CN201108798Y - A device for removing volatile organic pollutants - Google Patents
A device for removing volatile organic pollutants Download PDFInfo
- Publication number
- CN201108798Y CN201108798Y CNU2007201901922U CN200720190192U CN201108798Y CN 201108798 Y CN201108798 Y CN 201108798Y CN U2007201901922 U CNU2007201901922 U CN U2007201901922U CN 200720190192 U CN200720190192 U CN 200720190192U CN 201108798 Y CN201108798 Y CN 201108798Y
- Authority
- CN
- China
- Prior art keywords
- reactor
- filler
- gas
- volatile organic
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002957 persistent organic pollutant Substances 0.000 title claims abstract description 4
- 239000000945 filler Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 19
- 238000009413 insulation Methods 0.000 claims 1
- 239000003344 environmental pollutant Substances 0.000 abstract description 15
- 231100000719 pollutant Toxicity 0.000 abstract description 15
- 230000005684 electric field Effects 0.000 abstract description 13
- 238000005265 energy consumption Methods 0.000 abstract description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 239000012855 volatile organic compound Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 6
- 235000010288 sodium nitrite Nutrition 0.000 description 5
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 4
- 229910002113 barium titanate Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003933 environmental pollution control Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 231100000378 teratogenic Toxicity 0.000 description 1
- 230000003390 teratogenic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Landscapes
- Treating Waste Gases (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种挥发性有机污染物去除装置属于气体污染物处理技术领域。该装置包括气体进口(1)、反应器(2)、电源(3)、气体出口(4),其特征在于,还包括反应器(2)两端的绝缘片(5)、反应器中心的内电极(6)、反应器外管缠有的外电极(7),反应器中的填料(8),所述的填料为涂有铁电体材料的拉西环,拉西环两侧的孔朝向反应器的进口和出口均匀放置于反应器中。当电场强度达到一定值后,填料发生自发极化,本实用新型可使反应器在保持污染物去除率的前提下降低能耗,且结构简单,适用性强。
A device for removing volatile organic pollutants belongs to the technical field of gas pollutant treatment. The device includes a gas inlet (1), a reactor (2), a power supply (3), and a gas outlet (4). It is characterized in that it also includes insulating sheets (5) at both ends of the reactor (2), and an inner Electrode (6), the outer electrode (7) wrapped around the outer tube of the reactor, the filler (8) in the reactor, the filler is a Raschig ring coated with a ferroelectric material, and the holes on both sides of the Raschig ring The inlet and outlet towards the reactor are evenly placed in the reactor. When the electric field intensity reaches a certain value, the filler will spontaneously polarize. The utility model can reduce the energy consumption of the reactor under the premise of maintaining the pollutant removal rate, and has a simple structure and strong applicability.
Description
技术领域 technical field
本实用新型属于气体污染物处理技术领域。The utility model belongs to the technical field of gas pollutant treatment.
背景技术 Background technique
挥发性有机物(volatile organic compounds,简称VOCs)是一类有机化合物的统称,在常温下它们的蒸发速率大,易挥发。它是指室温下饱和蒸气压超过70.91Pa或沸点小于260℃的有机物,是石油、化工、制药、印刷、建材、喷涂等行业排放的最常见的污染物。VOCs的危害主要有以下几个方面:(1)大多数VOCs有异味且有毒,VOCs中的许多物质有致癌、致畸、致突变性,这些物质干扰人体内分泌系统,具有遗传毒性及引起“雌性化”的严重后果,对环境安全和人类生存繁衍构成威胁;(2)在光线的照射下,许多VOCs很容易与一些氧化剂发生光化学反应,生成光化学烟雾,危害人体健康,影响农作物生长;(3)某些卤代烃可能会导致臭氧层的破坏,如氯氟碳化物(CFCs)和氯氟烃;(4)很多VOCs属于易燃、易爆类化合物,给企业生产造成较大隐患。Volatile organic compounds (VOCs) are a general term for a class of organic compounds, which have a high evaporation rate and are volatile at room temperature. It refers to organic matter with a saturated vapor pressure exceeding 70.91Pa or a boiling point less than 260°C at room temperature. It is the most common pollutant emitted by industries such as petroleum, chemical, pharmaceutical, printing, building materials, and spraying. The hazards of VOCs mainly include the following aspects: (1) Most VOCs are odorous and toxic. Many substances in VOCs are carcinogenic, teratogenic, and mutagenic. (2) Under the irradiation of light, many VOCs can easily undergo photochemical reactions with some oxidants to generate photochemical smog, which is harmful to human health and affects the growth of crops; (3) ) Some halogenated hydrocarbons may cause damage to the ozone layer, such as chlorofluorocarbons (CFCs) and chlorofluorocarbons; (4) Many VOCs are flammable and explosive compounds, which cause great hidden dangers to the production of enterprises.
