作的气门运动。
发动机的泄气型制动是排气门除了正常的开启之外,还在部分周期内保持小量恒开(部分周期泄气制动),或在非排气冲程的周期内(进气冲程,压缩冲程,和膨胀冲程)保持小量恒开(全周期泄气制动)。部分周期泄气制动和全周期泄气制动的主要区别,在于前者在大部分的进气冲程中不打开排气门。本实用新型人在美国专利号6594996为泄气型发动机制动体系和方法提供了相关的说明和实例。
发动机的压缩释放型制动和泄气型制动的区别主要有两点。第一个主要区别是制动排气门的开启相位(制动时间)不同。全周期泄气型制动的制动排气门是始终打开的,因此不牵涉到开启时间。部分周期泄气型制动的制动排气门的开启时间是在发动机的进气冲程的后期;而压缩释放型制动的制动排气门的开启时间是在发动机的压缩冲程的后期,比部分周期泄气型制动的制动排气门的开启时间要晚很多,因此开启的载荷也要大得多。第二个主要区别是制动排气门的开启高度(制动阀升)不同。泄气型制动的制动排气门的制动阀升大致为0.5~1.0mm(一般小于1.0mm),而压缩释放型制动的制动排气门的制动阀升大致为2.0~3.5mm(液压式制动器的制动阀升一般大于2.0mm)。上述区别导致设计要求和制动性能的不同。压缩释放型的制动功率大于泄气型制动,但泄气型制动的制动开启载荷远小于压缩释放型制动。泄气型制动器必须与排气制动器(如排气蝶阀)联合使用,而压缩释放型制动器可以单独使用(不需要排气制动器)。
发动机全周期泄气制动系统的一个先例由缪尔(Muir)于1970年在美国专利第3525317号公开。该制动系统将发动机制动分为三档。第一档是发动机和车辆各运动部件造成的摩擦损失而产生的制动。第二档是将发动机的排气门保持连续小量恒开而产生的全周期泄气制动。第三档是在第二档的全周期泄气制动的基础上增加排气蝶阀,产生联合制动。
德国曼(MAN)的库比什(Kubis)等于1992年在美国专利第5086738号公开了发动机部分周期泄气制动系统。发动机制动时排气门在发动机进气冲程快结束时小量打开,然后在整个压缩冲程内保持小量恒开,最后在发动机的膨胀冲程的前期关闭。
前面说过,发动机泄气型制动器单独使用效果不好,制动功率远低于压缩释放型制动器。因此,发动机泄气型制动器都与发动机排气制动器(如排气蝶阀)联合使用,形成联合制动。使用排气蝶阀或其它排气限流装置使排气背压升高有可能导致排气门反跳或浮动(浮阀)。发动机行业一般对浮阀不赞成,因为浮阀时排气门的开启和关闭不是由凸轮驱动的,气门的落座速度无法控制。太大的气门落座速度有可能损坏发动机。然而,加拿大的PacBrake于1989年在美国专利第4848289号公开了使用排气制动器提高排气背压导致浮阀的制动方法。
瑞典的沃尔沃(Volvo)于1992年在美国专利第5146890号公开了一种压缩释放型发动机制动器与排气制动器一起使用的联合制动方法。其中发动机的制动凸轮除了压缩释放制动凸台外,增加了排气再循环(EGR)凸台。排气门在进气冲程的后期打开,由排气制动器产生的高背压尾气(制动时为空气),从排气管内反充发动机汽缸,增加压缩制动功率。
德国曼(MAN)的拉默(Rammer)等于1997年在美国专利第5692469号公开了一种利用排气制动器提高排气背压导致浮阀(气门反跳)进而开启泄气型制动器的装置和方法。当排气背压足够高时,排气门在进气冲程临近结束时浮开或反跳。在该排气门浮动期间,用一制动装置对其进行干预,也就是在浮开的排气门关闭之前,通过一个油压控制的活塞将其截住,阻止它关闭,让它保持小量恒开,产生部分周期泄气制动(排气门在排气冲程后关闭)。该制动系统是用于每缸单排气门的发动机。2006年,拉默(Rammer)等将上述技术扩展到每缸双排气门的发动机(美国专利第7013867号,中国专利第200310123153.7号)。
德国曼(MAN)的上述泄气型发动机制动系统的可靠性和耐久性面临着很多问题,因为它依赖于制动排气门的间歇开放或浮动,这无论在时间和大小上都是不一致的。众所周知,排气门的浮动高度依赖于排气背压,而排气背压依赖于发动机的转速,并受排气制动器的质量与控制以及排气系统设计的影响。在发动机的中、低转速速时,排气门的浮动可能不够或根本没有,发动机制动装置无法启动。而此时发动机制动的需求很高,因为商用车发动机大部分时间运行在中、低转速。此外,过高的排气背压不仅浮动被制动的排气门,同时也浮动不制动的排气门。不制动的排气门的落座速度将太大,影响发动机的可靠性和耐久性。
本实用新型人于2010年在美国专利第7673600号(中国专利申请公开号CN1991136A)公开了一种利用凸轮驱动而产生的部分周期泄气型制动装置和方法。发动机的阀桥内集成有主、副活塞。主活塞内有单向供油阀,主活塞和副活塞之间的液压流道内还设置有另外一个制动单向阀。制动凸轮与发动机的常规排气凸轮集成,包括泄气型制动凸台。泄气型制动凸台在发动机进气冲程的后期开始从凸轮的内基圆往上升。在进气冲程的下止点附近上升到最高升程,然后在发动机的压缩冲程和膨胀冲程期间保持该最高升程不变,最后平滑地过渡进入常规排气凸台。发动机制动时,不是靠排气背压升高浮动排气门而开启制动,而是由制动凸台推动阀桥内的主活塞,主活塞驱动副活塞打开排气门,副活塞由制动单向阀锁定在伸出位置,将排气门保持小量恒开,产生部分周期泄气型制动。
上述的许多制动装置的制动驱动机构都是集成在发动机的阀桥内的。阀桥制动装置的一个先例是由卡尔维(Calvin)于1970年在美国专利号3,520,287披露。整个阀桥套在一根中央导杆上。导杆内部有制动油道和控制阀。导杆上部作为一个制动活塞,阀桥通过其内部的活塞孔沿制动活塞滑动。
一个改进了的阀桥制动机构由斯可乐(Sickler)于1986年在美国专利号4,572,114披露。一个专用的制动活塞安置在阀桥中央向上开的活塞孔内,使制动活塞与阀桥之间的相对运动大大减小。该阀桥制动机构用于四冲程发动机,但是每个循环周期内产生两次压缩释放制动。
美国皆可博公司(JVS)为南韩现代(Hyundai)卡车公司设计和制造的阀桥制动装置(参见美国专利公开号US 20050211206,本实用新型人为该专利申请的实用新型人之一)在斯可乐(Sickler)的阀桥制动机构的基础上增加了一种阀升重置机构。此外,阀桥内可以设置一到三个活塞,制动时打开一个或两个排气门。
黄(Huang)和本实用新型申请人以及舒沃尔(Schwoerer)于2007年在美国专利第7284533号(中国专利申请公开号CN101490393A)公开了一种利用制动凸轮型线来实现制动设计要求和优化制动功能的方法。
发明内容:
本实用新型的目的在于提供一种压缩释放型发动机制动装置,所述的这种压缩释放型发动机制动装置要解决现有技术中发动机制动机构存在的可靠性和耐久性不好、安装和调试不方便以及增加发动机高度和重量的技术问题。
