CN201463833U - Capacitive angle sensor - Google Patents
Capacitive angle sensor Download PDFInfo
- Publication number
- CN201463833U CN201463833U CN2009201097102U CN200920109710U CN201463833U CN 201463833 U CN201463833 U CN 201463833U CN 2009201097102 U CN2009201097102 U CN 2009201097102U CN 200920109710 U CN200920109710 U CN 200920109710U CN 201463833 U CN201463833 U CN 201463833U
- Authority
- CN
- China
- Prior art keywords
- excitation signal
- plate
- pole plate
- angle sensor
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005284 excitation Effects 0.000 claims abstract description 34
- 239000000919 ceramic Substances 0.000 claims abstract description 20
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 8
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 8
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 8
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 abstract description 16
- 230000035945 sensitivity Effects 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及一种电容式角度传感器,特别是一种高灵敏度低温漂电容式角度传感器,可作为工业级温度(-40℃~+85℃)环境下的无接触有限角测角传感器,摆动电机的角度传感器。The utility model relates to a capacitive angle sensor, in particular to a high-sensitivity low-temperature drift capacitive angle sensor, which can be used as a non-contact limited-angle angle measuring sensor in an industrial-grade temperature (-40°C to +85°C) environment. Angle sensor for the motor.
背景技术Background technique
目前,国内外采用的电容式角度传感器分为变间隙,变面积,变介质等,同时在还采用差分式结构,但均会有温漂现象,由于电容本身的特点,在高温条件下极板材料的变形,极板间隙的改变,极板间有效面积的改变,元器件固有的温度特性等,都会带来温漂。用在幀扫电机上的角度传感器,是一个随动系统,对角位置要求非常严格,要求在工业级温度范围内输入控制电压与位置反馈严格成一定比例关系,如果角度传感器出现大的温度漂移将会直接影响电机的扫描精度。At present, the capacitive angle sensors used at home and abroad are divided into variable gap, variable area, variable medium, etc. At the same time, the differential structure is also used, but there will be temperature drift phenomenon. Due to the characteristics of the capacitor itself, the polar plate under high temperature conditions The deformation of the material, the change of the gap between the plates, the change of the effective area between the plates, and the inherent temperature characteristics of the components will all bring about temperature drift. The angle sensor used on the frame scan motor is a servo system with very strict requirements on the angular position. It is required that the input control voltage and the position feedback be strictly proportional to a certain ratio within the industrial temperature range. If the angle sensor has a large temperature drift It will directly affect the scanning accuracy of the motor.
实用新型内容Utility model content
本实用新型的技术解决问题是:克服现有技术的不足,提供一种电容式角度传感器,该传感器结构简单、温漂低、灵敏度高。The technical solution of the utility model is to overcome the deficiencies of the prior art and provide a capacitive angle sensor with simple structure, low temperature drift and high sensitivity.
本实用新型的技术解决方案是:一种电容式角度传感器,包括前极板、轴、陶瓷介质、后极板、垫片,陶瓷介质固定在轴上,前极板和后极板穿过轴通过垫片保持极板间的间隙固定,并保持与陶瓷介质的间隙相同,所述的前极板为1/4扇形极板,陶瓷介质的形状与前极板的形状相同,前极板和后极板采用碳氢化合物陶瓷材料,前极板上设置电容差分调幅电路将角度传感器的输出电容进行差分转换成电压值,后极板上设置激磁信号电路为角度传感器提供激磁信号,激磁信号电路由外部自动增益控制电路提供激磁电源。The technical solution of the utility model is: a capacitive angle sensor, including a front plate, a shaft, a ceramic medium, a back plate, a gasket, the ceramic medium is fixed on the shaft, and the front plate and the back plate pass through the shaft The gap between the plates is kept fixed by the spacer, and the same gap as that of the ceramic medium is maintained. The front plate is a 1/4 fan-shaped plate, and the shape of the ceramic medium is the same as that of the front plate. The front plate and the The rear pole plate is made of hydrocarbon ceramic material, and the capacitance differential amplitude modulation circuit is set on the front pole plate to convert the output capacitance of the angle sensor into a voltage value. The excitation signal circuit is set on the rear pole plate to provide the excitation signal for the angle sensor. The excitation power is provided by the external automatic gain control circuit.
所述的前极板、后极板为RO4350B型碳氢化合物陶瓷材料。The front plate and the rear plate are made of RO4350B hydrocarbon ceramic material.