传统的VOCs处理方法有:燃烧法、吸收法、冷凝法、吸附法等。这些方法在技术上、经济上都存在一定的缺陷:或是初始投资和运行费用高,或是处理效果不理想,或是后续处理不当造成二次污染。尤其是低浓度、大气量的废气尚未找到经济有效的治理方法。在众多的环境污染治理新技术中,低温等离子体技术作为一种高效率、低能耗、使用范围广、处理量大、操作简单的环保新技术来处理有毒及难降解物质,是近年来研究的热点。专利200410014135.X公开了一种处理挥发性有机物的低温等离子体技术,通过高压放电的方法实现污染物的去除,但需要消耗一定的能量,其结构图由图1所示。专利200410014131.1公开了一种处理微生物污染物的低温等离子体技术,同样利用高压放电的方法对微生物污染物进行去除。专利200410014133.0公开了低温等离子体处理工业废气中H2S和C2S的方法,在脉冲电源作用下,在等离子体反应器中形成低温等离子体场,使H2S和C2S转化为无臭低毒的SO2。上述专利均是在高压电源作用下对污染物实现去除,在实际运行过程中消耗一定的能量。Traditional VOCs treatment methods include: combustion method, absorption method, condensation method, adsorption method, etc. These methods have certain defects in technology and economy: either the initial investment and operating costs are high, or the treatment effect is not ideal, or secondary pollution is caused by improper follow-up treatment. Especially low-concentration, high-volume waste gas has not yet found a cost-effective treatment method. Among the many new technologies for environmental pollution control, low-temperature plasma technology is an environmentally friendly new technology with high efficiency, low energy consumption, wide application range, large processing capacity, and simple operation to treat toxic and refractory substances. It has been studied in recent years. hot spot. Patent 200410014135.X discloses a low-temperature plasma technology for treating volatile organic compounds. The removal of pollutants is achieved through high-voltage discharge, but it needs to consume a certain amount of energy. The structure diagram is shown in Figure 1. Patent 200410014131.1 discloses a low-temperature plasma technology for treating microbial pollutants, which also uses high-voltage discharge to remove microbial pollutants. Patent 200410014133.0 discloses a low-temperature plasma treatment method for H 2 S and C 2 S in industrial waste gas. Under the action of a pulse power supply, a low-temperature plasma field is formed in a plasma reactor to convert H 2 S and C 2 S into free Odor and low toxicity SO 2 . The above-mentioned patents all realize the removal of pollutants under the action of high-voltage power supply, and consume a certain amount of energy in the actual operation process.
实用新型内容Utility model content
本实用新型的目的在于提供一种新型、高效、低能耗的低温等离子体VOCs处理装置。The purpose of the utility model is to provide a novel, high-efficiency, low-energy-consumption low-temperature plasma VOCs treatment device.
