CN201903638U - Detection system for power frequency line parameter tester based on virtual vector impedance method - Google Patents
Detection system for power frequency line parameter tester based on virtual vector impedance method Download PDFInfo
- Publication number
- CN201903638U CN201903638U CN2010206326651U CN201020632665U CN201903638U CN 201903638 U CN201903638 U CN 201903638U CN 2010206326651 U CN2010206326651 U CN 2010206326651U CN 201020632665 U CN201020632665 U CN 201020632665U CN 201903638 U CN201903638 U CN 201903638U
- Authority
- CN
- China
- Prior art keywords
- power frequency
- frequency line
- line parameter
- parameter tester
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本实用新型提供一种基于“虚拟复阻抗法”实现的工频线路参数测试仪检定装置,其特征在于,包括:一个控制模块、三个I-V变换模块、三个虚拟复阻抗模块及三个电压输出模块,检定装置按三相回路设计,一个I-V变换模块、一个虚拟复阻抗模块及一个电压输出模块组成一个回路,控制模块与三个虚拟复阻抗模块分别相连,各个阻抗分量的量值由控制模块进行配置。本实用新型可以对工频线路参数测试仪的零序电容、正序电容、零序阻抗、正序阻抗测量功能进行全面检定,相对于传统的“实物阻抗法”准确度更高、量值覆盖范围更宽、量值调节步进更细。
The utility model provides a power frequency line parameter tester verification device based on the "virtual complex impedance method", which is characterized in that it includes: a control module, three IV conversion modules, three virtual complex impedance modules and three voltage The output module and the verification device are designed according to the three-phase circuit. An IV conversion module, a virtual complex impedance module and a voltage output module form a circuit. The control module is connected to the three virtual complex impedance modules respectively. The value of each impedance component is controlled by module to configure. The utility model can comprehensively verify the zero-sequence capacitance, positive-sequence capacitance, zero-sequence impedance, and positive-sequence impedance measurement functions of the industrial frequency line parameter tester, and has higher accuracy and value coverage compared with the traditional "physical impedance method". The range is wider and the value adjustment step is finer.
Description
技术领域technical field
本实用新型涉及一种工频线路参数测试仪检定装置,属于电力测试仪器的校准、检定与检测领域。The utility model relates to a verification device for a power frequency line parameter tester, which belongs to the field of calibration, verification and detection of electric power testing instruments.
背景技术Background technique
为测量输电线路的工频线路参数,许多电力测试仪器生产厂家研制了工频线路参数测试仪。在日常检定工作中,一般在计量检定机构对工频线路参数测试仪的零序电容、正序电容、零序阻抗和正序阻抗测量功能进行检定,以判断该类仪器是否超差。但和众多电力测试仪器类似,由于工频线路参数测试仪在设计上针对性较强,接口特殊,其计量特性很难方便溯源到上级计量标准,故需研制专门的检定装置,以助对该类测试仪器开展检定工作。以下首先对工频线路参数测试仪的典型工作原理进行介绍(参见图1.1、图1.2、图1.3、图1.4)。In order to measure the power frequency line parameters of the transmission line, many power test instrument manufacturers have developed power frequency line parameter testers. In the daily verification work, the zero-sequence capacitance, positive-sequence capacitance, zero-sequence impedance and positive-sequence impedance measurement functions of the power frequency line parameter tester are generally verified by the metrology verification institution to judge whether the instrument is out of tolerance. However, similar to many electric power testing instruments, because the power frequency line parameter tester is highly targeted in design and has a special interface, it is difficult to trace its measurement characteristics to the superior measurement standard, so it is necessary to develop a special verification device to help the measurement. Class testing equipment to carry out verification work. The following first introduces the typical working principle of the power frequency line parameter tester (see Figure 1.1, Figure 1.2, Figure 1.3, Figure 1.4).
如图1.1所示,为工频线路参数测试仪对输电线路的“零序电容”进行测量的接线图,首先由工频线路参数测试仪根据当前接线向输电线路注入单相激励电源,并对注入电流IA和反馈电压UA(相对UN参考点)进行采集、计算,并根据关系式UA=3IA×(1/jωC0)计算出“零序电容”C0。As shown in Figure 1.1, it is the wiring diagram for the power frequency line parameter tester to measure the "zero sequence capacitance" of the transmission line. First, the power frequency line parameter tester injects single-phase excitation power into the transmission line according to the current wiring, and then The injection current I A and the feedback voltage U A (relative to the U N reference point) are collected and calculated, and the "zero-sequence capacitance" C 0 is calculated according to the relational formula U A =3I A ×(1/jωC 0 ).
如图1.2所示,为工频线路参数测试仪对输电线路的“正序电容”进行测量的接线图,首先由工频线路参数测试仪根据当前接线向输电线路注入三相激励电源,并对注入电流IA、IB、IC和反馈电压UAB、UBC、UCA进行采集、计算,并根据关系式计算出“正序电容”C1,其中,U=(UAB+UBC+UCA)/3,I=(IA+IB+IC)/3。As shown in Figure 1.2, it is the wiring diagram for the power frequency line parameter tester to measure the "positive sequence capacitance" of the transmission line. First, the power frequency line parameter tester injects three-phase excitation power into the transmission line according to the current wiring, and then The injection current I A , I B , I C and the feedback voltage U AB , U BC , U CA are collected and calculated, and according to the relation The "positive sequence capacitance" C 1 is calculated, where U=(U AB +U BC +U CA )/3, I=(I A +I B +I C )/3.
如图1.3所示,为工频线路参数测试仪对输电线路的“零序阻抗”进行测量的接线图,首先由工频线路参数测试仪根据当前接线向输电线路注入单相激励电源,并对注入电流IA和反馈电压UA(相对UN参考点)进行采集、计算,并根据关系式UA=3IA×(jωL0+R0),对“零序阻抗”的零序电感分量L0和零序电阻分量R0进行计算。As shown in Figure 1.3, it is the wiring diagram for the power frequency line parameter tester to measure the "zero sequence impedance" of the transmission line. First, the power frequency line parameter tester injects single-phase excitation power into the transmission line according to the current wiring, and then The injection current I A and the feedback voltage U A (relative to the U N reference point) are collected and calculated, and according to the relationship U A =3I A ×(jωL 0 +R 0 ), the zero-sequence inductance component of the "zero-sequence impedance" L 0 and zero sequence resistance component R 0 are calculated.
如图1.4所示,为工频线路参数测试仪对输电线路的“正序阻抗”进行测量的接线图,首先由工频线路参数测试仪根据当前接线向输电线路注入三相激励电源,并对注入电流IA、IB、IC和反馈电压UAB、UBC、UCA进行采集、计算,并根据关系式对“正序阻抗”的正序电感分量L1和正序电阻分量R1进行计算,其中,U=(UAB+UBC+UCA)/3,I=(IA+IB+IC)/3。As shown in Figure 1.4, it is the wiring diagram for the power frequency line parameter tester to measure the "positive sequence impedance" of the transmission line. First, the power frequency line parameter tester injects three-phase excitation power into the transmission line according to the current wiring, and then The injection current I A , I B , I C and the feedback voltage U AB , U BC , U CA are collected and calculated, and according to the relation Calculate the positive sequence inductance component L 1 and positive sequence resistance component R 1 of the "positive sequence impedance", where U=(U AB +U BC +U CA )/3, I=(I A +I B +I C )/3.