所述的后极板中激磁信号电路产生的激磁信号频率为2Mhz、峰峰值为500V。The frequency of the excitation signal generated by the excitation signal circuit in the rear pole plate is 2Mhz, and the peak-to-peak value is 500V.
所述的垫片、轴采用钛合金材料。The gasket and the shaft are made of titanium alloy.
本实用新型与现有技术相比的有益效果是:本实用新型通过采用低线胀系数的碳氢化合物陶瓷极板材料,有效减小了电容式角度传感器固有温度漂移,在两极板上分别设置激磁信号电路和电容差分调幅电路,简化了传感器的结构,激磁信号电路产生更高频率的激磁信号,提高了电容式角度传感器的灵敏度与角度精度,同时利用外部自动增益控制电路,使电容式角度传感器的灵敏度在高温情况下基本不变,使电容式角度传感器在工业级温度范围内从以前漂移的50角分减小到了2角分。Compared with the prior art, the utility model has the beneficial effects that: the utility model effectively reduces the inherent temperature drift of the capacitive angle sensor by adopting the hydrocarbon ceramic plate material with a low linear expansion coefficient, and the two pole plates are respectively arranged The excitation signal circuit and the capacitor differential amplitude modulation circuit simplify the structure of the sensor. The excitation signal circuit generates a higher frequency excitation signal, which improves the sensitivity and angle accuracy of the capacitive angle sensor. At the same time, the external automatic gain control circuit is used to make the capacitive angle The sensor's sensitivity remains essentially unchanged at high temperatures, reducing the capacitive angle sensor's previous drift of 50 arc minutes to 2 arc minutes over the industrial temperature range.
附图说明Description of drawings
图1为本实用新型的结构示意图;Fig. 1 is the structural representation of the utility model;
图2为本实用新型前极板的平面图;Fig. 2 is the plan view of the utility model front plate;
图3为本实用新型后极板的平面图;Fig. 3 is the plane view of the rear plate of the utility model;
图4为本实用新型电容差分调幅电路图;Fig. 4 is the utility model electric capacity difference amplitude modulation circuit diagram;
图5为本实用新型激磁信号电路图;Fig. 5 is the utility model excitation signal circuit diagram;
图6为本实用新型采用的自动增益控制电路图;Fig. 6 is the automatic gain control circuit diagram that the utility model adopts;
图7为本实用新型高低温漂移测试原理图。Fig. 7 is a schematic diagram of the high and low temperature drift test of the utility model.
具体实施方式Detailed ways
如图1所示,轴2事先安装在电机上,先将图2所示的前极板1通过两个销钉定位贴在电机的底板壳体上,然后将陶瓷介质3套在轴2上,用四个垫片5把图2所示的前极板1与图3所示的后极板4之间的间隙固定,并用螺钉固定拧紧,把外接电路控制板的信号通过DB9连接器连接传感器,构成整个测角系统,最后用顶丝将陶瓷介质3与轴2固定,并保证陶瓷介质3与两极板间的间隙d1,d2一样。其中图2所示的前极板1的形状为1/4扇形极板,陶瓷介质3的形状与图2所示的前极板1的形状、大小相同,轴2带动陶瓷介质3转动,使图1所示的电容式角度传感器的极板面积发生改变,从而使输出电容值改变即可以测量角度。该电容式角度传感器为绝缘介质分开的两个平行金属板组成的差分式平板电容器,旋转陶瓷介质3在两个定极板间形成一个介质,它的旋转导致介质的改变,电容也随之改变,再由前极板1上设置的电容差分调幅电路6对其两路电容进行容值的电压变换,然后再采用差分放大将陶瓷介质3旋转角度转换为电压量,由差分放大两路信号与基准电压形成一个自动增益控制电路为后极板4上的激磁信号电路7提供激磁电源。As shown in Figure 1, the
目前,国内极板一般采用低温度线胀系数的陶瓷材料,或者石英材料,由于本传感器的后极板4上还带有激磁信号电路7,前极板1上设置有电容差分调幅电路6,所以前、后极板材料采用低介电常数、低线胀系数的高频复合陶瓷材料,本实用新型主要采用RO4350B型碳氢化合物陶瓷材料。At present, domestic pole plates generally adopt ceramic materials with low temperature linear expansion coefficients, or quartz materials. Since the
本实用新型在前极板1上设置电容差分调幅电路6,如图4所示,电路由四个二极管D1、D2、D3、D4和电容C1、C2组成,差分电容S1通过正接二极管D1或D2和C1组成的整流电路转转成电压信号V1,差分电容S2通过正接二极管D3或D4和C2组成的整流电路转转成电压信号V2,其中电容C1、C2起滤波作用。The utility model is provided with a capacitor differential
本实用新型在后极板4上设置激磁信号电路7,如图5所示,电路由电阻R10、R11、三极管Q3、Q4以及罐型磁芯变压器JP2组成,该电路可以通过罐型磁芯变压器JP2输出激磁振荡信号,该电路采用自激推挽式产生高频交流信号,通过改变变压器JP2磁芯电感改变激磁频率,由于容抗随着频率升高,容抗减小,输出电压增大,传感器灵敏度的提高依靠传感器激磁信号的频率,所以提高激磁频率也就意味着提高传感器的灵敏度,高变压比将交流信号峰峰值放大到几百伏,这样的信号在两路差分电容极板上感应出峰峰值几伏的同频率交流信号,本实用新型激磁信号电路产生的激磁信号频率为2Mhz、峰峰值为500V。The utility model is provided with an
