CN201686666U - 一种裂解汽油中心馏分加氢装置 - Google Patents

一种裂解汽油中心馏分加氢装置 Download PDF

Info

Publication number
CN201686666U
CN201686666U CN2010201823747U CN201020182374U CN201686666U CN 201686666 U CN201686666 U CN 201686666U CN 2010201823747 U CN2010201823747 U CN 2010201823747U CN 201020182374 U CN201020182374 U CN 201020182374U CN 201686666 U CN201686666 U CN 201686666U
Authority
CN
China
Prior art keywords
decarburization
tower
pipeline
outlet
towers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2010201823747U
Other languages
English (en)
Inventor
王鑫泉
陈皓
陈晓昀
张霁明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Engineering Inc
Original Assignee
Sinopec Engineering Inc
China Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Engineering Inc, China Petrochemical Corp filed Critical Sinopec Engineering Inc
Priority to CN2010201823747U priority Critical patent/CN201686666U/zh
Application granted granted Critical
Publication of CN201686666U publication Critical patent/CN201686666U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本实用新型为一种裂解汽油中心馏分加氢装置。本实用新型所述脱碳九塔(C-720)除设置脱碳九塔塔釜再沸器(E-725)外,还在脱碳九塔(C-720)提馏段上部设置脱碳九塔中间再沸器(E-726),所述脱碳九塔中间再沸器(E-726)的加热介质为稳定塔(C-770)塔釜采出的加氢汽油产品;脱碳五塔(C-710)进料先经过脱碳五塔进料预热器(E-700)预热后再进入脱碳五塔(C-710),加热介质为经二段进出料换热器(E-760)换热后的二段加氢反应出料。本实用新型所述的裂解汽油中心馏分加氢装置所消耗的蒸汽和冷却水较采用现有技术的裂解汽油加氢装置有明显减少,从而可以实现裂解汽油中心馏分加氢装置总能耗的降低。

