Novel tension and compression energy-consumption damper
Technical field
The utility model relates to building construction vibration control field, particularly a kind of novel tension and compression energy-consumption damper.
Background technology
The damper of having developed at present is of a great variety, and main type has metal damper, frcition damper, oil damper, viscoelastic damper.Among these several dampers, metal damper is because its stable performance, and price is cheaper, and reliability is high and obtained using widely.
The metal damper that uses mainly contains two kinds at present, and a kind of is lead damper, and another kind is to utilize to surrender the damper of realizing energy-dissipating and shock-absorbing outside the steel plate plane.The shortcoming of these two kinds of dampers is that rigidity is less, can not provide bigger rigidity to structure.Shortcoming in view of preceding two kinds of metal dampers, part scholar has developed the metal damper of surrender in the steel plate plane, though the rigidity of this metal damper has improved, but its energy dissipation capacity descends to some extent, and its energy dissipation capacity depends on the shape and the size of institute's hole-opening in the steel plate plane, is unfavorable for wide popularization and application.
Therefore, develop and a kind ofly not only have bigger rigidity, and the strong metal damper of energy dissipation capacity just seems meaningful especially.
Summary of the invention
In order to overcome the less weak point of metal current damper stiffness, the utility model provides a kind of and has bigger rigidity, and the strong novel tension and compression energy-consumption damper of energy dissipation capacity.
The technical scheme that the utility model adopted is a kind of novel tension and compression energy-consumption damper, comprise core primary structure member, buckling-restrained member, the non-cohesive material between the hole of core primary structure member and buckling-restrained member and the end plate that is connected with core primary structure member two ends, the number of core primary structure member is no less than 2, be arranged in parallel between the core primary structure member, buckling-restrained member has the hole that axially connects along the core primary structure member in the position of arranging the core primary structure member, and the hole the inside of each perforation is provided with a core primary structure member.
Described core primary structure member can be made by shape memory alloy material or steel or aluminum alloy materials or lead.
Described core primary structure member is the pluckings member in a centre thin two, and it can change cross-sectional sizes in the length range of buckling-restrained member hole, also can change cross-sectional sizes outside the length range of buckling-restrained member hole.
The cross section of described core primary structure member can be adopted round or yi word pattern or cross or I shape or circular ring type or ellipse.
Described buckling-restrained member adopts the confining part of cast mortar formation in concrete filled steel tubular member or all steel system member or reinforced concrete member or the steel pipe or the confining part that the interior cast of steel pipe steel fibrous concrete forms.
Described non-cohesive material can be that epoxy resin or asphalt varniss or ethene basic unit add foam or rubber layer or silicone rubber layers or silicones and add epoxy resin or polyethylene sheeting or butyl rubber.
Described core primary structure member can be fixed on the end plate by bolt connection or the mode that is welded to connect.
Can weld stiffening rib on the described end plate, make end plate form the rigid body that rigidity is very big, end plate should be out of shape very for a short time when stressed, and distortion is mainly concentrated on the core primary structure member.
Should be welded to connect part on the described end plate, novel tension and compression energy-consumption damper and structure are connected and fixed by connector.
Described buckling-restrained member can not produce prior to the core primary structure member and destroy.
The utlity model has following remarkable advantage:
(1) rigidity that provides to structure is bigger.Owing to utilize the tension and compression deformation of core primary structure member to realize power consumption, when realizing power consumption, can provide bigger rigidity to structure.
(2) power consumption is effective.Because the lateral deformation of core primary structure member is subjected to the restriction of buckling-restrained member, so the overwhelming majority of core primary structure member is deformed into axial deformation, thereby can dissipate a large amount of seismic energies when avoiding flexing.
The utility model can be used in the various building structure, such as frame construction, and the frame-shear wall structure, in the large-span structure, can not only provide enough rigidity to structure, and a large amount of seismic energies that can dissipate, will be widely used in all kinds of building construction vibration controls field.
Description of drawings
Fig. 1 is the front view of the utility model embodiment 1.
Fig. 2 is the A-A profile of the utility model embodiment 1.
Fig. 3 is the front view of the utility model embodiment 2.
Fig. 4 is the B-B profile of the utility model embodiment 2.
Digital implication is as follows in the accompanying drawing:
1-core primary structure member; The buckling-restrained member of 2-; The 3-hole; The 4-non-cohesive material; The 5-end plate; The 6-nut.