如图1.1~图1.4所示,工频线路参数测试仪多采用“四端法”测量原理,所谓“四端法”测量原理以图1.1为例进行说明,图1.1中测试电流IA从工频线路参数测试仪的电源激励端子A输出,经输电线路零序电容回路后经大地流回到N端子,而输电线路零序电容回路两端的电压信号则分别经另外两条回路反馈到工频线路参数测试仪的电压输入端子UA和UN,上述测量过程即采用了“四端法”测量原理,也就是:尽管被测输电线路零序电容回路整体上看进去为二端口网络,但是工频线路参数测试仪的电流输出回路和电压测量回路分别设计了相互电气隔离的测量端子,即电流输出端子A和N、电压测量端子UA和UN是两组相互电气隔离的测量回路。这种“四端法”测量原理是本实用新型基于“虚拟复阻抗法”开展工频线路参数测试仪检定工作的必要前提条件。As shown in Figure 1.1 to Figure 1.4, the power frequency line parameter tester mostly adopts the "four-terminal method" measurement principle. The so-called "four-terminal method" measurement principle is explained by taking Figure 1.1 as an example . The output of the power supply excitation terminal A of the frequency line parameter tester flows back to the N terminal after passing through the zero-sequence capacitor loop of the transmission line, and the voltage signals at both ends of the zero-sequence capacitor loop of the transmission line are respectively fed back to the power frequency through the other two loops. The voltage input terminals U A and UN of the line parameter tester, the above measurement process adopts the "four-terminal method" measurement principle, that is: although the zero-sequence capacitance circuit of the transmission line under test is viewed as a two-port network as a whole, but The current output circuit and the voltage measurement circuit of the power frequency line parameter tester are respectively designed with mutually electrically isolated measurement terminals, that is, the current output terminals A and N, and the voltage measurement terminals U A and U N are two groups of mutually electrically isolated measurement circuits. This "four-terminal method" measurement principle is the necessary prerequisite for the utility model to carry out the verification work of the power frequency line parameter tester based on the "virtual complex impedance method".
根据申请人所知,目前,国内仅少数几家单位对工频线路参数测试仪开展检定工作,采取的检定方法也为传统的“实物阻抗法”,该方法的主要特点在于:以一组实物标准电容和实物标准电阻为基础,模拟工频线路参数,用于对工频线路参数测试仪的零序电容、正序电容、零序阻抗、正序阻抗测量功能进行检定(参见图2.1、图2.2、图2.3、图2.4),传统的“实物阻抗法”主要检定原理如下所述:According to the applicant's knowledge, at present, only a few units in China carry out verification work on power frequency line parameter testers, and the verification method adopted is also the traditional "object impedance method". Based on standard capacitance and physical standard resistance, it simulates the parameters of power frequency lines, and is used to verify the measurement functions of zero sequence capacitance, positive sequence capacitance, zero sequence impedance and positive sequence impedance of the power frequency line parameter tester (see Figure 2.1, Fig. 2.2, Figure 2.3, Figure 2.4), the main verification principle of the traditional "physical impedance method" is as follows:
如图2.1所示,为传统“实物阻抗法”对被检工频线路参数测试仪的“零序电容”测量功能进行检定的原理图。以经过量值溯源的精密电容C0作为实物标准,提供给被检工频线路参数测试仪进行测量,被检工频线路参数测试仪将会得到测量结果C0试品,通过上述过程可计算出被检工频线路参数测试仪的零序电容测量误差C0误差=C0试品-C0,进而达到了对被检工频线路参数测试仪的“零序电容”测量功能进行检定的目的。As shown in Figure 2.1, it is a schematic diagram of the traditional "object impedance method" to verify the "zero sequence capacitance" measurement function of the tested power frequency line parameter tester. Take the precision capacitor C 0 that has been traced back to the source as the physical standard, and provide it to the tested power frequency line parameter tester for measurement, and the checked power frequency line parameter tester will get the measurement result C 0 test sample , and can be calculated through the above process The zero-sequence capacitance measurement error C 0 error of the tested power frequency line parameter tester = C 0 test product - C 0 , and then the verification of the "zero sequence capacitance" measurement function of the tested power frequency line parameter tester was achieved. Purpose.
如图2.2所示,为传统“实物阻抗法”对被检工频线路参数测试仪的“正序电容”测量功能进行检定的原理图。以经过量值溯源的精密电容C1作为实物标准,提供给被检工频线路参数测试仪进行测量,被检工频线路参数测试仪将会得到测量结果C1试品,通过上述过程可计算出被检工频线路参数测试仪的正序电容测量误差C1误差=C1试品-C1,进而达到了对被检工频线路参数测试仪的“正序电容”测量功能进行检定的目的。As shown in Figure 2.2, it is a schematic diagram of the traditional "object impedance method" to verify the "positive sequence capacitance" measurement function of the tested power frequency line parameter tester. Take the precision capacitor C 1 that has been traced back to the source as the physical standard, and provide it to the tested power frequency line parameter tester for measurement. The tested power frequency line parameter tester will get the measurement result C 1 sample , and through the above process, it can be calculated The positive sequence capacitance measurement error C 1 error of the tested power frequency line parameter tester = C 1 sample - C 1 , and then the "positive sequence capacitance" measurement function of the tested power frequency line parameter tester is verified. Purpose.
如图2.3所示,为传统“实物阻抗法”对被检工频线路参数测试仪的“零序阻抗”测量功能进行检定的原理图。传统“实物阻抗法”仅以经过量值溯源的精密电阻R0作为实物标准,提供给被检工频线路参数测试仪进行测量,被检工频线路参数测试仪将会得到测量结果R0试品,通过上述过程可计算出被检工频线路参数测试仪的零序电阻测量误差R0误差=R0试品-R0,进而达到了对被检工频线路参数测试仪的零序电阻分量测量功能进行检定的目的。需要说明的是,图2.3所示方法不能对被检工频线路参数测试仪的零序电感分量测量功能进行检定。As shown in Figure 2.3, it is a schematic diagram of the traditional "object impedance method" for verifying the "zero sequence impedance" measurement function of the tested power frequency line parameter tester. The traditional "physical impedance method" only uses the precision resistance R 0 that has been traced back as the physical standard, and provides it to the tested power frequency line parameter tester for measurement, and the checked power frequency line parameter tester will get the measurement result R 0 test Through the above process, the zero sequence resistance measurement error R 0 error of the tested power frequency line parameter tester can be calculated = R 0 test product - R 0 , and then the zero sequence resistance of the tested power frequency line parameter tester The purpose of the verification of the component measurement function. It should be noted that the method shown in Figure 2.3 cannot verify the zero-sequence inductance component measurement function of the tested power frequency line parameter tester.