Description

一种裂解汽油中心馏分加氢装置
技术领域
本实用新型涉及一种石油化工领域的裂解汽油加氢装置,进一步地说,是涉及一种裂解汽油中心馏分加氢装置。
背景技术
裂解汽油,又称热解汽油。以轻烃、石脑油、柴油甚至减压蜡油为原料,在水蒸气存在下高温裂解制取乙烯的过程中,生成含碳五烃类以上的液体副产品,经分馏出干点为205℃的液体称为裂解汽油。由于此种汽油富含芳烃,经过加氢精制后可作为高辛烷值汽油组分或用于萃取苯、甲苯、乙苯、二甲苯等化工原料。
目前,工业上裂解汽油加氢精制一般都是采用两段催化选择性加氢的方法脱除裂解汽油中含有的大量不饱和物和杂质:单烯烃、二烯烃、烯基芳烃、硫化物等。其中,第一段加氢是在较缓和条件下,进行液相反应,其加氢目的主要是使二烯烃转化为单烯烃,烯基芳烃转化为烷基芳烃;第二段加氢是在较高温度下,进行气相反应,其加氢目的主要是使单烯烃转化为饱和烃,硫化物转化为H2S。
根据产品方案的不同,工业应用比较广泛的加氢精制方法可以分为裂解汽油中心馏分加氢和裂解汽油全馏分加氢两种。
所谓裂解汽油中心馏分加氢,其设备系统一般由三塔两反系统组成,依次为脱碳五塔系统、脱碳九塔系统、一段加氢反应器系统、二段加氢反应器系统和稳定塔系统。原料乙烯装置副产物粗裂解汽油先经过脱碳五塔分离出C5及C5以下的馏分,再经过脱碳九塔脱除C9及C9以上馏分,C6-C8馏分经过两段选择性加氢处理后得到加氢汽油,用于下游芳烃抽提装置的加工原料。裂解汽油经过该方法处理后的主要产物为加氢汽油,主要副产品是未加氢C5馏分和未加氢C9馏分。
根据化学反应原理,不饱和烃加氢为放热反应,而裂解汽油中心馏分中的不饱和烃含量可高达50-60wt%,因此裂解汽油中心馏分加氢反应通常为强放热反应,反应产物必须经过冷却、闪蒸处理,由此需要消耗大量的冷却介质。而在裂解汽油加氢流程中分馏塔则需要消耗大量的蒸汽作为塔釜再沸器的加热介质。随着化工产业规模的不断增加,目前工业化裂解汽油加氢装置的处理能力已经提高到50-70万吨/年,其循环冷却水和中压蒸汽的能耗量分别可以达到4000-6000吨/小时和35-45吨/小时。按照年操作时间8000小时计,循环冷却水和中压蒸汽的年消耗量将达到3200-4800万吨和28-36万吨。
裂解汽油中心馏分加氢方法工业化应用时间已经有几十年,但其核心技术一般都掌握在国外的一些大型石油石化公司手中。目前已公开的现有技术鲜有涉及裂解汽油加氢节能加工方法的。
CN1916119A中公开了催化裂化全馏分汽油加氢改质工艺流程设计,其主要设计了催化裂化汽油加氢改制工艺流程的改进,通过液态烃全部循环,利用反应物与原料逐级换热等技术。其中涉及了催化裂化全馏分汽油加氢改质工艺流程中稳定塔中塔顶油气经过冷凝冷却器返回塔顶回流罐进行气液分离,气相作为燃料进入瓦斯系统,液相一部分返回塔顶做回流,另一部分返回原料汽油,塔底液相一部分经过再沸器回流,另一部分与稳定塔进料换热。
该方法是针对催化裂化工艺能量优化方法和措施,而由于催化裂化工艺的原料和本实用新型所涉及的原料乙烯装置副产的裂解汽油存在明显差异性,导致催化裂化全馏分汽油加氢和裂解汽油中心馏分加氢的工艺路线存在本质差别。因此,该方法公开的具体优化方法和措施仅适用于催化裂化工艺,对本实用新型涉及的裂解汽油中心馏分加氢流程的优化不具备显而易见性的技术启示。
朱长诚等在《裂解汽油加氢装置生产工艺的改进》(乙烯工业,1999年第四期33-37页)一文中公开了现有裂解汽油加氢的流程图,主要探讨了现有裂解汽油中心馏分加氢装置在实际操作方面的一系列问题,既未公开本实用新型权利要求涉及有关内容,也没有给出相应的技术启示。
通过对现有裂解汽油中心馏分加氢技术的分析,发明人发现裂解汽油中心馏分加氢流程中有一些高温工艺物流,其热量没有得到充分利用,存在能量优化的可能。针对这一问题,在对全流程物流进行能量优化的分析与研究的基础上,通过一系列流程调整优化,可以实现加热蒸汽和冷却介质的消耗量大大降低。
实用新型内容
发明人利用商用流程模拟软件,自主研发了裂解汽油中心馏分加氢模拟程序,通过对裂解汽油加氢流程的优化设计,提出了一种新的裂解汽油中心馏分加氢装置,可以使加热蒸汽和冷却介质的消耗比现有裂解汽油加氢技术大大降低。采用发明人开发的裂解汽油中心馏分加氢装置即将陆续在国内一些大型裂解汽油加氢装置进行工业实施。
本实用新型的裂解汽油中心馏分加氢装置是这样实现的,
本实用新型的裂解汽油中心馏分加氢装置包括:
a)脱碳五塔C-710系统、b)脱碳九塔C-720系统、c)一段加氢反应器R-750系统、d)二段加氢反应器R-760系统、e)稳定塔C-770系统;其特征在于:
所述脱碳九塔C-720系统除设置脱碳九塔塔釜再沸器E-725外,还在脱碳九塔C-720提馏段上部设置脱碳九塔中间再沸器E-726;
所述脱碳九塔中间再沸器E-726的热介质入口经管线与加氢汽油产品泵P-775出口连接,加氢汽油产品泵P-775入口经管线与稳定塔C-770塔釜出口连接;
所述脱碳九塔中间再沸器E-726的热介质出口经管线与稳定塔进出料换热器E-776的热介质入口连接;
所述脱碳五塔C-710的粗裂解汽油进料由脱碳五塔进料预热器E-700冷介质出口经管线连接至脱碳五塔C-710中部进料口;
所述脱碳五塔进料预热器E-700热介质的入口经管线与二段进出料换热器E-760热介质出口连接;
所述脱碳五塔进料预热器E-700热介质的出口经管线与二段后冷器E-761热介质入口连接;
所述脱碳五塔进料预热器E-700的热介质进、出口管线经由管线连通。