本实用新型的这种压缩释放型发动机制动装置包括制动控制机构和制动驱动机构,其中,所述的制动控制机构包括一个与液压产生装置相连接的控制阀,制动驱动机构包括制动箱体、供油机构、卸油机构和制动凸轮,所述的制动箱体内设置有主活塞孔和副活塞孔,所述的主活塞孔和副活塞孔之间设置有一条连通的液压通道,主活塞孔内滑动式地设置有主活塞,副活塞孔内滑动式地设置有副活塞,所述的供油机构包括供油通道和单向供油阀,所述的制动控制机构中的控制阀与所述的供油通道的入口连接,供油通道的出口与主活塞孔连接,所述的单向供油阀设置在供油通道或者供油通道与主活塞孔之间,单向供油阀的供油方向是从供油通道进入主活塞孔,所述的卸油机构包括一个卸油阀,所述的卸油阀与副活塞孔连通,所述的制动凸轮中含有至少一个制动凸台。
进一步的,所述的制动箱体由阀桥构成,所述的主活塞孔设置在所述的阀桥中央的一个向上开口内,所述的副活塞孔设置在阀桥的一端的一个向下开口内,所述的液压通道设置在阀桥内并连通主活塞孔和副活塞孔,所述的主活塞设置在主活塞孔内,所述的副活塞设置在副活塞孔内,主活塞的上端与发动机的摇臂固定连接,所述的摇臂中设置有一个供油通道,主活塞内设置有一个油路,所述的油路的上端与所述的摇臂中的供油通道相通,油路的下端与主活塞孔相通,所述的单向供油阀设置在主活塞孔与供油通道之间或者供油通道之内,所述的单向供油阀的供油方向是从供油通道向主活塞孔,副活塞孔所在的阀桥一端的上侧设置有一个制动支架,副活塞孔所在的阀桥一端设置有至少一个卸油通道,所述的卸油通道的一端与副活塞孔相通,卸油通道的另一端由制动支架的下端封闭,所述的制动凸轮上设置有集成式排气凸台。
进一步的,副活塞的下端与发动机排气门中的一个第一排气门相连,阀桥另一端的下侧与发动机排气门中的一个第二排气门相连。
进一步的,所述的制动支架固定在发动机上,所述的制动支架包括连接件,所述的连接件位于阀桥的上方。
进一步的,所述的制动支架集成在摇臂上,所述的制动支架包括连接件,所述的连接件位于阀桥的上方。
进一步的,所述的制动支架的连接件包括过渡活塞,所述的过渡活塞滑动式地安置在阀桥的过渡活塞孔内,所述的过渡活塞孔位于所述的副活塞孔之上。
进一步的,所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩上止点附近达到最高位置,在发动机的膨胀冲程的前期下降回到或靠近凸轮的内基圆。
进一步的,所述的制动凸台中包括有一个压缩释放凸台和一个排气再循环凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩上止点附近达到最高位置,在发动机的膨胀冲程的前期下降回到或靠近凸轮的内基圆,所述的排气再循环凸台在发动机的进气冲程的后期从凸轮的内基圆开始上升,在发动机的压缩冲程的前期下降回到凸轮的内基圆。
进一步的,在所述的凸轮上设置有一个集成式排气凸台,所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩冲程上止点之前上升到最高位置,在发动机的压缩冲程的剩余期间和发动机的膨胀冲程的初期保持所述的最高位置,在发动机的膨胀冲程的剩余期间下降回到凸轮的内基圆或汇入集成式排气凸台,所述的集成式排气凸台由底部和顶部组成,集成式排气凸台的底部与制动凸台接近同高,集成式排气凸台的顶部与发动机的常规凸台接近相同。
进一步的,所述的制动凸台中包括有一个排气再循环凸台,所述的排气再循环凸台在发动机的进气冲程的后期从凸轮的内基圆开始上升,在发动机的压缩冲程的前期下降回到凸轮的内基圆。
进一步的,在所述的凸轮上设置有一个集成式排气凸台,所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后半期从凸轮的内基圆开始上升,并在发动机的压缩上止点之前上升到最高位置,在发动机的压缩冲程的剩余期间和发动机的膨胀冲程的前期保持所述的最高位置,在发动机的膨胀冲程的剩余期间上升汇入集成式排气凸台。
进一步的,所述的制动驱动机构中设置有一个预紧弹簧。
进一步的,所述的预紧弹簧的一端安置在所述的发动机上,预紧弹簧的一端作用在所述的摇臂的一端上。
再进一步的,所述的制动驱动机构中设置有一个自动间隙补偿机构。
本实用新型的工作过程中包括一个利用发动机的排气门驱动链开启排气门的过程,所述的排气门驱动链包括凸轮、摇臂和阀桥,所述的发动机的排气门中包括有一个第一排气门和一个第二排气门,所述的凸轮中含有至少一个制动凸台,所述的制动凸台包括一个从凸轮的内基圆上升到最大升程的上升段和一个保持所述的最大升程的等高段,所述的摇臂中设置有一个供油通道,其中,在所述的阀桥的中央向上开口设置一个主活塞孔,在阀桥的一端向下开口设置一个副活塞孔,在所述的主活塞孔和副活塞孔之间连接设置一条液压通道,在主活塞孔内滑动式地设置一个主活塞,主活塞相对于主活塞孔具有一个伸出位置和一个缩回位置,在副活塞孔内滑动式地设置一个副活塞,将主活塞的上端与所述的摇臂连接,在主活塞内设置一个油路,将所述的油路的上端与所述的摇臂中的供油通道相通,将油路的下端与主活塞孔相通,在主活塞孔与供油通道之间、或者在供油通道之内设置一个单向供油阀,所述的单向供油阀的供油方向是从供油通道向主活塞孔,将副活塞的下端与所述的第一排气门相连,将阀桥另一端的下侧与所述的第二排气门相连,在副活塞孔所在的阀桥一端的上侧设置一个制动支架,在所述的利用发动机的排气门驱动链开启排气门的过程中,首先,通过所述的供油通道和单向供油阀向主活塞孔供油,将主活塞置于伸出位置,打开主活塞孔和副活塞孔之间的液压通道,然后,利用凸轮中制动凸台的上升段驱动所述的摇臂,使摇臂推动主活塞从伸出位置移向缩回位置,同时利用所述的制动支架阻止阀桥上移,利用所述的液压通道中的液压将主活塞的运动传递给副活塞,迫使所述的副活塞在副活塞孔内向下伸出,打开第一排气门,之后,利用凸轮中制动凸台的等高段驱动摇臂,将主活塞在主活塞孔内保持在缩回位置上,阻断主活塞孔通过所述的液压通道与副活塞孔之间的液压传递,将副活塞保持在副活塞孔内的伸出位置,保持第一排气门的打开状态,同时利用制动支架承载副活塞上的制动载荷。
进一步的,在副活塞孔所在的阀桥一端内设置至少一个卸油通道,将所述的卸油通道的下端与副活塞孔相通,利用所述的制动支架的下端封闭卸油通道的上端开口。
进一步的,在所述的制动凸台上设置一个下降段,将所述的下降段的起点连接在所述的等高段的末端,将下降段的终点回到或靠近凸轮的内基圆。
进一步的,在凸轮中制动凸台经过等高段后、进入下降段的过程中,利用摇臂做反向运动,使主活塞从缩回位置移向伸出位置,打开液压通道在主活塞孔上的开口,接通主活塞孔与副活塞孔之间的液压传递,使副活塞在第一排气门的作用力下向缩回位置移动。
进一步的,将主活塞内的油路沿主活塞的轴向设置,将油路的下端开口设置在主活塞的下端端面内。
或者,在所述的凸轮上设置集成式排气凸台,在所述的制动凸台上设置一个缓升段,将所述的缓升段的起点连接在所述的等高段的末端,将缓升段的终点汇入所述的集成式排气凸台,在凸轮中制动凸台经过等高段后、进入缓升段的过程中,利用制动凸台的缓升段驱动所述的摇臂,使摇臂通过位于主活塞孔内缩回位置上的主活塞往下推动阀桥,使副活塞孔所在的阀桥一端与位于其上侧的所述的制动支架分离,打开卸油通道的上端开口卸油,减少副活塞孔内的液压,使副活塞在第一排气门的作用力下在副活塞孔内向上移往缩回位置,使第一排气门向上移往关闭位置。
进一步的,所述的利用发动机的排气门驱动链开启排气门的过程包括以下步骤:
1)打开发动机的制动控制机构,通过所述的供油通道和单向供油阀向阀桥内的主活塞孔供油,
2)主活塞在主活塞孔内置于伸出位置,开通阀桥内的主活塞孔和副活塞孔之间的液压通道,
3)副活塞在副活塞孔内置于缩回位置,副活塞下面的第一排气门处于关闭位置,
4)凸轮的制动凸台从内基圆向上移动,驱动主活塞孔内的主活塞向下往阀桥的主活塞孔内的缩回位置运动,
5)位于副活塞孔上方的阀桥上面的制动支架阻止或限制阀桥向上运动,
6)主活塞的向下运动通过液压通道传递给副活塞,阀桥的副活塞孔内的副活塞向下往伸出位置运动,打开第一排气门,
7)凸轮的制动凸台抵达最高升程并继续保持所述的最高升程位置,
8)主活塞在阀桥的主活塞孔内向下抵达缩回位置,关闭主活塞孔和副活塞孔之间的液压通道,阻止副活塞上的液压载荷传递到主活塞,
9)副活塞在阀桥的副活塞孔内向下抵达伸出位置,将副活塞下面的第一排气门保持打开在最高制动阀升位置,
10)利用副活塞孔所在的阀桥一端上侧的制动支架来支撑第一排气门传给副活塞的载荷,
11)凸轮的制动凸台从最高升程下降回到内基圆,
12)主活塞从阀桥的主活塞孔内的缩回位置往上移回到伸出位置,打开主活塞孔和副活塞孔之间的液压通道,
13)副活塞从副活塞孔内的伸出位置往上移回到缩回位置,
14)第一排气门从最高制动阀升位置往上移向关闭位置。
进一步的,所述的利用发动机的排气门驱动链开启排气门的过程还包括以下步骤:
1)关闭发动机的制动控制机构,停止向阀桥内的主活塞孔供油,
2)凸轮驱动阀桥的主活塞孔内的主活塞向下运动,
3)主活塞驱动阀桥向下运动,副活塞孔所在的阀桥一端与其上侧的制动支架分离,
4)打开副活塞孔上方的卸油通道卸油,
5)副活塞从阀桥的副活塞孔内移到缩回位置。
进一步的,在主活塞于主活塞孔内从缩回位置滑向伸出位置时,利用主活塞打开液压通道位于主活塞孔上的开口,在主活塞于主活塞孔内从伸出位置滑向缩回位置时,利用主活塞关闭液压通道位于主活塞孔上的开口。
进一步的,所述的卸油通道设置有一个出口,在阀桥由凸轮驱动向下移动时,阀桥与制动支架分离,打开所述的卸油通道的出口。
进一步的,将所述的制动支架固定在发动机上,所述的制动支架包括连接件,所述的连接件位于阀桥的上方。
进一步的,将所述的制动支架集成在所述的摇臂上,所述的制动支架包括连接件,所述的连接件位于阀桥的上方。
进一步的,所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩上止点附近达到最高位置,在发动机的膨胀冲程的前期下降回到凸轮的内基圆。
进一步的,所述的制动凸台中包括有一个压缩释放凸台和一个排气再循环凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩上止点附近达到最高位置,在发动机的膨胀冲程的前期下降回到凸轮的内基圆,所述的排气再循环凸台在发动机的进气冲程的后期从凸轮的内基圆开始上升,在发动机的压缩冲程的前期下降回到凸轮的内基圆。
进一步的,在所述的凸轮上设置一个集成式排气凸台,所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩冲程上止点之前上升到最高位置,在发动机的压缩冲程的剩余期间和发动机的膨胀冲程的初期保持所述的最高位置,在发动机的膨胀冲程的剩余期间下降回到凸轮的内基圆或汇入集成式排气凸台,所述的集成式排气凸台由底部和顶部组成,集成式排气凸台的底部与制动凸台接近同高,集成式排气凸台的顶部与发动机的常规凸台接近相同。
进一步的,所述的制动凸台中包括有一个排气再循环凸台,所述的排气再循环凸台在发动机的进气冲程的后期从凸轮的内基圆开始上升,在发动机的压缩冲程的前期下降回到凸轮的内基圆。
进一步的,在所述的凸轮上设置一个集成式排气凸台,所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后半期从凸轮的内基圆开始上升,并在发动机的压缩上止点之前上升到最高位置,在发动机的压缩冲程的剩余期间和发动机的膨胀冲程的前期保持所述的最高位置,在发动机的膨胀冲程的剩余期间上升汇入集成式排气凸台。
进一步的,利用一个预紧弹簧在排气门驱动链内部保持由主活塞的缩回位置与伸出位置生成的排气门驱动链制动间隙,利用所述的排气门驱动链制动间隙消除排气门驱动链内部的不跟随和冲击。
具体的,当需要发动机制动时,制动控制机构打开,向制动驱动机构供油。低压机油(发动机润滑油)从供油通道和单向供油阀进入主活塞孔内,主活塞在阀桥的主活塞孔内处于伸出位置,打开主活塞孔和副活塞孔之间的液压通道。凸轮的制动凸台从内基圆往上升,摇臂驱动阀桥内的主活塞从伸出位置往下移向主活塞孔底面的缩回位置,主活塞的向下运动通过液压通道传递给副活塞。位于副活塞孔上方阀桥上面的制动支架,阻止阀桥因副活塞孔内的油压而上升。阀桥的副活塞孔内的副活塞向下伸出,打开位于副活塞下面的制动排气门。凸轮进入制动凸台的最高升程,主活塞在阀桥的主活塞孔内向下抵达孔底的缩回位置,堵住液压通道的入口,关闭主活塞孔和副活塞孔之间的液压通道。副活塞在阀桥的副活塞孔内向下抵达伸出位置,将副活塞下面的排气门保持打开一间隙。副活塞上的制动载荷无法通过液压通道传递给主活塞,只能通过阀桥传递给位于副活塞孔上方阀桥上面的制动支架。此时,主活塞和排气门致动器(包括摇臂和凸轮等)都不承受制动载荷。凸轮从制动凸台的最高升程下降时,主活塞从阀桥的主活塞孔内的缩回位置往上移向伸出位置,打开主活塞孔和副活塞孔之间的液压通道,副活塞孔内的副活塞随着主活塞一起向上移动。主活塞在阀桥的主活塞孔内向上回到伸出位置,副活塞在阀桥的副活塞孔内向上回到缩回位置,副活塞下面的排气门往上移向关闭位置。
凸轮的集成式排气凸台从内基圆往上升,摇臂骆动阀桥内的主活塞从伸出位置往下移向主活塞孔底面的缩回位置,主活塞的向下运动通过液压通道传递给副活塞。位于副活塞孔上方阀桥上面的制动支架,阻止阀桥因副活塞孔内的油压而上升。阀桥的副活塞孔内的副活塞向下伸出,打开位于副活塞下面的制动排气门。凸轮进入集成式排气凸台的顶部,主活塞压迫主活塞孔底,驱动阀桥向下运动。阀桥与位于其上面的制动支架分离,打开阀桥内副活塞孔上方的卸油通道卸油,副活塞从阀桥的副活塞孔内从伸出位置移到缩回位置。阀桥将集成式排气凸台顶部的运动传递给两个排气门,产生常规排气门运动。
本实用新型和已有技术相比,其效果是积极和明显的。本实用新型将压缩释放型制动机构集成在发动机现有的气门驱动链内部,并利用制动支架承担制动载荷和重置制动阀升,设计简单,结构紧凑,减小了发动机的制动载荷,增加了发动机的制动功率,改进了发动机运作的可靠性和耐久性。
附图说明:
图1是本实用新型的压缩释放型发动机制动装置的第一个实施例在制动时凸轮处于内基圆位置的示意图。
图2是本实用新型的压缩释放型发动机制动装置的第一个实施例在制动时凸轮处于制动凸台的最离位置的示意图。
图3是本实用新型的压缩释放型发动机制动装置的制动控制机构处于“开”位置的示意图。
图4是本实用新型的压缩释放型发动机制动装置的制动控制机构处于“关”位置的示意图。