图5所示的激磁信号电路7的输入电压AGC由如图6所示的AGC电路输出,AGC电路由可变电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、可变电阻R6、电阻R7、电阻R8、电阻R9、由二极管D5、电容C3和运算放大器LM324组成的反向比例放大电路以及三极管Q1组成,可变电阻R1的两端接±5伏电压,电阻R7的一端接-5伏电压,另一端连接放大器LM324的伏输入端、电阻R2、电阻R3、电阻R4、电阻R5、电容C3以及二极管D5的正极,三极管的集电极接正15伏电压,放大器LM324的正输入端接地.提高本实用新型的灵敏度是降低温漂的一种重要手段,只有灵敏度高了电容才能敏感微小变化,采用自动增益控制电路(即AGC)对传感器的灵敏度进行校正.该电路的工作原理是:当环境温度升高时,由于极板材料的膨胀电容间隙减小,电容增大,附图4中两相调幅信号V1、V2也增大,经过低通滤波相应放大成附图6电路中的VA和VB,VA与VB和基准电压进行求和,得到的误差就减小,将误差进行积分,积分结果连接到三极管Q1的基极,三极管将此电流放大并通过电阻R9输出AGC电压给电容角度传感器做激磁电源,激磁电压变小,则两路调幅后的信号VA和VB也减小,所以AGC电路始终可以保证传感器的灵敏度不变,也就是保证VA与VB不变.The input voltage AGC of the
本实用新型的元器件采用低温漂元器件,检波二极管D1、D2、D3、D4、D5均采用阵列二极管,运算放大器LM324采用工业级的四运放,其余电阻、电容均采用温度系数为50ppm/℃以下的元器件。The components of the utility model adopt low-temperature drift components, the detection diodes D1, D2, D3, D4, and D5 all use array diodes, the operational amplifier LM324 adopts industrial-grade four-operation amplifiers, and the remaining resistors and capacitors all use temperature coefficients of 50ppm/ Components below ℃.
对本实用新型进行高低温漂移测试,测试原理如图7所示,将本实用新型所述的电容式角度传感器安装在帧扫电机72上并与电路控制板放入高低温箱71,将帧扫电机72上电,用激光器73发出的激光光束透过高低温箱的玻璃74打到电机负载镜片75上,并反射到对面的坐标纸76上。在常温通电5分钟后,用精密直流稳流器调节给定电压值U1(该试验中给定±5V,±7V,±9V),分别在坐标纸76上做出这6个电压值相应的刻线标记,标记完关机。然后先高温+60℃,保温1h后再用精密直流稳流器调节给定电压值U1(该试验中给定±5V,±7V,±9V),记录下相应的输出电压U2′(表1中引脚3)。观察光点位置,在坐标纸76上做出标记,标记完关机,此时标记的位置和常温时标记的位置有一个变化,在坐标纸上量出这个差值后除以对应的该点到镜子的距离得到漂移的弧度值,再换算成角度值记为a(a有正负号,单位为角分),a就是温度为+60℃对应输入电压的角度漂移值。带入公式|U2-U2′|×120′-a,计算出漂移位置精度(U2为常温下对应相同U1的输出电压)。在高温保温情况下,由AGC电路输出的电压一直在减小,也就是由于高温的影响电容式角度传感器灵敏度改变了,出现了漂移,AGC电路一直在对传感器的灵敏度进行校正,光点以前漂移50角分,现在漂移在2角分以内,温漂结果大大减小,也就是实现了低温漂电容式角度传感器。Carry out the high and low temperature drift test to the utility model, the test principle is shown in Figure 7, the capacitive angle sensor described in the utility model is installed on the
本实用新型未说明内容为本领域技术人员公知技术。The content not described in the utility model is the well-known technology of those skilled in the art.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201097102U CN201463833U (en) | 2009-07-03 | 2009-07-03 | Capacitive angle sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009201097102U CN201463833U (en) | 2009-07-03 | 2009-07-03 | Capacitive angle sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201463833U true CN201463833U (en) | 2010-05-12 |
Family
ID=42391184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009201097102U Expired - Lifetime CN201463833U (en) | 2009-07-03 | 2009-07-03 | Capacitive angle sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201463833U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102636193A (en) * | 2012-03-30 | 2012-08-15 | 程有信 | Duplex differential capacitor sensor |
CN114608435A (en) * | 2022-03-10 | 2022-06-10 | 天津大学 | Radial and axial clearance measurement system and method for low pressure turbine blade grate with crown |
CN115856396A (en) * | 2022-12-09 | 2023-03-28 | 珠海多创科技有限公司 | Sensing probe module, non-contact voltage measurement circuit, non-contact voltage measurement method and electronic equipment |
-
2009