本实用新型是将电晕放电和介质阻挡放电相结合的反应器产生等离子体来降解有机废气。在反应器内添加有铁电体材料,利用这些材料在高电场强度下发生自发极化的特点,在保证污染物去除效率的基础之上有效降低施加能量或在一定能量的条件下有效提高污染物去除率。当外加电源施加在介电层上时,电介质填料就会极化,在每一个填料附近就会形成很强的电场,从而产生局部放电,当施加的交流电压超过了电晕产生初始电压时,反应器内就会充满大量高能电子,这些电子与污染物分子相互碰撞,从而提高污染物的处理效率。电场对不同介质的介电常数的影响是不同的。对于线性介质材料的极化强度与电场强度成正比,而介电常数与电场强度关系很小。对非线性材料,其极化强度与电场强度成非线性的关系,材料的介电常数也与电场强度成非线性关系,本实用新型中选用的铁电体材料属于非线性材料。附图2为铁电体的介电常数与电场强度的关系曲线,从图中可以看出,铁电体材料的介电常数与电场强度的关系呈非线性关系,在一定电场强度之下,铁电体材料的介电常数会发生急变,使反应器电场急剧增加,因而可有效地实现对于VOCs的降解。The utility model is a reactor that combines corona discharge and dielectric barrier discharge to generate plasma to degrade organic waste gas. Ferroelectric materials are added in the reactor, and the characteristics of spontaneous polarization of these materials under high electric field strength are used to effectively reduce the applied energy on the basis of ensuring the removal efficiency of pollutants or effectively improve the pollution under certain energy conditions. removal rate. When an external power supply is applied to the dielectric layer, the dielectric filler will be polarized, and a strong electric field will be formed near each filler, thereby generating a partial discharge. When the applied AC voltage exceeds the initial voltage generated by the corona, The reactor will be filled with a large number of high-energy electrons, which collide with pollutant molecules, thereby improving the efficiency of pollutant treatment. The influence of the electric field on the dielectric constant of different media is different. For linear dielectric materials, the polarization strength is directly proportional to the electric field strength, while the dielectric constant has little relationship with the electric field strength. For nonlinear materials, the polarization intensity has a nonlinear relationship with the electric field intensity, and the dielectric constant of the material also has a nonlinear relationship with the electric field intensity. The ferroelectric material selected in the utility model belongs to the nonlinear material. Accompanying
反应器装置结构如图3所示,包括气体进口1、反应器2、电源3、气体出口4,其特征在于,还包括反应器两端的绝缘片5、反应器中心的内电极6、反应器外管缠有的外电极7,反应器中的填料8,填料为涂有铁电体材料的拉西环,拉西环两侧的孔朝向反应器的进口和出口均匀放置于反应器中。The structure of the reactor device is shown in Figure 3, including a gas inlet 1, a
本实用新型中反应器选用的铁电体材料包括有序-无序型铁电体亚硝酸钠材料和位移性铁电体钛酸钡材料。这些材料为粉状物质,实用新型中选用陶瓷拉西环作为基质材料,将铁电体粉状材料涂敷在陶瓷拉西环表面,这些陶瓷拉西环均匀放置于反应器中,一方面可有效利用反应器空间,另一方面,拉西环两侧的孔朝向反应器的进口和出口可降低气流运行阻力以减小反应器的压降。The ferroelectric materials selected by the reactor in the utility model include order-disorder ferroelectric sodium nitrite material and displacement ferroelectric barium titanate material. These materials are powdery substances. In the utility model, ceramic Raschig rings are selected as the matrix material, and ferroelectric powdery materials are coated on the surface of the ceramic Raschig rings. These ceramic Raschig rings are evenly placed in the reactor. On the one hand, they can The space of the reactor is effectively used. On the other hand, the holes on both sides of the Raschig ring face the inlet and outlet of the reactor, which can reduce the resistance of the airflow to reduce the pressure drop of the reactor.