图5是本实用新型的压缩释放型发动机制动装置的一种凸轮型线的示意图。
图6是本实用新型的压缩释放型发动机制动装置的一种排气门升程曲线和进气门升程曲线的示意图。
图7是本实用新型的压缩释放型发动机制动装置的又一种凸轮型线的示意图。
图8是本实用新型的压缩释放型发动机制动装置的又一种凸轮型线的示意图。
图9是本实用新型的压缩释放型发动机制动装置的第二个实施例在非制动时凸轮处于内基圆位置的示意图。
图10是本实用新型的压缩释放型发动机制动装置的第二个实施例在制动时凸轮处于内基圆位置的示意图。
具体实施方式:
实施例1:
如图1和图2所示,本实用新型的压缩释放型发动机制动装置的第一个实施例在制动时凸轮230分别处于内基圆225位置和制动凸台最高升程位置。图1和图2中包括三个主要组成部分:排气门致动器200、排气门300(包括第一排气门3001和第二排气门3002)和发动机制动驱动机构100。
排气门致动器200包括凸轮230、凸轮从动轮235、摇臂210以及阀桥400。排气门致动器200和排气门300合在一起可称为排气门驱动链。通常在摇臂210的一端(靠近阀桥400的一侧或者靠近凸轮230的一侧)带有阀隙调节系统。本实施例中的阀隙调节系统由设置在阀桥400一侧的阀隙调节螺钉110构成,阀隙调节螺钉110位于摇臂210上并由锁紧螺帽105固定。阀隙调节螺钉110与象足垫114相连。摇臂210摆动式地安装在摇臂轴205上。
第一排气门3001和第二排气门3002分别由气门弹簧3101和气门弹簧3102(简称气门弹簧310)顶置在发动机缸体500内的阀座320上,阻止气体(发动机制动时为空气)在发动机汽缸和排气管600之间的流动。排气门致动器200将凸轮230的机械运动,通过阀桥400传递给第一排气门3001和第二排气门3002,使其周期性地打开和关闭。
制动驱动机构100包括制动箱体、制动支架和制动凸轮。本实施例中的制动箱体采用发动机的阀桥400。阀桥400的中央向上开口设置有一个主活塞孔415,阀桥400的一端向下开口设置有一个副活塞孔190。主活塞孔415和副活塞孔190由一条液压通道412相连。主活塞孔415还通过单向供油阀172与其上方的供油通道115相连。主活塞孔415内和副活塞孔190内分别滑动式地设置有主活塞162和副活塞(又叫制动活塞)160。主活塞162的上面受来自摇臂210的作用。副活塞160的下面与发动机的可作制动用的第一排气门3001相连。阀桥400的另一端的下面与发动机的非制动作用的第二排气门3002相连。副活塞孔190上方的阀桥400内设置有卸油通道197,卸油通道197和副活塞孔190相通,卸油通道197的上方设置有一个制动支架125。制动支架125包括可调的连接件1052与1142和紧固件1102。制动支架125可以固定在发动机上。制动支架125(通过连接件)位于副活塞孔190上方的阀桥400上并封闭卸油通道197的出口。制动凸轮与发动机的常规凸轮集成,所集成的凸轮230上含有至少一个制动凸台和集成式排气凸台220。这里的凸轮230的制动凸台包括在内基圆225上的压缩释放凸台233和排气再循环凸台232。
排气摇臂210和发动机之间可以设置一根预紧弹簧198。本实施例中,预紧弹簧198为片弹簧,其一端安置在制动支架125上,另一端安置在摇臂210上。预紧弹簧198可以是螺旋弹簧和其它形式的弹簧。
预紧弹簧198也可以使用不同的安装方式,设置在不同的地方,比如在主活塞162与阀桥400之间、凸轮230(或推杆式发动机的推杆)与摇臂210之间等。预紧弹簧198保持由主活塞162的缩回位置(图2)与伸出位置(图1)在排气门驱动链内部生成的制动间隙234(此间隙在非制动时可以在凸轮230的内基圆225和凸轮从动轮235之间),消除排气门驱动链内部的不跟随和冲击。
在阀桥400内设置定位销137,在副活塞160上设置限位槽142,形成活塞限位机构,限制副活塞160的最大冲程。副活塞160和阀桥400之间可以设置一根弹簧177。
本实施例中,在阀桥400内还设置了一个泄压机构。所述的泄压机构包括副活塞160上的泄压孔152。当副活塞孔190内的油压增高时,通过副活塞160和孔190之间的间隙以及制动活塞160上的定位槽137和泄压孔152的机油泄漏随之增大,使得作用在副活塞160上的油压不超过所设计的预定值。
当需要发动机制动时,如图3所示,打开制动控制机构50。通过制动流体网路,向制动驱动机构100供油。制动流体网路包括众多的供油通道,如摇臂轴205内的轴向孔211和径向孔212、摇臂210内的切口213和油孔214和阀隙调节螺钉内的横孔113和竖孔115(与象足垫114内的孔相通)。低压机油从供油通道,通过设置在主活塞162上的单向供油阀172,向主活塞孔415内供油。主活塞162在阀桥400的主活塞孔415内处于如图1所示的伸出位置,主活塞162与主活塞孔415的孔底面446(也就是阀桥400)之间形成一制动间隙234,主活塞孔415和副活塞孔190之间的液压通道412处于打开位置。
为简明起见,发动机的润滑油道在此没有显示。当然,润滑油道也可以和制动油道合二为一,采用两级不同的油压供油。润滑时采用低油压,比如说,一个巴或更低;制动时采用高油压,比如说,两个巴或更高。
当凸轮230的制动凸台(压缩释放凸台)233从内基圆225往上升时,摇臂210驱动阀桥400内的主活塞162从图1的伸出位置往下移向主活塞孔底面446的缩回位置,通过主活塞孔415和副活塞孔190之间的液压通道412,将主活塞162的向下运动传递给副活塞160。位于副活塞孔190上方的阀桥400上的制动支架125,使阀桥400不会因为副活塞孔190内的油压而上升。阀桥400的副活塞孔190内的副活塞160只能向下伸出,打开位于副活塞160下面的制动第一排气门3001。在凸轮230进入制动凸台233的最高升程时,主活塞162在阀桥400的主活塞孔415内向下抵达孔底446的缩回位置(图2),堵住液压通道412的入口472,关闭主活塞孔415和副活塞孔190之间的液压通道412。与此同时,副活塞160在阀桥400的副活塞孔190内向下抵达伸出位置,副活塞160的冲程为130,副活塞160下面的第一排气门3001相应地打开一间隙330。此时,副活塞160上的制动载荷无法通过液压通道412传递给主活塞162,只能通过阀桥400传递给位于副活塞孔190上方的阀桥400上的制动支架125。主活塞162和排气门致动器200(包括摇臂210和凸轮230)都不承受制动载荷。在凸轮230从制动凸台233的最高升程下降时,主活塞162从阀桥400的主活塞孔415内的缩回位置往上移向伸出位置,打开主活塞孔415和副活塞孔190之间的液压通道412,副活塞孔190内的副活塞160随着主活塞162一起向上移动。当主活塞162在阀桥400的主活塞孔415内向上回到伸出位置时,副活塞160在阀桥400的副活塞孔190内向上回到缩回位置(图1)。