如图2.4所示,为传统“实物阻抗法”对被检工频线路参数测试仪的“正序阻抗”测量功能进行检定的原理图。传统“实物阻抗法”仅以经过量值溯源的精密电阻R1作为实物标准,提供给被检工频线路参数测试仪进行测量,被检工频线路参数测试仪将会得到测量结果R1试品,通过上述过程可计算出被检工频线路参数测试仪的正序电阻测量误差R1误差=R1试品-R1,进而达到了对被检工频线路参数测试仪的正序电阻分量测量功能进行检定的目的。需要说明的是,图2.4所示方法不能对被检工频线路参数测试仪的正序电感分量测量功能进行检定。As shown in Figure 2.4, it is a schematic diagram of the traditional "object impedance method" for verifying the "positive sequence impedance" measurement function of the tested power frequency line parameter tester. The traditional "physical impedance method" only takes the precision resistance R 1 that has been traced back as the physical standard, and provides it to the tested power frequency line parameter tester for measurement, and the tested power frequency line parameter tester will get the measurement result R 1 test Through the above process, the positive sequence resistance measurement error R 1 error of the tested power frequency line parameter tester can be calculated = R 1 test product - R 1 , and then the positive sequence resistance of the tested power frequency line parameter tester The purpose of the verification of the component measurement function. It should be noted that the method shown in Figure 2.4 cannot verify the positive sequence inductance component measurement function of the tested power frequency line parameter tester.
如上所述,以传统“实物阻抗法”不能满足对工频线路参数测试仪全面检定的需求,其原因主要在于以下两个方面:As mentioned above, the traditional "physical impedance method" cannot meet the needs of comprehensive verification of power frequency line parameter testers, mainly due to the following two aspects:
1、通过传统的“实物阻抗法”开展工频线路参数测试仪的检定工作时,是以经过量值溯源的精密电阻和精密电容作为实物标准,其不足主要在于:检定工作需要多个实物精密电阻和精密电容以组成不同的标准值,这样对实物标准的数量需求较大,所以实际检定工作中实物标准的取值范围很难满足检定工频线路参数测试仪的需要;由于被检工频线路参数测试仪的输出电流较大(往往会大于1A),在这种情况下,相应的需要选择大容量的精密电阻和精密电容作为实物标准,而大容量的精密电阻和精密电容是不容易获得的,主要体现在大容量电阻和电容的准确度、稳定性不易保证,所以实际检定工作中实物标准的准确度也不能很好检定工频线路参数测试仪的需要。1. When carrying out the verification work of the power frequency line parameter tester through the traditional "physical impedance method", the precision resistance and precision capacitance that have been traced back to the source of the value are used as the physical standard. The main disadvantage is that the verification work requires multiple physical precision Resistors and precision capacitors are used to form different standard values, so there is a large demand for the number of physical standards, so the value range of physical standards in actual verification work is difficult to meet the needs of verifying power frequency line parameter testers; The output current of the line parameter tester is large (often greater than 1A). In this case, it is necessary to select large-capacity precision resistors and precision capacitors as physical standards, and large-capacity precision resistors and precision capacitors are not easy. It is mainly reflected in the fact that the accuracy and stability of large-capacity resistors and capacitors are not easy to guarantee, so the accuracy of physical standards in actual verification work cannot be well verified for the needs of power frequency line parameter testers.
2、通过传统的“实物阻抗法”对工频线路参数测试仪的“零序阻抗”和“正序阻抗”测量功能进行检定时(如图2.3、图2.4所示),往往仅能对被检工频线路参数测试仪的零序电阻分量、正序电阻分量测量功能进行检定,而不对其零序电感分量、正序电感分量进行检定。其原因主要在于:如果进一步开展零序电感、正序电感分量测量功能的检定工作,按照传统的“实物阻抗法”的设计思路,需要添加经过量值溯源的精密电感作为实物标准,而大容量的实物精密电感相对于实物精密电阻和实物精密电容在技术上更难设计,不仅量值覆盖范围很难满足检定工频线路参数测试仪的需要,而且在大容量前提下,其准确度、稳定性相对于精密电阻和精密电容更难保证。2. When verifying the "zero-sequence impedance" and "positive-sequence impedance" measurement functions of the power frequency line parameter tester through the traditional "physical impedance method" (as shown in Figure 2.3 and Figure 2.4), often only the measured The zero-sequence resistance component and positive-sequence resistance component measurement function of the power frequency line parameter tester is verified, but the zero-sequence inductance component and positive-sequence inductance component are not verified. The main reason is that if the verification work of zero-sequence inductance and positive-sequence inductance component measurement function is further carried out, according to the traditional design idea of "physical impedance method", it is necessary to add precision inductance that has been traced back to the source as the physical standard, while large-capacity Compared with physical precision resistors and physical precision capacitors, it is technically more difficult to design physical precision inductors. Not only is the value coverage difficult to meet the needs of verifying power frequency line parameter testers, but also its accuracy, stability Compared with precision resistors and precision capacitors, the performance is more difficult to guarantee.
有鉴于此,有必要提供一种新的基于“虚拟复阻抗法”实现的工频线路参数测试仪检定装置,以克服上述问题。In view of this, it is necessary to provide a new verification device for power frequency line parameter testers based on the "virtual complex impedance method" to overcome the above problems.
发明内容Contents of the invention
本实用新型所要解决的技术问题是:针对传统的“实物阻抗法”的不足,也就是基于该方法不能对工频线路参数测试仪的零序电感分量、正序电感分量测量功能进行检定,同时准确度低、量值取值范围窄的情况,基于工频线路参数测试仪的“四端法”测量原理,提出并实现了“虚拟复阻抗法”设计思路,利用本实用新型可以有效解决传统的“实物阻抗法”的不足。The technical problem to be solved by the utility model is: aiming at the deficiency of the traditional "object impedance method", that is, based on this method, the measurement function of the zero-sequence inductance component and the positive-sequence inductance component of the power frequency line parameter tester cannot be verified, and at the same time In the case of low accuracy and narrow value range, based on the "four-terminal method" measurement principle of the power frequency line parameter tester, the design idea of "virtual complex impedance method" is proposed and realized. The utility model can effectively solve the traditional The deficiency of the "object impedance method".