本实用新型所提供的挥发性有机污染物去除装置与现有装置相比不同之处是:在反应器中添加有铁电体填料,当电场强度达到一定值后,填料发生自发极化,可使反应器在保持污染物去除率的前提下降低能耗。同时选用的亚硝酸钠填料由于成本低廉,易于工业化应用。这种反应器可有效降低了反应器处理污染物的单位能耗,而且结构简单,适用性强。Compared with the existing device, the volatile organic pollutant removal device provided by the utility model is different in that: a ferroelectric filler is added in the reactor, and when the electric field intensity reaches a certain value, the filler spontaneously polarizes, which can Make the reactor reduce energy consumption under the premise of maintaining the pollutant removal rate. At the same time, the sodium nitrite filler selected is easy for industrial application because of its low cost. The reactor can effectively reduce the unit energy consumption of the reactor for treating pollutants, and has a simple structure and strong applicability.
附图说明 Description of drawings
图1是专利200410014135.X公开的VOCs处理装置结构图,其中有气体进口1、反应器2、电源3、气体出口4。Fig. 1 is a structural diagram of a VOCs treatment device disclosed in patent 200410014135.X, in which there are gas inlet 1,
图2是铁电体材料介电常数和有效场强的关系曲线。Fig. 2 is the relationship curve between the dielectric constant of the ferroelectric material and the effective field strength.
图3是本实用新型提供的VOCs处理装置结构图,其中有气体进口1、反应器2、电源3、气体出口4、反应器两端的绝缘片5、反应器中心的内电极6、反应器外管缠有的外电极7、反应器中的填料8。Fig. 3 is the structural diagram of the VOCs processing device provided by the utility model, wherein there are gas inlet 1,
图4是本实用新型提供的VOCs处理装置对于甲苯去除率效果图。Fig. 4 is an effect diagram of the VOCs treatment device provided by the utility model for the removal rate of toluene.
具体实施方式 Detailed ways
反应器材料为石英玻璃管,壁厚2.4mm,内径为17.9mm,外径为20.3mm。在反应器两端采用聚四氟乙烯绝缘片将反应器密封,在两端各开一φ=4mm的圆孔作为处理气体进口和出口,在反应器中心位置为内电极,材料为φ=1.62mm钨丝,石英玻璃管外壁裹有一铁网作为外电极并且做接地处理。反应器拉西环填料尺寸为内径5.6mm,外径9.2mm,长度为10.5mm,在拉西环基质上涂覆有铁电体材料,涂覆厚度为0.5mm。在内外电极之间连接高压电源用于反应器能量的提供,在放电过程中反应器中及填料表面产生了大量的高能电子和活性基团,挥发性有机气体由进口1进入反应器,在反应器内和活性基团和高能电子发生一系列的物理化学反应,使污染物分子最终形成无毒无害气体分子,最后由出气口4排出。图3为以挥发性有机物代表物甲苯为目标污染物进行实验的结果,实验条件为电源施加电压为10kV,甲苯进口流量约为2400mg/m3,其反映的是在不同电源频率条件下添加有钛酸钡填料、亚硝酸钠填料和无填料下甲苯的去除效率,当电源频率为35KHz时,没有添加填料的反应器、添加有亚硝酸钠填料的反应器及添加有钛酸钡填料的反应器对于甲苯的去除率分别为68.7%、76.8%和89.6%,加有钛酸钡和亚硝酸钠填料的反应器对于甲苯的去除率均高于无填料反应器,换言之,在保持甲苯去除率的前提下,加有填料的反应器比无填料反应器需要的能量要低。The material of the reactor is a quartz glass tube with a wall thickness of 2.4 mm, an inner diameter of 17.9 mm and an outer diameter of 20.3 mm. Both ends of the reactor are sealed with polytetrafluoroethylene insulating sheets, and a round hole of φ = 4mm is opened at each end as the inlet and outlet of the processing gas. The inner electrode in the center of the reactor is made of φ = 1.62 mm tungsten wire, the outer wall of the quartz glass tube is wrapped with an iron mesh as the external electrode and grounded. The size of the Raschig ring filler in the reactor is 5.6 mm in inner diameter, 9.2 mm in outer diameter, and 10.5 mm in length, and ferroelectric material is coated on the Raschig ring substrate with a coating thickness of 0.5 mm. A high-voltage power supply is connected between the internal and external electrodes to provide energy for the reactor. During the discharge process, a large number of high-energy electrons and active groups are generated in the reactor and on the surface of the filler. Volatile organic gases enter the reactor from inlet 1. A series of physical and chemical reactions take place with active groups and high-energy electrons in the container, so that the pollutant molecules finally form non-toxic and harmless gas molecules, which are finally discharged from the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007201901922U CN201108798Y (en) | 2007-11-16 | 2007-11-16 | A device for removing volatile organic pollutants |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNU2007201901922U CN201108798Y (en) | 2007-11-16 | 2007-11-16 | A device for removing volatile organic pollutants |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201108798Y true CN201108798Y (en) | 2008-09-03 |