当凸轮230的集成式排气凸台220从内基圆225往上升时,摇臂210驱动阀桥400内的主活塞162从图1的伸出位置往下移向主活塞孔底面446的缩回位置,通过主活塞孔415和副活塞孔190之间的液压通道412,将主活塞162的向下运动传递给副活塞160。位于副活塞孔190上方的阀桥400上的制动支架125,阀桥400不会因为副活塞孔190内的油压而上升。阀桥400的副活塞孔190内的副活塞160只能向下伸出,打开位于副活塞160下面的第一排气门3001。在凸轮230进入集成式排气凸台220的顶部(大于制动凸台233的最高升程)时,主活塞162压迫主活塞孔底446,驱动阀桥400向下运动。阀桥400与位于其上面的制动支架125分离,打开阀桥400内与副活塞孔190相通的卸油通道197卸油,副活塞160从阀桥400的副活塞孔190内从伸出位置移到缩回位置。阀桥400将集成式排气凸台220顶部的运动传递给第一排气门3001和第二排气门3002,产生常规排气门运动。
如果凸轮230的制动门台还包括排气再循环门台232,那么排气再循环凸台232通过排气门驱动链开启第一排气门3001的过程,与上述的压缩释放凸台233通过排气门驱动链开启第一排气门3001的过程相同,在此不再复述。如果发动机有足够的排气背压,那么增加排气再循环凸台232之后,发动机的制动功率有可能进一步改善。
当不需要发动机制动时,如图4所示,关闭制动控制机构50,停止向制动驱动机构100供油。在凸轮230进入集成式排气凸台220的顶部(大于压缩释放凸台233的最高升程)时,主活塞162压迫主活塞孔底446,驱动阀桥400向下运动。阀桥400与位于其上面的制动支架125分离,打开阀桥400内与副活塞孔190相通的卸油通道197卸油,副活塞160从阀桥400的副活塞孔190内从伸出位置(图2)移到缩回位置(图1)。阀桥400将集成式排气凸台220顶部的运动传递给第一排气门3001和第二排气门3002,产生常规排气门运动。在凸轮230从集成式排气凸台220的顶部进入其底部回到内基圆的过程中,副活塞160保持在图1所示的缩回位置(由于排气门弹簧3101的向上作用力),主活塞162保持在图2所示的缩回位置(由于预紧弹簧198的向下作用力),摇臂210上的凸轮从动轮235与凸轮230的内基圆225之间形成一间隙。由于该间隙,制动凸台(压缩释放凸台233和排气再循环凸台232)的运动将不会传递给排气门300,只有集成式排气凸台220顶部的运动传递给排气门300,产生常规排气门运动,发动机的制动运作被解除。
如图3和图4所示,本实用新型的压缩释放型发动机制动装置的制动控制机构50处于“开”和“关”的位置。图中的电磁阀51为二位三通型。当制动控制机构50打开时(图3),电磁阀51的阀体向下打开供油口111,同时关闭卸油口222,发动机的低压机油(润滑油)从制动流体通道流向制动驱动机构100(图1和图2)。当制动控制机构50关闭时(图4),电磁阀51的阀体向上关闭供油口111,同时打开卸油口222,发动机的低压机油(润滑油)停止流向制动驱动机构100(图1和图2),制动驱动机构100反而从制动流体通道和卸油口222卸油。由于阀桥400内的副活塞孔190上设置有一卸油通道197(图1和图2),完全有可能使用二位双通电磁阀,也就是说,不需要卸油口222。
图5表示了本实用新型的压缩释放型发动机制动装置中的一种凸轮型线,其中包括制动凸台和集成式排气凸台220,制动凸台包括压缩释放凸台233和排气再循环凸台232。压缩释放凸台233包括三个部分:上升段“A”、等高段“B”和下降段“C”。上升段“A”从凸轮的内基圆225上升到制动的最高升程。等高段“B”在一段时间内将制动的最高升程基本保持不变。下降段“C”从制动的最高升程下降回到凸轮的内基圆225。等高段“B”的作用是在制动时保持主活塞162在阀桥400的主活塞孔415内处于孔底446的缩回位置(图2),关闭主活塞孔415和副活塞孔190之间的液压通道412,副活塞160上的制动载荷无法通过液压通道412传递给主活塞162,只能通过阀桥400传递给位于其上的制动支架125。这样排气门致动器200(包括摇臂210和凸轮230)不承受制动载荷,减少了排气门致动器200的受力和磨损,增加了发动机的可靠性和耐久性。
排气再循环凸台232也可以设计为压缩释放凸台233的形状。但由于在排气再循环期间,排气门的受力远小于压缩释放期间。因此排气再循环凸台232的轮廓曲线形状的设计可以不考虑载荷的影响。
集成式排气凸台220分为底部和顶部(图5中的双点划线将它们分开)。集成式排气凸台220的底部为过渡部分,与制动凸台接近同高;集成式排气凸台220的顶部与发动机的常规凸台接近相同。这样,在非制动(常规点火)运作时,集成式排气凸台220的底部连同制动凸台(压缩释放凸台233和排气再循环凸台232)的运动都因为排气门驱动链内部的间隙234(图1)而被跳过或丢失,不会传递给排气门300;只有集成式排气凸台220的顶部的运动被传递给排气门300,产生常规阀升运动。
图6表示了本实用新型的压缩释放型发动机制动装置中的一种排气门的升程曲线和进气门的升程曲线。发动机排气门的常规阀升曲线220m的起点为225a,终点为225b,其最高升程大约为220b。假设在阀桥400内的副活塞孔190上没有卸油通道197(图1和图2),那么发动机制动时由加大的常规排气凸台220产生的加大的主阀升曲线220v的起点为225h,终点为225c,其最高升程220e为220a和220b之和。由于卸油通道197,制动排气门3001的阀升曲线在加大的主阀升曲线220v的底部220a与顶部220b之间的过渡点220t向主阀升曲线220m过渡,在220s点与主阀升曲线220m融合,在终点225b比没有卸油通道时提前关闭。
在发动机制动运作时,凸轮的制动凸台(排气再循环凸台232和压缩释放凸台233)的运动,由摇臂210传给主活塞162(图1和图2),主活塞162的运动通过液压通道412传给副活塞160和副活塞160下面的排气门3001,产生排气再循环的制动阀升232v和压缩释放的制动阀升233v。排气再循环的制动阀升232v的起点为225d,位于发动机的进气冲程的后期,也就是在进气门的阀升曲线280v趋于关闭的时候;排气再循环的制动阀升232v的终点为225e,位于发动机的压缩冲程的前期。压缩释放的制动阀升233v的起点为225f,位于发动机的压缩冲程的后期;压缩释放的制动阀升233v的终点为225g,位于发动机的膨胀冲程的前期。阀升曲线在0~720°之间循环,0°和720°为同一点。
当凸轮230的集成式排气凸台220从内基圆225往上升时(图5),摇臂210推动主活塞162(图1和图2),主活塞162推动副活塞160,副活塞160推动排气门3001向下运动。在凸轮230进入集成式排气凸台220的顶部(大于制动凸台233的最高升程)时(图5),主活塞162开始驱动阀桥400向下运动(图2)。阀桥400与制动支架125分离,打开卸油通道197卸油,副活塞160从伸出位置移到缩回位置,制动排气门3001的阀升曲线从过渡点220t向主阀升曲线220m过渡(图6),最后在终点225b关闭,比没有卸流通道时的终点225c大大超前。这样就减小了排气门在发动机排气冲程的上止点位置的升程,避免排气门与活塞的相撞,也增加了制动功率,降低了汽缸内部的温度。