本实用新型所采用的技术方案是:一种基于“虚拟复阻抗法”实现的工频线路参数测试仪检定装置,其特征在于,包括:一个控制模块、三个I-V变换模块、三个虚拟复阻抗模块及三个电压输出模块,检定装置按三相回路设计,一个I-V变换模块、一个虚拟复阻抗模块及一个电压输出模块组成一个回路,控制模块与三个虚拟复阻抗模块分别相连,各个阻抗分量的量值由控制模块进行配置,被检工频线路参数测试仪的电流输出端子A、B、C、N分别和检定装置的电流输入端子Ain、Bin、Cin、N连接,被检工频线路参数测试仪的电压输入端子UA、UB、UC、UN分别和检定装置的电压输出端子UAout、UBout、UCout、UN连接。The technical scheme adopted by the utility model is: a verification device of a power frequency line parameter tester based on the "virtual complex impedance method", which is characterized in that it includes: a control module, three IV conversion modules, three virtual complex Impedance module and three voltage output modules, the verification device is designed according to the three-phase circuit, an IV conversion module, a virtual complex impedance module and a voltage output module form a circuit, the control module is connected to the three virtual complex impedance modules, each impedance The value of the component is configured by the control module, and the current output terminals A, B, C, N of the tested power frequency line parameter tester are respectively connected to the current input terminals A in , B in , C in , N of the verification device, and are controlled by The voltage input terminals U A , UB , UC , UN of the power frequency line parameter tester are respectively connected to the voltage output terminals U Aout , U Bout , U Cout , UN of the verification device.
如上所述的工频线路参数测试仪检定装置,其特征在于:所述控制模块包括数字控制器件。The verification device for a power frequency line parameter tester as described above is characterized in that: the control module includes a digital control device.
如上所述的工频线路参数测试仪检定装置,其特征在于:所述I-V变换模块包括由仪表型精密电流互感器CT、无感精密电阻RCT、精密运放组成的I-V变换电路。The above-mentioned verification device for power frequency line parameter tester is characterized in that: the IV conversion module includes an IV conversion circuit composed of an instrument-type precision current transformer CT, a non-inductive precision resistor R CT , and a precision operational amplifier.
如上所述的工频线路参数测试仪检定装置,其特征在于:所述虚拟复阻抗模块包括电感分量的产生及幅值选择电路、电容分量的产生及幅值选择电路、电阻分量的产生及幅值选择电路。The verification device of the power frequency line parameter tester as described above is characterized in that: the virtual complex impedance module includes an inductance component generation and amplitude selection circuit, a capacitive component generation and amplitude selection circuit, a resistance component generation and amplitude selection circuit, and a resistance component generation and amplitude selection circuit. value selection circuit.
如上所述的工频线路参数测试仪检定装置,其特征在于:所述电压输出模块包括功率运放组成的电压跟随器和精密升压电压互感器PT。The verification device of the power frequency line parameter tester as described above is characterized in that: the voltage output module includes a voltage follower composed of a power operational amplifier and a precision boost voltage transformer PT.
本实用新型的有益效果是:本实用新型提出并实现了“虚拟复阻抗法”设计思路,利用本实用新型可以有效解决传统的“实物阻抗法”的不足,不仅可以对工频线路参数测试仪的零序电容、正序电容、零序阻抗、正序阻抗测量功能进行全面检定,而且本实用新型相对于传统的“实物阻抗法”准确度更高、量值覆盖范围更宽、量值调节步进更细,较好满足了目前开展工频线路参数测试仪检定工作的紧迫需要,对促使电力测试仪器向标准化、规范化方向发展有积极推动作用。The beneficial effects of the utility model are: the utility model proposes and realizes the design idea of "virtual complex impedance method", and the utility model can effectively solve the deficiency of the traditional "physical impedance method", and can not only test the power frequency line parameter tester The zero-sequence capacitance, positive-sequence capacitance, zero-sequence impedance, and positive-sequence impedance measurement functions are fully verified, and the utility model has higher accuracy, wider value coverage and value adjustment compared with the traditional "physical impedance method". The stepping is finer, which satisfies the urgent need of carrying out the verification work of power frequency line parameter testers, and plays a positive role in promoting the development of power test instruments in the direction of standardization and standardization.
附图说明Description of drawings
图1.1是工频线路参数测试仪进行“零序电容”测量的原理图。Figure 1.1 is a schematic diagram of the "zero-sequence capacitance" measurement performed by the power frequency line parameter tester.
图1.2是工频线路参数测试仪进行“正序电容”测量的原理图。Figure 1.2 is a schematic diagram of the "positive sequence capacitance" measurement performed by the power frequency line parameter tester.
图1.3是工频线路参数测试仪进行“零序阻抗”测量的原理图。Figure 1.3 is a schematic diagram of "zero-sequence impedance" measurement by a power frequency line parameter tester.
图1.4是工频线路参数测试仪进行“正序阻抗”测量的原理图。Figure 1.4 is a schematic diagram of the "positive sequence impedance" measurement performed by the power frequency line parameter tester.
图2.1是传统“实物阻抗法”对被检工频线路参数测试仪的“零序电容”测量功能进行检定的原理图。Figure 2.1 is a schematic diagram of the traditional "object impedance method" for verifying the "zero sequence capacitance" measurement function of the tested power frequency line parameter tester.
图2.2是传统“实物阻抗法”对被检工频线路参数测试仪的“正序电容”测量功能进行检定的原理图。Figure 2.2 is a schematic diagram of the traditional "physical impedance method" for verifying the "positive sequence capacitance" measurement function of the tested power frequency line parameter tester.
图2.3是传统“实物阻抗法”对被检工频线路参数测试仪的“零序阻抗”测量功能进行检定的原理图。Figure 2.3 is a schematic diagram of the verification of the "zero-sequence impedance" measurement function of the tested power frequency line parameter tester by the traditional "object impedance method".
图2.4是传统“实物阻抗法”对被检工频线路参数测试仪的“正序阻抗”测量功能进行检定的原理图。Figure 2.4 is a schematic diagram of the traditional "physical impedance method" for verifying the "positive sequence impedance" measurement function of the tested power frequency line parameter tester.
图3是本实用新型实施例的基于“虚拟复阻抗法”实现的工频线路参数测试仪检定装置的工作接线图。Fig. 3 is a working wiring diagram of the verification device of the power frequency line parameter tester realized based on the "virtual complex impedance method" according to the embodiment of the present invention.
图4是本实用新型实施例的基于“虚拟复阻抗法”实现的工频线路参数测试仪检定装置的内部原理图。Fig. 4 is an internal schematic diagram of the verification device of the power frequency line parameter tester based on the "virtual complex impedance method" of the embodiment of the present invention.
图4.1是图4中控制模块的原理图。Figure 4.1 is a schematic diagram of the control module in Figure 4.
图4.2是图4中A相回路I-V变换模块2a的原理图。Figure 4.2 is a schematic diagram of the A-phase loop
图4.3是图4中A相回路虚拟复阻抗模块3a的原理图。Fig. 4.3 is a schematic diagram of the virtual complex impedance module 3a of the A-phase loop in Fig. 4 .
图4.4是图4中A相回路电压输出模块4a的原理图。Fig. 4.4 is a schematic diagram of the A-phase loop
具体实施方式Detailed ways
以下结合附图和实施例对本实用新型做进一步的详细说明。Below in conjunction with accompanying drawing and embodiment the utility model is described in further detail.