在具体实施中,
所述的装置包括下述设备:
a)脱碳五塔C-710系统
粗裂解汽油原料由粗裂解汽油储罐TK-700经管线依次连接下述设备:粗汽油进料过滤器SR-700、进料缓冲罐D-700、脱碳五塔进料泵P-700;脱碳五塔进料泵P-700出口经管线连接至脱碳五塔进料预热器E-700冷介质入口,脱碳五塔进料预热器E-700冷介质出口经管线连接至脱碳五塔C-710中部进料口;
脱碳五塔C-710塔顶气相出口经管线依次连接下述设备:脱碳五塔塔顶冷凝器E-710、脱碳五塔回流罐D-710、脱碳五塔回流泵P-715;
脱碳五塔回流泵P-715出口经管线分别连接脱碳五塔C-710顶部回流口和碳五产品储罐TK-710进料口;
脱碳五塔C-710塔釜出料口经管线连接至脱碳九塔C-720中部进料口;
脱碳五塔C-710的塔釜再沸器采出口经管线连接至脱碳五塔塔釜再沸器E-715冷介质进口,脱碳五塔塔釜再沸器E-715冷介质出口经管线连接至脱碳五塔C-710的塔釜再沸器返回口;
b)脱碳九塔C-720系统
脱碳九塔C-720塔顶气相出口经管线依次连接下述设备:脱碳九塔塔顶冷凝器E-720、脱碳九塔回流罐D-720;
脱碳九塔回流罐D-720罐底液相出口经管线连接至脱碳九塔回流泵P-720入口;脱碳九塔回流泵P-720出口经管线分别连接脱碳九塔C-720顶部回流口和一段进料缓冲罐D-750进料口;
脱碳九塔回流罐D-720罐顶气相管线连接脱碳九塔尾气冷凝器E-721热介质进口;脱碳九塔尾气冷凝器E-721热介质液相出口经管线连接脱碳九塔回流罐D-720,脱碳九塔尾气冷凝器E-721热介质气相出口经管线连接脱碳九塔真空系统PA-720的入口;脱碳九塔真空系统PA-720的出口经管线连接至真空尾气管网。
脱碳九塔C-720塔釜出料口经管线依次连接下述设备:脱碳九塔塔釜泵P-725、碳九产品冷却器E-728、碳九产品储罐TK-720。
脱碳九塔C-720的塔釜再沸器采出口经管线连接至脱碳九塔塔釜再沸器E-725冷介质进口,脱碳九塔塔釜再沸器E-725冷介质出口经管线连接至脱碳九塔C-720的塔釜再沸器返回口;
脱碳九塔C-720的中间再沸器采出口经管线连接至脱碳九塔中间再沸器E-726冷介质进口,脱碳九塔中间再沸器E-726冷介质出口经管线连接至脱碳九塔C-720的中间再沸器返回口;
c)一段加氢反应器R-750系统
一段进料缓冲罐D-750底部出口经管线连接至一段加氢进料泵P-750入口;一段加氢进料泵P-750出口经管线连接至一段循环冷却器E-751热介质出口与一段加氢反应器R-750间的连接管线;
氢气管线由氢气管网经管线接至一段加氢反应器R-750顶部;
一段加氢反应器R-750底部出口经管线连接一段加氢热分离罐D-751;一段加氢热分离罐D-751罐顶气相出口经管线连接至一段热分离冷凝器E-752热介质入口,一段热分离冷凝器E-752热介质出口经管线连接至一段加氢冷分离罐D-752入口;一段加氢热分离罐D-751罐底液相出口经管线连接一段加氢循环/二段加氢进料泵P-751入口;一段加氢循环/二段加氢进料泵P-751出口经管线分别连接一段循环冷却器E-751热介质入口和二段进出料换热器E-760冷介质进口;一段循环冷却器E-751热介质出口经管线连接至一段加氢反应器R-750顶部;
一段加氢冷分离罐D-752顶部气相出口经管线连接至二段循环氢压缩机吸入罐D-761;一段加氢冷分离罐D-752罐底液相出口经管线连接一段加氢热分离罐D-751;
d)二段加氢反应器R-760系统
二段进出料换热器E-760冷介质出口经管线连接至二段进料加热炉F-760冷介质进口,二段进料加热炉F-760冷介质出口经管线连接至二段加氢反应器R-760顶部进口;
二段加氢反应器R-760底部出口经管线连接至二段进出料换热器E-760热介质入口;二段进出料换热器E-760热介质出口经管线分别连接至脱碳五塔进料预热器E-700热介质入口和二段后冷凝器E-761热介质入口;脱碳五塔进料预热器E-700热介质出口连接至二段进出料换热器E-760与二段后冷凝器E-761间的连接管线;二段后冷凝器E-761热介质出口连接至二段加氢分离罐D-760进口;
二段加氢分离罐D-760顶部的气相出口经管线连接至二段循环氢压缩机吸入罐D-761;二段循环氢压缩机吸入罐D-761顶部气相出口经管线连接至二段循环氢压缩机K-760入口;二段循环氢压缩机K-760出口经管线连接至一段加氢循环/二段进料泵P-751与二段进出料换热器E-760间的连接管线;
二段加氢分离罐D-760底部液相出口经管线连接至稳定塔进出料换热器E-776冷介质进口;
e)稳定塔系统
稳定塔进出料换热器E-776冷介质出口经管线连接至稳定塔C-770中部进料口;
稳定塔C-770塔顶管线依次连接:稳定塔塔顶冷凝器E-770、稳定塔回流罐D-770;稳定塔回流罐D-770罐底液相出口经管线连接至稳定塔回流泵P-770入口;稳定塔回流泵P-770出口经管线连接至稳定塔C-770塔顶回流口;稳定塔回流罐D-770罐顶气相出口经管线连接至低压尾气管网。
稳定塔C-770塔釜出料口经管线连接至加氢汽油产品泵P-775入口;加氢汽油产品泵P-775出口经管线连接至脱碳九塔中间再沸器E-726热介质入口;脱碳九塔中间再沸器E-726热介质出口经管线连接至稳定塔进出料换热器E-776热介质入口;稳定塔进出料换热器E-776热介质出口经管线连接至加氢汽油冷却器E-777热介质入口;加氢汽油冷却器E-777热介质出口经管线连接至加氢汽油产品储罐TK-770。