图7表示了本实用新型的压缩释放型发动机制动装置的另一种凸轮型线。这种凸轮型线与图5所示的凸轮型线的区别在于压缩释放凸台233。压缩释放凸台233的前两部分也包括上升段“A”和等高段“B”,但在等高段“B”之后的下降段“D”没有降到内基圆225,而是过渡汇入集成式排气凸台220。
图8表示了本实用新型的压缩释放型发动机制动装置的又一种凸轮型线。这种凸轮型线与图5所示的凸轮型线的区别也在于压缩释放凸台233。压缩释放凸台233的前两部分同样包括上升段“A”和等高段“B”,但在等高段“B”之后不下降,而是通过一个缓升段“E”,汇入集成式排气凸台220。凸轮230从制动凸台的等高段“B”进入缓升段“E”,主活塞160从阀桥400的主活塞孔底446的缩回位置往下推动阀桥400(图2),阀桥400与位于阀桥400上的制动支架125分离,打开副活塞孔190上方阀桥400内的卸油通道197卸油,副活塞160在阀桥400的副活塞孔190内向上移往缩回位置,副活塞160下面的排气门3001跟着向上关闭。也就是说,阀桥400内副活塞孔190上的卸流通道197将在缓升段“E”被打开,制动排气门3001的制动阀升有可能从最高阀升下降到零(关闭)。
实施例2:
如图9和图10所示,本实用新型的压缩释放型发动机制动装置的第二个实施例在非制动时和制动时凸轮处于内基圆的位置。本实施例与第一个实施例的区别在于本实施例采用了一种不同的制动支架125。位于阀桥400上面的制动支架125的作用主要有两个:一是在发动机制动时支撑住阀桥400,阻止或限制阀桥400的向上运动,封闭副活塞孔190上方的卸油通道197,承担从制动排气门3001传过来的制动载荷;二是在发动机制动的每一个周期内,在集成式排气凸台220的顶部推动阀桥下移时,打开副活塞孔190上方的卸油通道197卸油,重置制动排气门3001的阀升曲线。当然,卸油机构也用于解除发动机的制动运作。
本实施例的制动支架125还包括其它连接件,如过渡活塞161。过渡活塞161滑动式地安置在阀桥400上面的过渡活塞孔191内,形成一种自动间隙补偿机构。卸油通道197在副活塞孔190的上方,将过渡活塞孔191和副活塞孔190相连(两个活塞孔的尺寸根据需要确定,其大小不一定相同)。过渡活塞161内增加了一条卸油通道196。过渡活塞161的移动范围由压片178控制。压片178由螺钉179固定在阀桥400上。过渡活塞161的移动范围也可以通过其它方式,如卡环等来控制。过渡活塞161的上面与制动支架125的另一连接件象足垫1142相连。象足垫1142套在压球杆1103的压球上。压球杆1103也可以和调节螺钉1102合在一起。象足垫1142与压球之间可以有一定的相对运动或间隙,弹簧177将象足垫1142向下偏置在过渡活塞161上,封闭卸油通道196和197(机油无法从过渡活塞孔191和副活塞孔190往外泄漏)。
当不需要发动机制动时,如图4所示,关闭制动控制机构50,停止向制动驱动机构100供油,制动装置处于如图9所示的非制动状态。主活塞孔415和副活塞孔190由于卸油机构而处于泄油状态。主活塞162在预紧弹簧198的作用下压靠在主活塞孔415底面446的缩回位置,在凸轮从动轮235与凸轮230的内基圆225之间形成一间隙134。副活塞160压靠在副活塞孔190底面的缩回位置,副活塞160下面的排气门3001处于关闭位置。制动支架125的过渡活塞161在弹簧177的作用下压靠在过渡活塞孔191底面的缩回位置。当凸轮230从内基圆225进入制动凸台232或制动凸台233时,由于排气门驱动链内部(凸轮从动轮235和凸轮230之间)的间隙134,制动凸台232或制动凸台233的运动被跳过或丢失,不会传递给排气门300。当凸轮230进入集成式排气凸台220的顶部时(图5,7和8),凸轮的运动通过摇臂210、主活塞162、阀桥400和副活塞160以机械固链式的方式传递给排气门300(第一排气门3001和第二排气门3002),产生常规排气门运动。
当需要发动机制动时,如图3所示,打开制动控制机构50,向制动驱动机构100供油。制动装置从如图9所示的非制动状态进入如图10所示的制动状态。低压机油从供油通道,通过供油单向阀172,进入主活塞孔415。主活塞162在油压作用下,从阀桥400的主活塞孔415底面446的缩回位置往上移到伸出位置,推动摇臂210顺时针转动,直到凸轮从动轮235与凸轮230的内基圆255接触为止。此时,主活塞162与主活塞孔415的孔底面446(也就是阀桥400)之间形成一制动间隙234(与图9的间隙134相对应),打开主活塞孔415和副活塞孔190之间的液压通道412的开口472。油流进入副活塞孔190和其上方的过渡活塞孔191。油压克服弹簧177的作用力,推动过渡活塞161向上压靠象足垫1142,封闭卸油通道,阻止过渡活塞孔191和副活塞孔190内的机油向上泄漏。这样在主活塞162和副活塞160之间就形成了液压链接,主活塞162在阀桥400的主活塞孔415内的向下运动,将以液压式的方式,通过液压通道412传递给在阀桥400和副活塞孔190内的副活塞160,然后再传给下面的第一排气门3001。
凸轮230通过排气门驱动链开启制动排气门3001和非制动排气门3002的整个过程,与第一实施例的基本相同,在此不再复述。
上述说明披露了一种新的压缩释放型发动机制动装置和方法。上述的实施方式,不应该被视为对本实用新型范围的限制,而是作为代表本实用新型的一些具体例证,许多其他演变都有可能从中产生。举例来说,这里的压缩释放型发动机制动装置和方法,不但可以用于顶置凸轮式发动机,也适用于推杆式发动机。还有,单问供油阀172可以采用不同的形式,如球阀、碟阀等。单向供油阀172也可以安置在不同的位置,比如安置在主活塞162内。由于阀桥400内的主活塞162(通过阀隙调节机构)始终与摇臂210靠紧,单向供油阀172还可以安置在主活塞162上方的供油通道内,比如说摇臂210内的油道214内。单向供油阀172只允许油流单方向从其上游的供油通道进入主活塞162下面的主活塞孔415内。
此外,除了由副活塞孔190上方的卸油通道197和制动支架125形成的卸油机构之外,也可以是其它形式的卸油阀。卸油机构的卸油阀在制动凸台推动主活塞162在制动箱体内作相对滑动时处于关闭状态。在集成式排气凸台的顶部进一步推动主活塞162运动时,卸油机构的卸油阀打开卸油。
还有,主活塞162、副活塞160和过渡活塞161可以采用不同的形式,如“H”型和“T”型等;制动的排气门可以是第一排气门3001,也可以是第二排气门3002。
此外,制动支架125的安装也可以有多种形式,除了可以固定在发动机的不同部件和位置,也可以集成在发动机的运动件内。比如第二实施例的制动支架125,可以集成在摇臂210上。此时,副活塞160位于第二排气门3002上。过渡活塞161除了间隙补偿之外,还起到第二主活塞的作用。也就是说,在制动期间,摇臂210上的象足114推动主活塞162,与此同时,摇臂210上的制动支架125的象足1142推动过渡活塞161。然后,主活塞162与过渡活塞161通过液压链接一起推动副活塞160,打开第二排气门3002。制动支架125的连接件也可以选择不同的样式,或采用不同的密封措施,如增加密封件等,保证对卸油通道的密封。