图中的标记:1-控制模块,2a-A相回路I-V变换模块,2b-B相回路I-V变换模块,2c-C相回路I-V变换模块,3a-A相回路虚拟复阻抗模块,3b-B相回路虚拟复阻抗模块,3c-C相回路虚拟复阻抗模块,4a-A相回路电压输出模块,4b-B相回路电压输出模块,4c-B相回路电压输出模块,CT-仪表型精密电流互感器,PT-精密升压电压互感器Marks in the figure: 1-control module, 2a-A phase circuit I-V conversion module, 2b-B phase circuit I-V conversion module, 2c-C phase circuit I-V conversion module, 3a-A phase circuit virtual complex impedance module, 3b-B Phase loop virtual complex impedance module, 3c-C phase loop virtual complex impedance module, 4a-A phase loop voltage output module, 4b-B phase loop voltage output module, 4c-B phase loop voltage output module, CT-instrument type precision current Transformer, PT-Precision Boost Voltage Transformer
参见图3所示,是本实用新型实施例的基于“虚拟复阻抗法”实现的工频线路参数测试仪检定装置工作接线图。其工作原理为:在检定过程中,将被检工频线路参数测试仪的电流输出端子A、B、C、N分别和本实用新型的电流输入端子Ain、Bin、Cin、N连接,将被检工频线路参数测试仪的电压输入端子UA、UB、UC、UN分别和本实用新型的电压输出端子UAout、UBout、UCout、UN连接。主要工作方法如下:Referring to Fig. 3, it is the working wiring diagram of the verification device of the power frequency line parameter tester realized based on the "virtual complex impedance method" according to the embodiment of the present invention. Its working principle is: during the verification process, the current output terminals A, B, C, N of the power frequency line parameter tester to be tested are respectively connected to the current input terminals A in , B in , C in , N of the utility model Connect the voltage input terminals U A , UB , U C , UN of the power frequency line parameter tester to be tested with the voltage output terminals U Aout , U Bout , U Cout , UN of the present invention respectively. The main working methods are as follows:
当检定工频线路参数测试仪的“零序电容”测量功能时,本实用新型接受来自被检工频线路参数测试仪的电流信号IA,并根据关系式UA=3IA×(1/jωC0)在UA端子反馈出电压信号(相对UN参考点),此时被检工频线路参数测试仪将测量IA和UA信号并计算出零序电容测量值C0试品,通过上述过程可计算出被检工频线路参数测试仪的零序电容测量误差C0误差=C0试品-C0,进而达到了对被检工频线路参数测试仪的“零序电容”测量功能进行检定的目的。When verifying the "zero-sequence capacitance" measurement function of the power frequency line parameter tester, the utility model receives the current signal I A from the tested power frequency line parameter tester, and according to the relation U A =3I A ×(1/ jωC 0 ) A voltage signal is fed back at the U A terminal (relative to the U N reference point). At this time, the power frequency line parameter tester under test will measure the I A and U A signals and calculate the zero-sequence capacitance measurement value C 0 of the sample , Through the above process, the zero-sequence capacitance measurement error C 0 error of the tested power frequency line parameter tester can be calculated = C 0 test product -C 0 , and then the "zero sequence capacitance" of the tested power frequency line parameter tester can be achieved. The purpose of the verification of the measurement function.
当检定工频线路参数测试仪的“正序电容”测量功能时,本实用新型接受来自被检工频线路参数测试仪的电流信号IA、IB、IC,并根据关系式在UA、UB、UC端子反馈出相应电压信号(相对UN参考点),上述关系式和反馈电压信号满足U=(UAB+UBC+UCA)/3,I=(IA+IB+IC)/3。此时被检工频线路参数测试仪将测量IA、IB、IC和UA、UB、UC信号并计算出正序电容测量值C1试品,通过上述过程可计算出被检工频线路参数测试仪的正序电容测量误差C1误差=C1试品-C1,进而达到了对被检工频线路参数测试仪的“正序电容”测量功能进行检定的目的。When verifying the "positive sequence capacitance" measurement function of the power frequency line parameter tester, the utility model receives the current signals I A , I B , and I C from the power frequency line parameter tester to be tested, and according to the relation Corresponding voltage signals are fed back from terminals U A , U B , and U C (relative to the U N reference point). The above relation and the feedback voltage signal satisfy U=(U AB +U BC +U CA )/3, I=(I A +I B +I C )/3. At this time, the tested power frequency line parameter tester will measure I A , I B , I C and U A , U B , U C signals and calculate the measured value of the positive sequence capacitance C 1 sample. Through the above process, the tested product can be calculated The positive sequence capacitance measurement error C 1 error of the power frequency line parameter tester = C 1 test product - C 1 , thus achieving the purpose of verifying the "positive sequence capacitance" measurement function of the power frequency line parameter tester.
当检定工频线路参数测试仪的“零序阻抗”测量功能时,本实用新型接受来自被检工频线路参数测试仪的电流信号IA,并根据关系式UA=3IA×(jωL0+R0)在UA端子反馈出电压信号(相对UN参考点),此时被检工频线路参数测试仪将测量IA和UA信号并计算出零序电阻分量测量值R0试品和零序电感分量测量值L0试品,通过上述过程可计算出被检工频线路参数测试仪的零序电阻测量误差R0误差=R0试 品-R0及零序电感测量误差L0误差=L0试品-L0,进而达到了对被检工频线路参数测试仪的“零序阻抗”测量功能(含零序电阻分量和零序电感分量)进行检定的目的。When verifying the "zero-sequence impedance" measurement function of the power frequency line parameter tester, the utility model receives the current signal I A from the power frequency line parameter tester to be tested, and according to the relation U A =3I A ×(jωL 0 +R 0 ) The voltage signal is fed back at the U A terminal (relative to the U N reference point). At this time, the tested power frequency line parameter tester will measure the I A and U A signals and calculate the zero-sequence resistance component measurement value R 0 test Product and zero-sequence inductance component measurement value L 0 test product , through the above process, the zero-sequence resistance measurement error R 0 error of the tested power frequency line parameter tester can be calculated = R 0 test product -R 0 and zero-sequence inductance measurement error L 0 error = L 0 sample - L 0 , and then achieve the purpose of verifying the "zero-sequence impedance" measurement function (including zero-sequence resistance component and zero-sequence inductance component) of the tested power frequency line parameter tester.
当检定工频线路参数测试仪的“正序阻抗”测量功能时,本实用新型接受来自被检工频线路参数测试仪的电流信号IA,并根据关系式UA=3IA×(jωL0+R0)在UA端子反馈出电压信号(相对UN参考点),此时被检工频线路参数测试仪将测量IA和UA信号并计算出零序电阻分量测量值R0试品和零序电感分量测量值L0试品,通过上述过程可计算出被检工频线路参数测试仪的零序电阻测量误差R0误差=R0试 品-R0及零序电感测量误差L0误差=L0试品-L0,进而达到了对被检工频线路参数测试仪的“正序阻抗”测量功能(含正序电阻分量和正序电感分量)进行检定的目的。When verifying the "positive sequence impedance" measurement function of the power frequency line parameter tester, the utility model receives the current signal I A from the power frequency line parameter tester to be tested, and according to the relation U A =3I A ×(jωL 0 +R 0 ) The voltage signal is fed back at the U A terminal (relative to the U N reference point). At this time, the tested power frequency line parameter tester will measure the I A and U A signals and calculate the zero-sequence resistance component measurement value R 0 test Product and zero-sequence inductance component measurement value L 0 test product , through the above process, the zero-sequence resistance measurement error R 0 error of the tested power frequency line parameter tester can be calculated = R 0 test product -R 0 and zero-sequence inductance measurement error L 0 error = L 0 sample - L 0 , and then achieve the purpose of verifying the "positive sequence impedance" measurement function (including positive sequence resistance component and positive sequence inductance component) of the tested power frequency line parameter tester.