稳定塔C-770塔釜再沸器采出口经管线连接至稳定塔塔釜再沸器E-775冷介质进口,稳定塔塔釜再沸器E-775冷介质出口经管线连接至稳定塔C-770塔釜再沸器返回口。
应用本实用新型的裂解汽油中心馏分加氢装置的操作方法是这样的:
所述的稳定塔塔釜采出的加氢汽油产品先用加氢汽油产品泵加压后送至脱碳九塔中间再沸器作为脱碳九塔中间再沸器的加热介质,再送至稳定塔进出料换热器对稳定塔进料进行预热,最后再经过加氢汽油冷却器冷却至加氢汽油产品要求的储存温度;
所述的脱碳九塔中间再沸器的液相进料可以由脱碳九塔中部进料口下第3~6块塔板中任意一块板采出,采出温度115~125℃,汽化后返回采出板下的第二块板;
所述的脱碳九塔中间再沸器气化率为10~15wt%,热负荷为脱碳九塔塔釜再沸器热负荷的10~15%;
所述的稳定塔进料温度≤135℃,塔釜温度为150~170℃;
所述的脱碳九塔的操作压力为负压,塔顶温度为65~75℃,塔釜温度为135~150℃。
所述的脱碳五塔进料需要经过脱碳五塔进料预热器预热后再进入脱碳五塔,加热介质为经与二段进出料换热器换热后的二段加氢反应器出料。
所述的脱碳五塔塔顶温度可以为45~55℃,塔釜温度可以为115~132℃,所述脱碳五塔进料经脱碳五塔进料预热器预热后的温度为60~65℃;送脱碳五塔进料预热器换热后的二段加氢反应器出料和另一部分二段加氢反应器出料合并后送二段后冷器冷凝。
本实用新型所述的工艺装置同现有的裂解汽油中心馏分加氢装置相比,其变化主要体现在以下几个方面:
1)除脱碳九塔塔釜再沸器外,增加了脱碳九塔中间再沸器,脱碳九塔中间再沸器的进料为脱碳九塔进料口下第3~6块塔板中任意一块板采出的液相物料;经脱碳九塔中间再沸器加热汽化后液相物料变成气液两相,返回脱碳九塔中间再沸器采出塔板下方的第二块塔板上;脱碳九塔中间再沸器返回脱碳九塔物料的气化率为10~15wt%。
2)脱碳九塔中间再沸器的热负荷为未加脱碳九塔中间再沸器时原脱碳九塔塔釜再沸器热负荷的10~15%。
3)脱碳九塔中间再沸器采用稳定塔塔釜采出的热工艺物料作为加热介质;该加热介质由稳定塔塔釜采出后,经稳定塔塔釜的加氢汽油产品泵加压后再送往脱碳九塔中间再沸器作为加热介质;经脱碳九塔中间再沸器换热后,该加热介质再送至稳定塔进出料换热器用于加热稳定塔进料,之后经过加氢汽油冷却器冷却后送至加氢汽油储罐。
由于增加了脱碳九塔中间再沸器,稳定塔塔釜出料在经过脱碳九塔中间再沸器和稳定塔进出料换热器后,温度降到60℃左右,不能用作脱碳五塔进料预热器的加热介质,因此选择了经二段进出料换热器换热后的二段加氢反应器出料作为脱碳五塔进料预热器的加热介质。根据脱碳五塔进料预热器的热负荷,只需要部分经二段进出料换热后的二段加氢反应出料就可以满足脱碳五塔进料预热要求,一般用于脱碳五塔进料预热的部分不超过二段加氢反应器出料总流量的50%,具体流量根据脱碳五塔进料预热后脱碳五塔的进料温度来调节。用于脱碳五塔预热后的二段反应出料和未进行换热的部分混合,送往二段后冷器。
通过上述几个方面的优化后,本实用新型所述的装置所实现的节能效果,主要体现在以下几个方面:
1)增加脱碳九塔中间再沸器后,脱碳九塔塔釜再沸器热负荷将降低10~15%左右,由此可节约中压蒸气的消耗量10~15%。
2)对于常规的裂解汽油中心馏分方法,二段进出料换热器热介质出口物料通常直接送往二段后冷器冷却;根据本实用新型所述的方法,二段进出料换热器热侧出口的物料将分为两部分,一部分送往脱碳五塔进料预热器作为该预热器的加热介质,之后这部分物料与另一部分未经脱碳五塔进料预热器换热的物料混合后送入二段后冷器进一步冷却;由于增加了脱碳五塔预热器的换热过程,二段后冷器的进料温度将降低,由此二段后冷器的热负荷将降低40-50%,冷却介质消耗也将相应下降40-50%。
3)作为现有技术的裂解汽油中心馏分装置,其稳定塔塔釜出料通常历经稳定塔进出料换热器和加氢汽油产品冷却器的两次换热后送加氢汽油产品储罐。根据本实用新型所述的方法,稳定塔塔釜出料需要先后经过脱碳九塔中间再沸器、稳定塔进出料换热器和加氢汽油产品冷却器三次换热后再送往加氢汽油产品储罐。由于增加了脱碳九塔中间再沸器的换热,在稳定塔进出料换热器热负荷不变的前提下,加氢汽油产品冷却器的热介质入口温度将降低40℃左右,由此导致加氢汽油冷却器的热负荷减低70%以上,冷却介质消耗也将相应下降70%以上。
化工领域常用的冷却介质可以是循环冷却水或空气,但一般裂解汽油加氢装置在这两个换热器上使用的冷却介质都是循环冷却水。
附图说明
图1现有技术裂解汽油中心馏分加氢传统装置示意图
图2本实用新型的裂解汽油中心馏分加氢装置示意图
附图标记说明
1)设备代号说明
  设备代号   设备名称
  C-710   脱碳五塔
  C-720   脱碳九塔
  C-770   稳定塔
  D-700   进料缓冲罐
  D-710   脱碳五塔回流罐
  D-720   脱碳九塔回流罐
  D-750   一段进料缓冲罐
  D-751   一段加氢热分离罐
  D-752   一段加氢冷分离罐
  D-760   二段加氢分离罐
  D-761   二段循环氢压缩机吸入罐
  D-770   稳定塔回流罐
  E-700   脱碳五塔进料预热器
  E-710   脱碳五塔塔顶冷凝器
  E-715   脱碳五塔塔釜再沸器
  E-720   脱碳九塔塔顶冷凝器