The specific embodiment
Below in conjunction with drawings and Examples the utility model is described in further detail.
Shown in accompanying drawing 1~4, the utility model is a kind of novel tension and compression energy-consumption damper, comprise core primary structure member 1, buckling-restrained member 2, non-cohesive material 4 between the hole 3 of core primary structure member 1 and buckling-restrained member 2, and the end plate 5 that is connected with core primary structure member 1 two ends, the number of core primary structure member 1 is no less than 2, be arranged in parallel between the core primary structure member 1, buckling-restrained member 2 has the hole 3 that axially connects along core primary structure member 1 in the position of arranging core primary structure member 1, hole 3 the insides of each perforation are provided with a core primary structure member 1.
Described core primary structure member 1 can be made by shape memory alloy material or steel or aluminum alloy materials or lead.
Described core primary structure member 1 is the pluckings member in a centre thin two, and it can change cross-sectional sizes in the length range of the hole 3 of buckling-restrained member 2, also can change cross-sectional sizes outside the length range of the hole 3 of buckling-restrained member 2.
The cross section of described core primary structure member 1 can be adopted round or yi word pattern or cross or I shape or circular ring type or ellipse.
Described buckling-restrained member 2 adopts the confining part of cast mortar formation in concrete filled steel tubular member or all steel system member or reinforced concrete member or the steel pipe or the confining part that the interior cast of steel pipe steel fibrous concrete forms.
Described non-cohesive material 4 can be that epoxy resin or asphalt varniss or ethene basic unit add foam or rubber layer or silicone rubber layers or silicones and add epoxy resin or polyethylene sheeting or butyl rubber.
Described core primary structure member 1 can be fixed on the end plate 5 by bolt connection or the mode that is welded to connect.
Can weld stiffening rib on the described end plate 5, make end plate 5 form the rigid body that rigidity is very big, end plate 5 should be out of shape very for a short time when stressed, and distortion is mainly concentrated on the core primary structure member 1.
Should be welded to connect part on the described end plate 5, novel tension and compression energy-consumption damper and structure are connected and fixed by connector.
Described buckling-restrained member 2 can not produce prior to core primary structure member 1 and destroy.
For the specific embodiment of the present utility model better is described, lift two specific embodiment below:
Embodiment 1, shown in accompanying drawing 1~2, the number of the core primary structure member 1 of novel tension and compression energy-consumption damper is 5, be arranged in parallel between the core primary structure member 1, buckling-restrained member 2 has the hole 3 that axially connects along core primary structure member 1 in the position of arranging core primary structure member 1, hole 3 the insides of each perforation are provided with a core primary structure member 1, the section form of core primary structure member 1 is round cross section, core primary structure member 1 is made by the marmem rod, core primary structure member 1 changes cross-sectional sizes in the length range of the hole 3 of buckling-restrained member 2, buckling-restrained member 2 is all steel system member, non-cohesive material 4 can adopt silicones to add epoxy resin, in the end of core primary structure member 1 machining screw, be connected and fixed by nut 6 between core primary structure member 1 and the end plate 5.
Embodiment 2, shown in accompanying drawing 3~4, the number of the core primary structure member 1 of novel tension and compression energy-consumption damper is 4, be arranged in parallel between the core primary structure member 1, buckling-restrained member 2 has the hole 3 that axially connects along core primary structure member 1 in the position of arranging core primary structure member 1, hole 3 the insides of each perforation are provided with a core primary structure member 1, the section form of core primary structure member 1 is round cross section, core primary structure member 1 is made by low-yield mild steel, core primary structure member 1 changes cross-sectional sizes outside the length range of the hole 3 of buckling-restrained member 2, buckling-restrained member 2 is a concrete filled steel tubular member, non-cohesive material 4 can adopt silicone rubber layers, in the end of core primary structure member 1 machining screw, be connected and fixed by nut 6 between core primary structure member 1 and the end plate 5.
Certainly the utility model is not limited to above two kinds of embodiments, can be used in combination according to actual conditions, thereby reach not only economy but also practical purpose.
The utility model can be widely used in various frameworks, framework-shear wall and the large-span structure, when geological process, novel tension and compression energy-consumption damper can either provide enough rigidity to structure, but also a large amount of seismic energies that can dissipate by the distortion of core primary structure member, the utility model clear concept, respond well, simple structure, easy construction helps realizing applying on a large scale in vast earthquake protection zone.