参见图4所示,是本实用新型实施例的基于“虚拟复阻抗法”实现的工频线路参数测试仪检定装置内部原理图。本实用新型按三相回路设计,每相回路工作原理相同(下面以A相回路为例进行工作原理说明):Referring to FIG. 4 , it is an internal schematic diagram of the verification device of a power frequency line parameter tester based on the "virtual complex impedance method" of the embodiment of the present invention. The utility model is designed according to a three-phase circuit, and the working principle of each phase circuit is the same (the working principle is explained below with the A-phase circuit as an example):
在A相回路中,本实用新型通过输入端子Ain接受被检工频线路参数测试仪的输入电流信号IA,该信号首先经过“I-V变换模块”2a并输出电压信号ua1,电压信号ua1满足关系式ua1=kCT×Ia,其中kCT为该模块中仪表型精密电流互感器CT的固定比例系数;然后电压信号ua1经过“虚拟复阻抗模块”3a并输出电压信号ua2,电压信号ua2满足关系式ua2=[jωkL+(1/jωkC)+kR]×ua1,其中kL、kC、kR为可调比例系数,该可调比例系数由来自“控制模块1”的A相回路控制信号sig-a分别进行控制;然后电压信号ua2经过“电压输出模块”4a进行信号放大并最终输出电压信号UAout,UAout满足关系式UAout=kPT×ua2,其中kPT为该模块中精密升压电压互感器PT的固定比例系数。In the A-phase circuit, the utility model receives the input current signal I A of the tested industrial frequency line parameter tester through the input terminal A in , and the signal first passes through the "IV conversion module" 2a and outputs the voltage signal u a1 , the voltage signal u a1 satisfies the relational expression u a1 =k CT ×Ia, where k CT is the fixed proportional coefficient of the instrument-type precision current transformer CT in this module; then the voltage signal u a1 passes through the "virtual complex impedance module" 3a and outputs the voltage signal u a2 , the voltage signal u a2 satisfies the relationship u a2 =[jωk L +(1/jωk C )+k R ]×u a1 , where k L , k C , and k R are adjustable proportional coefficients, which are determined by The A-phase loop control signal sig-a from the "
通过上述回路,产生的输出电压信号UAout和输入电流信号IA的满足复阻抗函数关系,即UAout=kPT×kCT×[jωkL+(1/jωkC)+kR]×IA,其中A相回路可调比例系数kA=kPT×kCT×[jωkL+(1/jωkC)+kR]即本实用新型实现的A相回路的“虚拟复阻抗”,该“虚拟复阻抗”幅值准确且灵活可调。Through the above loop, the generated output voltage signal U Aout and input current signal I A satisfy the complex impedance function relationship, that is, U Aout =k PT ×k CT ×[jωk L +(1/jωk C )+k R ]×I A , where the adjustable proportional coefficient of the A-phase circuit k A =k PT ×k CT ×[jωk L +(1/jωk C )+k R ] is the "virtual complex impedance" of the A-phase circuit realized by the utility model, the The amplitude of "virtual complex impedance" is accurate and flexible.
在B相回路和C相回路中,工作原理与A相回路完全相同。通过上述过程,本实用新型可以模拟出三相“虚拟复阻抗”,并且各个阻抗分量的量值由“控制模块1”灵活配置,设置范围广,准确度高。通过本实用新型实现的三相“虚拟复阻抗”不仅可对被检工频线路参数测试仪的“零序电容”和“正序电容”测量功能进行检定,而且也能对该类试品的“零序阻抗”和“正序阻抗”测量功能进行全面检定。In the B-phase circuit and the C-phase circuit, the working principle is exactly the same as that of the A-phase circuit. Through the above process, the utility model can simulate three-phase "virtual complex impedance", and the magnitude of each impedance component is flexibly configured by the "
参见图4.1所示,是图4中控制模块1的原理图。本实用新型实施例在该模块中以的DSP控制器件TMS320F2812为核心,该模块的主要工作任务包括:接受检定人员通过人机交互界面录入的有关控制信息(比如:选择检定的功能,包括零序电容、正序电容、零序阻抗、正序阻抗;设定具体检定参数,包括复阻抗中的电容分量、电阻分量、电感分量)。在检定人员选择好检定功能并设定好具体检定参数后,DSP控制器件将进行相应的计算并产生比例系数控制信号sig-a、sig-b、sig-c,其中,sig-a用来控制A相回路“虚拟复阻抗模块”2a中电感分量比例系数kL、电容分量比例系数kC、电阻分量比例系数kR;sig-b用来控制B相回路“虚拟复阻抗模块”2b中相应的电感分量比例系数、电容分量比例系数和电阻分量比例系数;sig-c用来控制C相回路“虚拟复阻抗模块”2c中电感分量比例系数、电容分量比例系数、电阻分量比例系数。See Figure 4.1, which is a schematic diagram of the
参见图4.2所示,是图4中A相回路I-V变换模块2a的原理图(该图以A相回路为例进行说明,B相回路和C相回路的工作原理相同)。本实用新型实施例在该模块中通过Ain、N两个端子接受被检工频线路参数测试仪产生的A相电流信号IA,电流信号IA经过由仪表型精密电流互感器CT、无感精密电阻RCT、精密运放OP37组成的I-V变换电路后输出电压信号ua1,并且电压信号ua1满足关系式ua1=kCT×IA。B相回路的“I-V变换模块”2b和C相回路“I-V变换模块”2c的原理与A相回路完全一致。Refer to Figure 4.2, which is the schematic diagram of the
参见图4.3所示,是图4中A相回路虚拟复阻抗模块3a的原理图(该图以A相回路为例进行说明,B相回路和C相回路的工作原理与A相回路相同)。本实用新型实施例在该模块中主要包括:电感分量的产生及幅值选择电路、电容分量的产生及幅值选择电路、电阻分量的产生及幅值选择电路。每组回路的工作原理如下:See Figure 4.3, which is the schematic diagram of the virtual complex impedance module 3a of the A-phase circuit in Figure 4 (this figure uses the A-phase circuit as an example to illustrate, and the working principles of the B-phase circuit and the C-phase circuit are the same as the A-phase circuit). The utility model embodiment mainly includes in the module: an inductance component generation and amplitude selection circuit, a capacitive component generation and amplitude selection circuit, a resistance component generation and amplitude selection circuit. The working principle of each group of loops is as follows:
其中,电感分量的产生及幅值选择电路中,来自前级A相“I-V变换模块”2a的电压信号ua1输入给由云母精密电容CL、无感精密电阻RL和精密运放OP37组成的精密微分电路,其输出电压信号为ua-L1,并且ua-L1满足关系式ua-L1=-jωCLRL×ua1,电压信号ua-L1经过精密数字电位器AD5231进行精密分压,线性度可达0.1%,该回路精密数字电位器AD5231的可调分压比例由来自“控制模块”1的A相回路比例系数控制信号sig-a进行控制,分压后的输出信号为ua-L2,电压信号ua-L2经过基于OP37组成的电压跟随器后输出电压信号ua-L3。由于该回路的可调分压比例系数可在控制信号sig-a作用下可任意设置,可以得到关系式ua-L3=-jωkL×ua1,其中kL为电感分量可调分压比例系数,该比例系数与CL、RL相关并受比例系数控制信号sig-a控制,由于CL、RL是固定值,所以kL在sig-a控制下可任意设置。Among them, in the generation of the inductance component and the amplitude selection circuit, the voltage signal u a1 from the previous stage A-phase "IV conversion module" 2a is input to the mica precision capacitor CL , the non-inductive precision resistor RL and the precision operational amplifier OP37. The precision differential circuit, its output voltage signal is u a-L1 , and u a-L1 satisfies the relationship u a-L1 = -jωC L R L ×u a1 , the voltage signal u a-L1 is processed by the precision digital potentiometer AD5231 Precise voltage division, the linearity can reach 0.1%. The adjustable voltage division ratio of the precision digital potentiometer AD5231 of this loop is controlled by the A-phase loop proportional coefficient control signal sig-a from the "control module" 1, and the output after voltage division The signal is u a-L2 , and the voltage signal u a-L2 outputs the voltage signal u a-L3 after passing through the voltage follower composed of OP37. Since the adjustable voltage division ratio coefficient of the loop can be set arbitrarily under the action of the control signal sig-a, the relational expression u a-L3 = -jωk L ×u a1 can be obtained, where k L is the adjustable voltage division ratio of the inductance component coefficient, the proportional coefficient is related to C L and R L and is controlled by the proportional coefficient control signal sig-a. Since C L and R L are fixed values, k L can be set arbitrarily under the control of sig-a.
其中,电容分量的产生及幅值选择电路中,来自前级A相“I-V变换模块”2a的电压信号ua1输入给由云母精密电容CC、无感精密电阻RC和精密运放OP37组成的精密积分电路,其输出电压为ua-C1,并且ua-C1满足关系式ua-C1=-(1/jωCCRC)×ua1,电压信号ua-C1经过精密数字电位器AD5231进行精密分压,线性度可达0.1%,该回路精密数字电位器AD5231的可调分压比例仍由来自“控制模块”1的A相回路比例系数控制信号sig-a进行控制,分压后的输出信号为ua-C2,电压信号ua-C2经过基于OP37组成的电压跟随器后输出电压信号ua-C3。由于该回路的可调分压比例系数可在控制信号sig-a作用下任意设置,可以得到关系式ua-C3=-(1/jωkC)×ua1,其中kC为电容分量可调分压比例系数,该比例系数与CC、RC相关并受比例系数控制信号sig-a控制,由于CC、RC是固定值,所以kC在sig-a控制下可任意设置。Among them, in the capacitive component generation and amplitude selection circuit, the voltage signal u a1 from the previous stage A-phase "IV conversion module" 2a is input to the mica precision capacitor C C , non-inductive precision resistor R C and precision operational amplifier OP37 The precision integral circuit, its output voltage is u a-C1 , and u a-C1 satisfies the relationship u a-C1 =-(1/jωC C R C )×u a1 , the voltage signal u a-C1 passes through the precision digital potentiometer The precision voltage divider AD5231 is used for precision voltage division, and the linearity can reach 0.1%. The adjustable voltage division ratio of the precision digital potentiometer AD5231 in this loop is still controlled by the A-phase loop proportional coefficient control signal sig-a from the "control module" 1. The output signal after voltage is u a-C2 , and the voltage signal u a-C2 outputs voltage signal u a-C3 after passing through the voltage follower based on OP37. Since the adjustable proportional coefficient of the voltage division of this loop can be set arbitrarily under the action of the control signal sig-a, the relational expression u a-C3 =-(1/jωk C )×u a1 can be obtained, where k C is the adjustable capacitance component Partial pressure proportional coefficient, the proportional coefficient is related to C C and R C and controlled by the proportional coefficient control signal sig-a, since C C and R C are fixed values, k C can be set arbitrarily under the control of sig-a.
其中,电阻分量的产生及幅值选择电路中,来自前级A相“I-V变换模块”2a的电压信号ua1输入给由2个等值的无感精密电阻RR和精密运放OP37组成的精密反相放大电路,其输出电压为ua-R1,并且ua-R1满足关系式ua-R1=-ua1,电压信号ua-R1经过精密数字电位器AD5231进行精密分压,线性度可达0.1%,该回路精密数字电位器AD5231的可调分压比例仍由来自“控制模块”1的A相回路比例系数控制信号sig-a进行控制,分压后的输出信号为ua-R2,电压信号ua-R2经过基于OP37组成的电压跟随器后输出电压信号ua-R3。由于该回路的可调分压比例系数可在控制信号sig-a作用下任意设置,可以得到关系式ua-R3=-kR×ua1,其中kR为电阻分量可调分压比例系数,kR在sig-a控制下可任意设置。Among them, in the resistance component generation and amplitude selection circuit, the voltage signal u a1 from the previous stage A-phase "IV conversion module" 2a is input to the circuit composed of two equivalent non-inductive precision resistors R R and precision operational amplifier OP37 Precision inverting amplifier circuit, its output voltage is u a-R1 , and u a-R1 satisfies the relationship u a-R1 = -u a1 , the voltage signal u a-R1 is precisely divided by the precision digital potentiometer AD5231, linear The degree can reach 0.1%. The adjustable voltage division ratio of the precision digital potentiometer AD5231 of this loop is still controlled by the A-phase loop proportional coefficient control signal sig-a from the "control module" 1, and the output signal after voltage division is u a -R2 , the voltage signal u a-R2 outputs the voltage signal u a-R3 after passing through the voltage follower based on OP37. Since the adjustable voltage division ratio coefficient of this loop can be set arbitrarily under the action of the control signal sig-a, the relational expression u a-R3 = -k R ×u a1 can be obtained, where k R is the adjustable voltage division ratio coefficient of the resistance component , k R can be set arbitrarily under the control of sig-a.