还有,主活塞162堵住液压通道412的入口472的方式也可以不同。比如说,将液压通道412的入口472设计在主活塞162的下面(而不是侧面),当主活塞162移到主活塞孔底面446的缩回位置时,主活塞162的底面将入口472盖住。
此外,除了由阀桥400作为制动箱体之外,也可以有其它的形式。比如说固定在发动机上的顶置式制动箱体。因此,本实用新型的范围不应由上述的具体例证来决定,而是由权利要求来决定。
Claims (14)
1.一种压缩释放型发动机制动装置,包括制动控制机构和制动驱动机构,其特征在于:所述的制动控制机构包括一个与液压产生装置相连接的控制阀,制动驱动机构包括制动箱体、供油机构、卸油机构和制动凸轮,所述的制动箱体内设置有主活塞孔和副活塞孔,所述的主活塞孔和副活塞孔之间设置有一条连通的液压通道,主活塞孔内滑动式地设置有主活塞,副活塞孔内滑动式地设置有副活塞,所述的供油机构包括供油通道和单向供油阀,所述的制动控制机构中的控制阀与所述的供油通道的入口连接,供油通道的出口与主活塞孔连接,所述的单向供油阀设置在供油通道或者供油通道与主活塞孔之间,单向供油阀的供油方向是从供油通道进入主活塞孔,所述的卸油机构包括一个卸油阀,所述的卸油阀与副活塞孔连通,所述的制动凸轮中含有至少一个制动凸台。
2.如权利要求1所述的压缩释放型发动机制动装置,其特征在于:所述的制动箱体由阀桥构成,所述的主活塞孔设置在所述的阀桥中央的一个向上开口内,所述的副活塞孔设置在阀桥的一端的一个向下开口内,所述的液压通道设置在阀桥内并连通主活塞孔和副活塞孔,所述的主活塞设置在主活塞孔内,所述的副活塞设置在副活塞孔内,主活塞的上端与发动机的摇臂连接,所述的摇臂中设置有一个供油通道,主活塞内设置有一个油路,所述的油路的上端与所述的摇臂中的供油通道相通,油路的下端与主活塞孔相通,所述的单向供油阀设置在主活塞孔与供油通道之间或者供油通道之内,所述的单向供油阀的供油方向是从供油通道向主活塞孔,副活塞孔所在的阀桥一端的上侧设置有一个制动支架,副活塞孔所在的阀桥一端设置有至少一个卸油通道,所述的卸油通道的一端与副活塞孔相通,卸油通道的另一端由制动支架的下端封闭,所述的制动凸轮上设置有集成式排气凸台。
3.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:副活塞的下端与发动机排气门中的一个第一排气门相连,阀桥另一端的下侧与发动机排气门中的一个第二排气门相连。
4.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:所述的制动支架固定在发动机上,所述的制动支架包括连接件,所述的连接件位于阀桥的上方。
5.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:所述的制动支架集成在摇臂上,所述的制动支架包括连接件,所述的连接件位于阀桥的上方。
6.如权利要求4和5所述的压缩释放型发动机制动装置,其特征在于:所述的制动支架的连接件包括过渡活塞,所述的过渡活塞滑动式地安置在阀桥的过渡活塞孔内,所述的过渡活塞孔位于所述的副活塞孔之上。
7.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩上止点附近达到最高位置,在发动机的膨胀冲程的前期下降回到或靠近凸轮的内基圆。
8.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:所述的制动凸台中包括有一个压缩释放凸台和一个排气再循环凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩上止点附近达到最高位置,在发动机的膨胀冲程的前期下降回到或靠近凸轮的内基圆,所述的排气再循环凸台在发动机的进气冲程的后期从凸轮的内基圆开始上升,在发动机的压缩冲程的前期下降回到凸轮的内基圆。
9.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:在所述的凸轮上设置有一个集成式排气凸台,所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后期从凸轮的内基圆开始上升,并在发动机的压缩冲程上止点之前上升到最高位置,在发动机的压缩冲程的剩余期间和发动机的膨胀冲程的初期保持所述的最高位置,在发动机的膨胀冲程的剩余期间下降回到凸轮的内基圆或汇入集成式排气凸台,所述的集成式排气凸台由底部和顶部组成,集成式排气凸台的底部与制动凸台接近同高,集成式排气凸台的顶部与发动机的常规凸台接近相同。
10.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:所述的制动凸台中包括有一个排气再循环凸台,所述的排气再循环凸台在发动机的进气冲程的后期从凸轮的内基圆开始上升,在发动机的压缩冲程的前期下降回到凸轮的内基圆。
11.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:在所述的凸轮上设置有一个集成式排气凸台,所述的制动凸台中包括有一个压缩释放凸台,所述的压缩释放凸台在发动机的压缩冲程的后半期从凸轮的内基圆开始上升,并在发动机的压缩上止点之前上升到最高位置,在发动机的压缩冲程的剩余期间和发动机的膨胀冲程的前期保持所述的最高位置,在发动机的膨胀冲程的剩余期间上升汇入集成式排气凸台。
12.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:所述的制动驱动机构中设置有一个预紧弹簧。
13.如权利要求12所述的压缩释放型发动机制动装置,其特征在于:所述的预紧弹簧的一端安置在所述的发动机上,预紧弹簧的另一端作用在所述的摇臂的一端上。
14.如权利要求2所述的压缩释放型发动机制动装置,其特征在于:所述的制动驱动机构中设置有一个自动间隙补偿机构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011200620148U CN202017535U (zh) | 2011-03-10 | 2011-03-10 | 压缩释放型发动机制动装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011200620148U CN202017535U (zh) | 2011-03-10 | 2011-03-10 | 压缩释放型发动机制动装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202017535U true CN202017535U (zh) | 2011-10-26 |
Family