  E-721   脱碳九塔尾气冷凝器
  E-725   脱碳九塔塔釜再沸器
  E-726   脱碳九塔中间再沸器
  E-728   碳九产品冷却器
  E-751   一段循环冷却器
  E-752   一段热分离冷凝器
  E-760   二段进出料换热器
  E-761   二段后冷器
  E-770   稳定塔塔顶冷凝器
  E-775   稳定塔塔釜再沸器
  E-776   稳定塔进出料换热器
  E-777   加氢汽油冷却器
  F-760   二段进料加热炉
  K-760   二段循环氢压缩机
  P-700   脱碳五塔进料泵
  P-715   脱碳五塔回流泵
  P-720   脱碳九塔回流泵
  P-725   脱碳九塔塔釜泵
  P-750   一段加氢进料泵
  P-751   一段加氢循环/二段加氢进料泵
  P-770   稳定塔回流泵
  P-775   加氢汽油产品泵
  PA-720   脱碳九塔真空系统
  R-750   一段加氢反应器
  R-760   二段加氢反应器
  SR-700   粗汽油进料过滤器
  TK-700   粗裂解汽油储罐
  TK-710   碳五产品储罐
  TK-720   碳九产品储罐
  TK-770   加氢汽油产品储罐
2)物流代号说明
  物流代号   物流名称
  1   粗裂解汽油
  2   氢气
  3   加氢汽油
  4   C5产品
 5   C9产品
 6   高压尾气
 7   低压尾气
 8   真空尾气
具体实施方式
本实用新型的裂解汽油中心馏分加氢装置参见附图2,简述如下:
a)脱碳五塔C-710系统
自粗裂解汽油储罐TK-700来的粗裂解汽油,先经粗汽油进料过滤器SR-700过滤和进料缓冲罐D-700脱水后,再经脱碳五塔进料泵P-700在脱碳五塔进料预热器E-700与稳定塔塔釜来的加氢汽油换热后进入脱碳五塔C-710中部。脱碳五塔塔顶气相为C5馏分,经脱碳五塔塔顶冷凝器E-710冷凝至43℃后,进入脱碳五塔回流罐D-710,再经脱碳五塔回流泵P-710一部分作为回流返回脱碳五塔C-710塔顶;另一部分作为C5馏分副产品送往碳五产品储罐TK-710。脱碳五塔C-710塔釜液相为C6以上馏分,送入脱碳九塔C-720。脱碳五塔C-710塔釜设脱碳五塔塔釜再沸器E-715,其加热介质为中压脱过热蒸汽。
b)脱碳九塔系统
脱碳九塔C-720为负压操作,塔顶气相为C6~C8馏分,经脱碳九塔塔顶冷凝器E-720冷凝后进入脱碳九塔回流罐D-720。脱碳九塔回流罐D-720罐液相用脱碳九塔回流泵P-720一部分作为回流返回脱碳九塔C-720塔顶,另一部分送至一段进料缓冲罐D-750。脱碳九塔回流罐D-720罐顶气相经脱碳九塔尾气冷凝器E-721冷凝,回收的凝液送脱碳九塔回流罐D-720;脱碳九塔尾气冷凝器E-721冷凝后的不凝气和少量烃类由脱碳九塔抽真空系统PA-720抽出送真空尾气管网。脱碳九塔C-720塔釜物料为C9及以上馏分,经脱碳九塔釜泵P-725送往碳九产品冷却器E-728冷却至43℃,作为不加氢C9副产品送往碳九产品储罐。脱碳九塔C-720塔釜设塔釜脱碳九塔再沸器E-725,其加热介质为中压脱过热蒸汽。此外,脱碳九塔C-720提馏段上部设置脱碳九塔中间再沸器E-726,其加热介质为稳定塔C-770塔釜采出并经加氢汽油产品泵P-775加压后的加氢汽油。
c)一段加氢系统
自脱碳九塔回流泵P-720来的C6~C8馏分进入一段进料缓冲罐D-750,经一段加氢进料泵P-750,与一段循环冷却器E-751来的一段加氢循环物料混合后由一段加氢反应器R-750顶部进入。氢气从顶部进入一段加氢反应器R-750。
一段加氢反应器R-750出料先进入一段加氢热分离罐D-751进行气液分离。一段加氢热分离罐D-751罐顶气相经一段热分离冷凝器E-752冷凝至43℃后进入一段加氢冷分离罐D-752进行气液分离。一段加氢冷分离罐D-752罐顶的气体送往二段加氢系统的压缩机吸入罐D-761,作为二段加氢提供补充氢气。一段加氢冷分离罐D-752罐底的液相返回一段加氢热分离罐D-751罐。一段加氢热分离罐D-751罐底液相经一段加氢循环/二段加氢进料泵P-751一部分作为一段加氢循环物料送回一段加氢反应器R-750,另一部分送往二段进出料换热器E-760,作为二段加氢系统的进料。
d)二段加氢系统
从一段加氢循环/二段加氢进料泵P-751来的一段加氢后的C6-C8馏分,与二段循环氢压缩机K-760来的循环氢混合后,经二段进出料换热器E-760预热,再经二段进料加热炉F-760加热至二段加氢反应器R-760需要的入口温度,一般为220~300℃。反应物料由二段加氢反应器R-760顶部进入。
二段加氢反应器R-760出料经二段进出料换热器E-760后,送往脱碳五塔进料预热器E-700,经脱碳五塔进料预热器E-700换热后和另一部分二段加氢反应出料合并进入二段后冷器E-761冷却至43℃,送至二段加氢分离罐D-760进行气液分离。二段加氢分离罐D-760分离出的气相大部分进入压缩机吸入罐D-761,少部分气作为高压尾气排往高压尾气管网。二段循环氢压缩机吸入罐D-761的气相进入二段循环氢压缩机K-760,二段循环氢压缩机出口的气体与一段加氢循环/二段加氢进料泵P-751来的一段加氢后的C6-C8馏分混合作为二段加氢反应器的进料。
二段加氢分离罐D-760分离出的液相出料经稳定塔进出料换热器E-776与稳定塔C-770釜出料换热,然后送往稳定塔C-770。