以上产生的3路电压信号ua-L3、ua-C3、ua-R3同时输入给由4个等值的无感精密电阻R2和精密运放OP37组成的精密反相加法电路,其输出电压为ua2,并且ua2满足关系式:The 3 voltage signals u a-L3 , u a-C3 , u a-R3 generated above are simultaneously input to the precision inverting addition circuit composed of 4 equivalent non-inductive precision resistors R 2 and precision operational amplifier OP37. The output voltage is u a2 , and u a2 satisfies the relation:
ua2=-(ua-L3+ua-C3+ua-R3)=-[-jωkL×ua1-(1/jωkC)×ua1-kR×ua1]u a2 =-(u a-L3 +u a-C3 +u a-R3 )=-[-jωk L ×u a1 -(1/jωk C )×u a1 -k R ×u a1 ]
=[jωkL+(1/jωkC)+kR]×ua1=[jωkL+(1/jωkC)+kR]×kCT×IA =[jωk L +(1/jωk C )+k R ]×u a1 =[jωk L +(1/jωk C )+k R ]×k CT ×I A
上述过程为A相回路“虚拟复阻抗模块”3a的原理,B相回路“虚拟复阻抗模块”3b和C相回路“虚拟复阻抗模块”3c的原理与A相回路完全一致。The above-mentioned process is the principle of the "virtual complex impedance module" 3a of the A-phase circuit, and the principles of the "virtual complex impedance module" 3b of the B-phase circuit and the "virtual complex impedance module" 3c of the C-phase circuit are completely consistent with the A-phase circuit.
参见图4.4所示,是图4中A相回路电压输出模块4a的原理图(该图以A相回路为例进行说明,B相回路和C相回路的A相回路原理相同)。来自前级A相回路“虚拟复阻抗模块”3a的信号ua2首先经过功率运放OPA549组成的电压跟随器提高带负载能力,并输出电压为ua3,电压信号ua3经过精密升压电压互感器PT进行电压放大,精密电压互感器PT的电压放大倍数为kPT,输出电压信号为UAN(即本实用新型电压输出端子UAout、UN之间的电压),电压信号UAN满足关系式:UAN=kPT×ua2=kPT×kCT×[jωkL+(1/jωkC)+kR]×IA。See Figure 4.4, which is the schematic diagram of the A-phase loop
如上所述,本实用新型实施例在UAN和IA之间建立了“虚拟复阻抗”函数关系,也就是模拟出了A相“虚拟复阻抗”,该“虚拟复阻抗”即kPT×kCT×[jωkL+(1/jωkC)+kR],其中kPT、kCT是固定比例系数,kL、kC、kR是在sig-a控制下独立可调的比例系数。上述过程为A相回路的原理,B相回路和C相回路的原理与A相回路完全一致。通过上述原理,实现了三相“虚拟复阻抗”,该“虚拟复阻抗”的电感分量、电容分量、电阻分量可独立设定,准确度高,操作便捷,可代替传统的“实物阻抗法”开展工频线路参数测试仪的检定工作。As mentioned above, the embodiment of the utility model establishes a "virtual complex impedance" functional relationship between U AN and I A , that is, simulates the "virtual complex impedance" of phase A, and the "virtual complex impedance" is k PT × k CT ×[jωk L +(1/jωk C )+k R ], where k PT and k CT are fixed proportional coefficients, k L , k C , and k R are independently adjustable proportional coefficients under sig-a control . The above process is the principle of the A-phase circuit, and the principles of the B-phase circuit and the C-phase circuit are completely consistent with the A-phase circuit. Through the above principles, the three-phase "virtual complex impedance" is realized. The inductance component, capacitance component and resistance component of the "virtual complex impedance" can be set independently, with high accuracy and convenient operation, which can replace the traditional "physical impedance method". Carry out the verification work of the power frequency line parameter tester.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010206326651U CN201903638U (en) | 2010-11-30 | 2010-11-30 | Detection system for power frequency line parameter tester based on virtual vector impedance method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010206326651U CN201903638U (en) | 2010-11-30 | 2010-11-30 | Detection system for power frequency line parameter tester based on virtual vector impedance method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201903638U true CN201903638U (en) | 2011-07-20 |
Family
ID=44274232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010206326651U Expired - Lifetime CN201903638U (en) | 2010-11-30 | 2010-11-30 | Detection system for power frequency line parameter tester based on virtual vector impedance method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201903638U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102081150A (en) * | 2010-11-30 | 2011-06-01 | 国网电力科学研究院 | 'Virtual complex impedance method'-based power frequency line parameter tester calibration device and method |
-
2010
- 2010-11-30 CN CN2010206326651U patent/CN201903638U/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102081150A (en) * | 2010-11-30 | 2011-06-01 | 国网电力科学研究院 | 'Virtual complex impedance method'-based power frequency line parameter tester calibration device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102841258B (en) | Measuring device and method for direct current supply output impedance | |
CN102269787B (en) | Electronic voltage transformer harmonic characteristic detection method and its detection device | |
CN107677980B (en) | An integrated detection platform and method for measurement performance of distribution network transformers | |
CN108414960A (en) | A kind of multichannel directly measures formula mutual-inductor tester and method of calibration | |
CN104101785B (en) | A kind of four-end method high level condensance measurement apparatus and its measuring method | |
CN208156182U (en) | A kind of multichannel directly measures formula mutual-inductor tester | |
CN202837406U (en) | DC power supply output impedance measuring device | |
CN201576056U (en) | A Grounding Resistance Online Detector Based on TMS320LF2407A | |
CN101149425A (en) | An automatic system for debugging and calibrating electronic energy meters | |
CN111722008A (en) | Three-phase AC charging pile testing method, device and equipment based on the principle of analog multiplier | |
CN105203983A (en) | Flexible alternating current/direct current electronic transformer checking device based on mixed sampling | |
CN109061300A (en) | A kind of characteristic harmonics source localization method of PCC point | |
CN102081150B (en) | 'Virtual complex impedance method'-based power frequency line parameter tester calibration device and method | |
CN114966316A (en) | Primary and secondary depth fusion equipment signal detection device and detection method | |
CN101285857A (en) | AC current-voltage converter and device and method for measuring small AC current | |
CN110082700A (en) | A kind of electric energy meter measurement error on-line monitoring circuit and method based on CT sampling | |
CN102385013B (en) | Method and device for detecting harmonic characteristic of electronic current transformer | |
CN108181600B (en) | Capacitive voltage transformer test device | |
CN203745634U (en) | Three-phase power harmonic standard source | |
CN103018550A (en) | Novel electric energy measurement control module of filtering reactive compensation device | |
CN105093162A (en) | Method and device for calibrating measurement error of electric energy meter under pulse train interference condition | |
CN209400684U (en) | A Broadband Error Measurement System of Voltage Transformer | |
CN201903638U (en) | Detection system for power frequency line parameter tester based on virtual vector impedance method | |
CN104569906B (en) | A kind of three-phase intelligent ammeter nonlinear load accurate measurement analysis design method | |
CN201289525Y (en) | Checkout device for zinc oxide lightning arrester tester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20110720 Effective date of abandoning: 20130821 |
|
RGAV | Abandon patent right to avoid regrant |