- 2009-07-03 CN CN2009201097102U patent/CN201463833U/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102636193A (en) * | 2012-03-30 | 2012-08-15 | 程有信 | Duplex differential capacitor sensor |
CN114608435A (en) * | 2022-03-10 | 2022-06-10 | 天津大学 | Radial and axial clearance measurement system and method for low pressure turbine blade grate with crown |
CN114608435B (en) * | 2022-03-10 | 2023-09-26 | 天津大学 | Radial and axial clearance measurement system and method for shrouded blade comb teeth of low-pressure turbine |
CN115856396A (en) * | 2022-12-09 | 2023-03-28 | 珠海多创科技有限公司 | Sensing probe module, non-contact voltage measurement circuit, non-contact voltage measurement method and electronic equipment |
CN115856396B (en) * | 2022-12-09 | 2023-08-29 | 珠海多创科技有限公司 | Sensing probe module, non-contact voltage measurement circuit, non-contact voltage measurement method and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201463833U (en) | Capacitive angle sensor | |
CN202614920U (en) | Magnetic sensor based on giant magneto-impedance phase response | |
CN102252700B (en) | Micro-cantilever beam piezoresistive bridge type sensor detecting instrument | |
CN204789958U (en) | Magneto resistive sensor operating circuit | |
CN102075150B (en) | Photoelectric signal preconditioning amplifying circuit of auto iris for digital gastrointestinal machine | |
CN103105479A (en) | Full-automatic collecting liquid-plastic limit combined measuring system | |
CN112902826B (en) | Lever type surface profile measuring sensor | |
CN205748257U (en) | A kind of portable two metallic object clearance meters | |
CN204514265U (en) | A kind of displacement detecting circuit based on transformer | |
CN204964074U (en) | Single scale intergration pressure sensor signal modulate circuit | |
CN104515944B (en) | PID (proportion integration differentiation) feedback based predistortion correction method and LED (light emitting diode) junction temperature measurement method | |
CN203224306U (en) | Single-chip microcomputer control-based intelligent flat-panel acquisition system for thermal electromotive force | |
CN115857588A (en) | A SERF atomic magnetometer gas chamber temperature control system and method, equipment and medium | |
CN110207731A (en) | A kind of novel position encoder | |
CN102636108A (en) | High-precision angular displacement sensor | |
CN115200732B (en) | Compensation type RTD measuring circuit of vehicle charging module | |
CN102520375B (en) | Fluxgate magnetometer detection circuit and method for improving accuracy thereof | |
CN103489357A (en) | Control circuit of magnetic suspension experimental setup | |
CN104568207A (en) | Temperature signal acquiring device for vehicle radiator | |
CN206057428U (en) | A kind of digital galvanometer for microwave waveguide measuring system | |
CN203275348U (en) | Sensor integrated with adjustable self-adaptive pre-amplifier | |
CN113091963B (en) | Optical pressure measuring device | |
CN2596340Y (en) | Infrared temperature measurement sensor device based on software compensation | |
CN209230839U (en) | A kind of pressure sensor digital compensation device | |
CN204156848U (en) | Device is sent in a kind of d. c. voltage signal change |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20100512 |