e)稳定塔系统
二段加氢分离罐D-760的液相经稳定塔进出料换热器E-776预热后,送入稳定塔C-770的中部。经稳定塔C-770处理后,塔顶气相经稳定塔塔顶冷凝器E-770冷凝后,送入稳定塔回流罐D-770。稳定塔回流罐D-770的气相含硫化氢,送往低压尾气管网;稳定塔回流罐D-770的液相经稳定塔回流泵P-770送回稳定塔C-770塔顶。
稳定塔C-770塔釜采出的加氢汽油产品经加氢汽油产品泵P-775升压后,送至脱碳九塔中间再沸器E-726作为该中间再沸器的加热介质,再送至稳定塔进出料换热器E-776,对稳定塔C-770进料进行预热,最后再经过加氢汽油冷却器E-777冷却至加氢汽油产品要求的储存温度后送往加氢汽油产品储罐TK-770。
实施例
下面结合实施例,进一步说明本实用新型。
本实用新型所述的裂解汽油中心馏分加氢装置采用的工艺设计条件同现有常规裂解汽油加氢技术基本一致,其中核心设备的工艺操作条件如下:
脱碳五塔C-710的操作条件
Figure GSA00000092054300141
脱碳九塔C-720的操作条件
Figure GSA00000092054300142
一段加氢反应器R-750的操作条件
Figure GSA00000092054300151
二段加氢反应器R-760的操作条件
Figure GSA00000092054300152
稳定塔C-770的操作条件
Figure GSA00000092054300153
裂解汽油加氢的原料是乙烯副产的粗裂解汽油,由于乙烯装置的原料波动和操作波动往往会引起粗裂解汽油组成和产量的较大波动。因此,通常需要根据乙烯装置的处理规模合理设定裂解汽油加氢的装置规模。目前新建乙烯装置的规模主要有80万吨/年、100万吨/年和120万吨/年,与其配套的裂解汽油加氢装置的工程规模分别为:55万吨/年、65万吨/年和80万吨/年。
由于裂解汽油组成随乙烯原料和操作条件不同而不同,在此以下述典型粗裂解汽油组成为例说明:
C5 -:21.5wt%
C6-C8:66.1wt%
C9 +:12.4wt%
在上述组成条件下,按照附图1和附图2所示两种装置流程,分别对55万吨/年、65万吨/年和80万吨/年三种规模的裂解汽油加氢装置进行模拟,根据模拟结果两种流程的能耗变化主要体现在二段后冷器和加氢汽油冷却器的冷却水消耗量减少,以及脱碳九塔塔釜再沸器中压蒸汽消耗量的减少,具体如下述表1、表2和表3所示。
其中,
中压蒸气按1.6MPaG饱和蒸汽计算;
冷却水规格按回水0.2MPaG,43℃;供水0.45MPaG,33℃计。
表1  55万吨/年裂解汽油中心馏分加氢装置
采用两种装置流程的蒸汽及水的消耗变化
  1.   中压蒸气消耗量   传统装置   本实用新型装置   消耗减少量   消耗减少率
  单位   t/h   t/h   t/h   %
  脱碳九塔塔釜再沸器   17.4   15.3   2.1   12.1
  装置总消耗   31.5   29.4   2.1   6.7
  2.   冷却水耗量   传统装置   本实用新型装置   消耗减少量   消耗减少率
  单位   t/h   t/h   t/h   %
  二段后冷器   393.6   206.0   187.6   47.7
  加氢汽油冷却器   83.6   31.4   52.2   62.4
  装置总消耗   3500   3260.2   239.8   6.8
表2 65万吨/年裂解汽油中心加氢装置
采用两种装置的蒸汽及水的消耗变化
  1.   中压蒸气消耗量   传统装置   本实用新型装置   消耗减少量   消耗减少率
  单位   t/h   t/h   t/h   %
  脱碳九塔塔釜再沸器   20.5   18.0   2.4   11.7
  装置总消耗   38   35.5   2.5   6.6
  2.   冷却水耗量   传统装置   本实用新型装置   消耗减少量   消耗减少率
  单位   t/h   t/h   t/h   %
  二段后冷器   463.5   241.9   221.6   47.8
  加氢汽油冷却器   149.4   37.0   112.4   75.2
  装置总消耗   5000.0   4656.0   344.0   6.9
表3 80万吨/年裂解汽油中心加氢装置
采用两种装置的蒸汽及水的消耗变化
  1.   中压蒸气消耗量   传统装置   本实用新型装置   消耗减少量   消耗减少率
  单位   t/h   t/h   t/h   %
  脱碳九塔塔釜再沸器   25.3   22.2   3.1   12.2
  装置总消耗   47.0   43.9   3.1   6.6
  2.   冷却水耗量   传统流程   本实用新型流程   消耗减少量   消耗减少率
  单位   t/h   t/h   t/h   %
  二段后冷器   571.6   298.8   272.8   47.7
  加氢汽油冷却器   183.9   45.6   138.3   75.2
  装置总消耗   6000.0   4656.0   411.1   6.8
从表1~表3的对比结果可以看出,在不同装置规模下,本实用新型所述的裂解汽油中心馏分加氢装置的总的中压蒸汽和冷却水的消耗都可以降低6%以上。