Family
ID=39893314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNU2007201901922U Expired - Lifetime CN201108798Y (en) | 2007-11-16 | 2007-11-16 | A device for removing volatile organic pollutants |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201108798Y (en) |
-
2007
- 2007-11-16 CN CNU2007201901922U patent/CN201108798Y/en not_active Expired - Lifetime
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102179145B (en) | Plasma catalytic reactor for cooperative governance of VOCs (Volatile Organic Compounds) | |
CN101835336A (en) | A Double Dielectric Barrier Discharge Low Temperature Plasma Generator | |
CN103480261B (en) | Gaseous contaminant integrated purifying device | |
CN103759275A (en) | Device and method for combusting and treating organic waste gas through plasma enhanced porous medium | |
CN103349890B (en) | Apparatus for removing indoor harmful gas based on nanosecond pulsed discharge technology | |
CN103285719B (en) | A kind of Low Temperature Plasma Treating is containing the method for the gas of chlorohydrocarbon | |
CN111530281A (en) | A kind of method and equipment for synergistic catalytic removal of ammonia gas by low temperature plasma | |
CN101234286A (en) | A Spontaneously Polarized Volatile Organic Pollutant Removal Device | |
CN105944530A (en) | Device for treating volatile organic compounds (VOCs) through plasma and ultraviolet light | |
CN203370462U (en) | Tunnel air purifying device based on low-temperature plasma technology | |
CN108452646A (en) | The device and method of plasma body cooperative electrothermal tube net catalytic treatment VOCs | |
CN204911182U (en) | Ultraviolet ray - plasma is in coordination with degrading organic waste gas device | |
CN201261716Y (en) | A device that uses non-equilibrium plasma to eliminate volatile organic compounds and simultaneously produce hydrogen | |
CN102500210B (en) | System for removing elementary mercury from smoke by adopting injection type discharging activation method | |
CN105536457B (en) | The processing method of foul gas in a kind of fish meal processing | |
CN201108798Y (en) | A device for removing volatile organic pollutants | |
CN204485611U (en) | A kind of low-temperature plasma industrial | |
CN206688482U (en) | A combined exhaust gas purifier | |
CN103752412B (en) | Spike electrode for plasma catalytic reactor, and plasma catalytic reactor comprising same | |
CN202555279U (en) | Cylindrical dielectric barrier discharge activated carbon regenerating device | |
CN104689692B (en) | Device and method for treating waste gas by air plasma | |
CN204485610U (en) | A kind of low-temperature plasma industrial with fire resisting damper | |
CN102614730A (en) | Method for comprehensively treating industrial waste gas | |
CN213610650U (en) | A low temperature plasma deodorization device suitable for high temperature and high humidity environment | |
CN1424140A (en) | Stripping regenerating method for adsorbent by utilizing high voltage discharge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20080903 |