ID=44811206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011200620148U Expired - Lifetime CN202017535U (zh) | 2011-03-10 | 2011-03-10 | 压缩释放型发动机制动装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202017535U (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102102559A (zh) * | 2011-03-10 | 2011-06-22 | 奚勇 | 一种压缩释放型发动机制动方法和装置 |
WO2012113126A1 (zh) * | 2011-02-25 | 2012-08-30 | 奚勇 | 集成式的泄气型发动机制动方法和装置 |
CN102691542A (zh) * | 2011-03-24 | 2012-09-26 | 奚勇 | 一种由气门阀杆定位的发动机制动装置 |
CN106089348A (zh) * | 2016-08-23 | 2016-11-09 | 潍柴动力股份有限公司 | 一种气门桥及包括该气门桥的发动机 |
CN109882296A (zh) * | 2015-05-12 | 2019-06-14 | 上海尤顺汽车部件有限公司 | 一种用于车辆缓速的发动机制动方法 |
CN110173314A (zh) * | 2019-05-15 | 2019-08-27 | 浙江大学 | 一种可实现压缩释放式发动机制动的气门桥及其排气制动方法 |
-
2011
- 2011-03-10 CN CN2011200620148U patent/CN202017535U/zh not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012113126A1 (zh) * | 2011-02-25 | 2012-08-30 | 奚勇 | 集成式的泄气型发动机制动方法和装置 |
CN102102559A (zh) * | 2011-03-10 | 2011-06-22 | 奚勇 | 一种压缩释放型发动机制动方法和装置 |
WO2012119282A1 (zh) * | 2011-03-10 | 2012-09-13 | 奚勇 | 一种压缩释放型发动机制动方法和装置 |
CN102691542A (zh) * | 2011-03-24 | 2012-09-26 | 奚勇 | 一种由气门阀杆定位的发动机制动装置 |
WO2012126166A1 (zh) * | 2011-03-24 | 2012-09-27 | 奚勇 | 一种由气门阀杆定位的发动机制动装置 |
CN109882296A (zh) * | 2015-05-12 | 2019-06-14 | 上海尤顺汽车部件有限公司 | 一种用于车辆缓速的发动机制动方法 |
CN106089348A (zh) * | 2016-08-23 | 2016-11-09 | 潍柴动力股份有限公司 | 一种气门桥及包括该气门桥的发动机 |
CN106089348B (zh) * | 2016-08-23 | 2018-10-16 | 潍柴动力股份有限公司 | 一种气门桥及包括该气门桥的发动机 |
US11125120B2 (en) | 2016-08-23 | 2021-09-21 | Weichai Power Co., Ltd. | Valve bridge and engine comprising the valve bridge |
CN110173314A (zh) * | 2019-05-15 | 2019-08-27 | 浙江大学 | 一种可实现压缩释放式发动机制动的气门桥及其排气制动方法 |
CN110173314B (zh) * | 2019-05-15 | 2023-07-18 | 浙江大学 | 一种可实现压缩释放式发动机制动的气门桥及其排气制动方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102102559B (zh) | 一种压缩释放型发动机制动方法和装置 | |
CN102787919B (zh) | 一种重置式摇臂制动方法和装置 | |
CN102787880B (zh) | 一种带主副活塞的摇臂制动方法和装置 | |
CN106150589B (zh) | 一种单气门压缩释放型阀桥制动装置及方法 | |
CN202090976U (zh) | 带主副活塞的摇臂制动装置 | |
CN202017535U (zh) | 压缩释放型发动机制动装置 | |
CN102840005B (zh) | 一种固链式复合摇臂制动装置 | |
CN101769186B (zh) | 带有双油压控制阀的发动机制动装置和方法 | |
CN202140128U (zh) | 集成式的泄气型发动机制动装置 | |
CN102635418A (zh) | 用于发动机制动器的阀升重置方法和装置 | |
CN103758606B (zh) | 发动机的集成式摇臂制动装置 | |
CN102650224B (zh) | 集成式的泄气型发动机制动方法和装置 | |
CN101392667A (zh) | 使用单阀和阀桥的发动机制动装置和方法 | |
CN101319636B (zh) | 一种用于发动机驱动与制动工况的一体化气门驱动机构及其控制方法 | |
CN107060933A (zh) | 配气机构总成 | |
CN202017536U (zh) | 利用阀桥产生发动机制动的装置 | |
CN101627195A (zh) | 发动机制动装置 | |
CN101338691A (zh) | 用于发动机制动的装置和方法 | |
CN101769185B (zh) | 带有机械链接的集成式发动机制动装置及用来改变发动机气阀运动的方法 | |
CN106640257B (zh) | 载荷可控的发动机制动装置和发动机制动方法 | |
CN205089460U (zh) | 一种压缩释放型发动机制动装置 | |
CN202090975U (zh) | 由气门阀杆定位的发动机制动装置 | |
CN102635417A (zh) | 用于产生发动机制动的混合式制动方法和装置 | |
CN102678345A (zh) | 利用阀桥产生发动机制动的方法和装置 | |
CN102733884B (zh) | 一种集成式的发动机制动装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20111026 Effective date of abandoning: 20140924 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20111026 Effective date of abandoning: 20140924 |
|
RGAV | Abandon patent right to avoid regrant |