Claims (3)

1.一种裂解汽油中心馏分加氢装置,所述的装置包括a)脱碳五塔(C-710)系统、b)脱碳九塔(C-720)系统、c)一段加氢反应器(R-750)系统、d)二段加氢反应器(R-760)系统、e)稳定塔(C-770)系统;其特征在于:
所述脱碳九塔(C-720)除在脱碳九塔(C-720)塔釜设置脱碳九塔塔釜再沸器(E-725)外,还在脱碳九塔(C-720)提馏段上部设置脱碳九塔中间再沸器(E-726);
所述脱碳九塔中间再沸器(E-726)的热介质入口与加氢汽油产品泵(P-775)出口连接;加氢汽油产品泵(P-775)入口经管线与稳定塔(C-770)塔釜出口连接;
所述脱碳九塔中间再沸器(E-726)的热介质出口与稳定塔进出料换热器(E-776)热介质进口连接。
2.如权利要求1所述的裂解汽油中心馏分加氢装置,其特征在于:
所述脱碳五塔(C-710)的粗裂解汽油进料经管线由脱碳五塔进料预热器(E-700)冷介质出口连接至脱碳五塔(C-710)中部进料口;
所述脱碳五塔进料预热器(E-700)的热介质入口与二段进出料换热器(E-760)的加热介质出口连接;
所述脱碳五塔进料预热器(E-700)的热介质的出口与二段后冷器(E-761)热介质进口连接;
所述脱碳五塔进料预热器(E-700)的热介质进、出口管线由管线连通。
3.如权利要求1或2所述的裂解汽油中心馏分加氢装置,其特征在于:
所述的装置包括下述设备:
a)脱碳五塔(C-710)系统
粗裂解汽油原料由粗裂解汽油储罐(TK-700)经管线依次连接下述设备:粗汽油进料过滤器(SR-700)、进料缓冲罐(D-700)、脱碳五塔进料泵(P-700);脱碳五塔进料泵(P-700)出口经管线连接至脱碳五塔进料预热器(E-700)冷介质入口,脱碳五塔进料预热器(E-700)冷介质出口经管线连接至脱碳五塔(C-710)中部进料口;
脱碳五塔(C-710)塔顶气相出口经管线依次连接下述设备:脱碳五塔塔顶冷凝器(E-710)、脱碳五塔回流罐(D-710)、脱碳五塔回流泵(P-715);
脱碳五塔回流泵(P-715)出口经管线分别连接脱碳五塔(C-710)顶部回流口和碳五产品储罐(TK-710)进料口;
脱碳五塔(C-710)塔釜出料口经管线连接至脱碳九塔(C-720)中部进料口;
脱碳五塔(C-710)的塔釜再沸器采出口经管线连接至脱碳五塔塔釜再沸器(E-715)冷介质进口,脱碳五塔塔釜再沸器(E-715)冷介质出口经管线连接至脱碳五塔(C-710)的塔釜再沸器返回口;
b)脱碳九塔(C-720)系统
脱碳九塔(C-720)塔顶气相出口经管线依次连接下述设备:脱碳九塔塔顶冷凝器(E-720)、脱碳九塔回流罐(D-720);
脱碳九塔回流罐(D-720)罐底液相出口经管线连接至脱碳九塔回流泵(P-720)入口;脱碳九塔回流泵(P-720)出口经管线分别连接脱碳九塔(C-720)顶部回流口和一段进料缓冲罐(D-750)进料口;
脱碳九塔回流罐(D-720)罐顶气相管线连接脱碳九塔尾气冷凝器(E-721)热介质进口;脱碳九塔尾气冷凝器(E-721)热介质液相出口经管线连接脱碳九塔回流罐(D-720),脱碳九塔尾气冷凝器(E-721)热介质气相出口经管线连接脱碳九塔真空系统(PA-720)的入口;脱碳九塔真空系统(PA-720)的出口经管线连接至真空尾气管网;
脱碳九塔(C-720)塔釜出料口经管线依次连接下述设备:脱碳九塔塔釜泵(P-725)、碳九产品冷却器(E-728)、碳九产品储罐(TK-720);
脱碳九塔(C-720)的塔釜再沸器采出口经管线连接至脱碳九塔塔釜再沸器(E-725)冷介质进口,脱碳九塔塔釜再沸器(E-725)冷介质出口经管线连接至脱碳九塔(C-720)的塔釜再沸器返回口;
脱碳九塔(C-720)的中间再沸器采出口经管线连接至脱碳九塔中间再沸器(E-726)冷介质进口,脱碳九塔中间再沸器(E-726)冷介质出口经管线连接至脱碳九塔(C-720)的中间再沸器返回口;
c)一段加氢反应器(R-750)系统
一段进料缓冲罐(D-750)底部出口经管线连接至一段加氢进料泵(P-750)入口;一段加氢进料泵(P-750)出口经管线连接至一段循环冷却器(E-751)热介质出口与一段加氢反应器(R-750)间的连接管线;
氢气管线由氢气管网经管线接至一段加氢反应器(R-750)顶部;
一段加氢反应器(R-750)底部出口经管线连接一段加氢热分离罐(D-751);一段加氢热分离罐(D-751)罐顶气相出口经管线连接至一段热分离冷凝器(E-752)热介质入口,一段热分离冷凝器(E-752)热介质出口经管线连接至一段加氢冷分离罐(D-752)入口;一段加氢热分离罐(D-751)罐底液相出口经管线连接一段加氢循环/二段加氢进料泵(P-751)入口;一段加氢循环/二段加氢进料泵(P-751)出口经管线分别连接一段循环冷却器(E-751)热介质入口和二段进出料换热器(E-760)冷介质进口;一段循环冷却器(E-751)热介质出口经管线连接至一段加氢反应器(R-750)顶部;
一段加氢冷分离罐(D-752)顶部气相出口经管线连接至二段循环氢压缩机吸入罐(D-761);一段加氢冷分离罐(D-752)罐底液相出口经管线连接一段加氢热分离罐(D-751);
d)二段加氢反应器(R-760)系统
二段进出料换热器(E-760)冷介质出口经管线连接至二段进料加热炉(F-760)冷介质进口,二段进料加热炉(F-760)冷介质出口经管线连接至二段加氢反应器(R-760)顶部进口;
二段加氢反应器(R-760)底部出口经管线连接至二段进出料换热器(E-760)热介质入口;二段进出料换热器(E-760)热介质出口经管线分别连接至脱碳五塔进料预热器(E-700)热介质入口和二段后冷凝器(E-761)热介质入口;脱碳五塔进料预热器(E-700)热介质出口连接至二段进出料换热器(E-760)与二段后冷凝器(E-761)间的连接管线;二段后冷凝器(E-761)热介质出口连接至二段加氢分离罐(D-760)进口;
二段加氢分离罐(D-760)顶部的气相出口经管线连接至二段循环氢压缩机吸入罐(D-761);二段循环氢压缩机吸入罐(D-761)顶部气相出口经管线连接至二段循环氢压缩机(K-760)入口;二段循环氢压缩机(K-760)出口经管线连接至一段加氢循环/二段进料泵(P-751)与二段进出料换热器(E-760)间的连接管线;
二段加氢分离罐(D-760)底部液相出口经管线连接至稳定塔进出料换热器(E-776)冷介质进口;
e)稳定塔系统
稳定塔进出料换热器(E-776)冷介质出口经管线连接至稳定塔(C-770)中部进料口;
稳定塔(C-770)塔顶管线依次连接:稳定塔塔顶冷凝器(E-770)、稳定塔回流罐(D-770);稳定塔回流罐(D-770)罐底液相出口经管线连接至稳定塔回流泵(P-770)入口;稳定塔回流泵(P-770)出口经管线连接至稳定塔(C-770)塔顶回流口;稳定塔回流罐(D-770)罐顶气相出口经管线连接至低压尾气管网;
稳定塔(C-770)塔釜出料口经管线连接至加氢汽油产品泵(P-775)入口;加氢汽油产品泵(P-775)出口经管线连接至脱碳九塔中间再沸器(E-726)热介质入口;脱碳九塔中间再沸器(E-726)热介质出口经管线连接至稳定塔进出料换热器(E-776)热介质入口;稳定塔进出料换热器(E-776)热介质出口经管线连接至加氢汽油冷却器(E-777)热介质入口;加氢汽油冷却器(E-777)热介质出口经管线连接至加氢汽油产品储罐(TK-770);
稳定塔(C-770)塔釜再沸器采出口经管线连接至稳定塔塔釜再沸器(E-775)冷介质进口,稳定塔塔釜再沸器(E-775)冷介质出口经管线连接至稳定塔(C-770)塔釜再沸器返回口。
CN2010201823747U 2010-05-07 2010-05-07 一种裂解汽油中心馏分加氢装置 Expired - Lifetime CN201686666U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010201823747U CN201686666U (zh) 2010-05-07 2010-05-07 一种裂解汽油中心馏分加氢装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010201823747U CN201686666U (zh) 2010-05-07 2010-05-07 一种裂解汽油中心馏分加氢装置

Publications (1)

Publication Number Publication Date
CN201686666U true CN201686666U (zh) 2010-12-29

Family

ID=43374952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010201823747U Expired - Lifetime CN201686666U (zh) 2010-05-07 2010-05-07 一种裂解汽油中心馏分加氢装置

Country Status (1)

Country Link
CN (1) CN201686666U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234540A (zh) * 2010-05-07 2011-11-09 中国石油化工集团公司 一种裂解汽油中心馏分加氢方法和装置
CN105637069A (zh) * 2013-10-25 2016-06-01 环球油品公司 裂解汽油处理方法
CN110325494A (zh) * 2016-12-28 2019-10-11 环球油品公司 烷基化工艺中的热减少

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234540A (zh) * 2010-05-07 2011-11-09 中国石油化工集团公司 一种裂解汽油中心馏分加氢方法和装置
CN102234540B (zh) * 2010-05-07 2013-09-11 中国石油化工集团公司 一种裂解汽油中心馏分加氢方法和装置
CN105637069A (zh) * 2013-10-25 2016-06-01 环球油品公司 裂解汽油处理方法
CN110325494A (zh) * 2016-12-28 2019-10-11 环球油品公司 烷基化工艺中的热减少
CN110325494B (zh) * 2016-12-28 2022-08-16 环球油品公司 烷基化工艺中的热减少

Similar Documents

Publication Publication Date Title
CN102234541B (zh) 一种裂解汽油全馏分加氢节能方法和装置
CN102234540B (zh) 一种裂解汽油中心馏分加氢方法和装置
CN104692995A (zh) 一种从粗苯中制取苯、甲苯以及二甲苯的工艺
CN100510021C (zh) 加氢反应流出物分离流程
CN115317945B (zh) 烷基化反应产物两塔热耦合与热泵组合分离工艺及分离装置
CN205740904U (zh) 石脑油加氢精制低压脱氧及进料换热优化的系统
CN201686667U (zh) 一种裂解汽油全馏分加氢装置
CN100415854C (zh) 一种催化裂化油浆拔头工艺及工业装置
CN201686666U (zh) 一种裂解汽油中心馏分加氢装置
CN105647581A (zh) 催化汽油加氢方法
CN112266799A (zh) 一种实现吸收稳定系统能耗降低的延迟焦化方法
CN113563917A (zh) 一种硫酸烷基化反应产物的分离工艺及分离装置
CN105670689A (zh) 一种航煤加氢的生产工艺及系统
CN210560278U (zh) 一种加氢裂化和加氢脱硫联合装置
CN209974661U (zh) 余热回收装置及焦化粗苯加氢系统
CN105087065B (zh) 一种裂解汽油中心馏分加氢装置及方法
CN204369817U (zh) 一种催化汽油加氢系统
CN101091835A (zh) 一种并联换热的抽提蒸馏方法
CN105331389A (zh) 一种重整热量回收利用工艺及装置
CN205188215U (zh) 一种重整热量回收利用装置
CN107541235B (zh) 一种原油常压蒸馏塔塔顶油气的两段式冷凝、分离方法及分离系统
CN216062073U (zh) 一种硫酸烷基化反应产物的分离装置
CN200974829Y (zh) 一种辅助分馏塔
CN111334325B (zh) 将工业萘系统改造为洗油提纯系统的方法
CN1986741A (zh) 一种辅助分馏塔及其催化汽油降烯烃改质方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 100728 Beijing, Chaoyangmen, North Street, No. 22, No.

Co-patentee after: Sinopec Engineering Incorporation

Patentee after: China Petrochemical Group Corp.

Address before: 100728 Beijing, Chaoyangmen, North Street, No. 22, No.

Co-patentee before: Engrg Construction Co., SINOPEC

Patentee before: China Petrochemical Group Corp.

ASS Succession or assignment of patent right

Free format text: FORMER OWNER: SINOPEC ENGINEERING INCORPORATION

Effective date: 20130123

Owner name: SINOPEC ENGINEERING INCORPORATION

Free format text: FORMER OWNER: SINOPEC GROUP

Effective date: 20130123

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 100728 CHAOYANG, BEIJING TO: 100101 CHAOYANG, BEIJING

TR01 Transfer of patent right

Effective date of registration: 20130123

Address after: Anhui Beili Anyuan 21 No. 100101 Beijing Chaoyang District City

Patentee after: Sinopec Engineering Incorporation

Address before: 100728 Beijing, Chaoyangmen, North Street, No. 22, No.

Patentee before: China Petrochemical Group Corp.

Patentee before: Sinopec Engineering Incorporation

AV01 Patent right actively abandoned

Granted publication date: 20101229

Effective date of abandoning: 20130911

RGAV Abandon patent right to avoid regrant