CN201096701Y - 透过率相关频谱法颗粒测量装置 - Google Patents

透过率相关频谱法颗粒测量装置 Download PDF

Info

Publication number
CN201096701Y
CN201096701Y CNU2007200717448U CN200720071744U CN201096701Y CN 201096701 Y CN201096701 Y CN 201096701Y CN U2007200717448 U CNU2007200717448 U CN U2007200717448U CN 200720071744 U CN200720071744 U CN 200720071744U CN 201096701 Y CN201096701 Y CN 201096701Y
Authority
CN
China
Prior art keywords
light
signal
particle
laser instrument
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU2007200717448U
Other languages
English (en)
Inventor
沈建琪
蔡小舒
于彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CNU2007200717448U priority Critical patent/CN201096701Y/zh
Application granted granted Critical
Publication of CN201096701Y publication Critical patent/CN201096701Y/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开了一种透过率相关频谱法颗粒测量装置,其特点是本实用新型是利用颗粒在窄光束照射下透过率信号的脉动特性,对透过率脉动信号作相关处理的装置,由此得到颗粒的速度、颗粒的粒度分布和颗粒浓度信息。采用了光信号的动态特性和信号的相关处理,可以测量微米级以上颗粒的粒径分布、浓度和速度。本实用新型的有益效果是,测量装置简单、价廉,可实现在线、实时检测,可实现同时对颗粒粒径分布、浓度和速度进行测试。可用于科学研究、化工能源的生产与过程控制、环境保护、水质检测等涉及颗粒测量的多个领域。

Description

透过率相关频谱法颗粒测量装置
技术领域
本实用新型涉及一种可同时测量颗粒粒度分布、浓度和速度的装置,特别涉及一种用透过率脉动相关频谱法测量颗粒粒度分布、浓度和速度装置,属于测量技术领域。本实用新型可测量的颗粒参数多、测量粒径范围宽,适用于含颗粒两相流的在线监测,可用于科学研究、化工能源的生产与过程控制、环境保护、水质检测等涉及颗粒测量的多个领域。
背景技术
颗粒散射光动态信息的相关处理很早就在纳米颗粒的测量技术中得到了应用,这种技术被称作光子相关光谱法(Photon Correlation Spectrometry,简称PCS)。在PCS方法中,作布朗运动的纳米颗粒的粒径与颗粒的运动速度密切相关,颗粒的运动速度又与颗粒散射光的频谱信息相关,通过相关处理所得到的自相关频谱就是通过这些关系得到了颗粒的粒径分布信息。PCS方法可测量的粒径范围在纳米数量级,无法对微米级以上颗粒测量。而且价格昂贵,无法实现在线测量。
发明内容
本实用新型目的是为了解决用PCS方法无法对微米级以上颗粒的测量,无法实现在线测量的技术问题,提供一种用透过率脉动相关频谱法测量颗粒粒度分布、浓度和速度的装置。
本实用新型的技术方案是:一种透过率相关频谱法颗粒测量装置,其特点是,它由测量区、产生光束直径为10微米到1.5毫米之间的窄光束产生器、光电信号探测器和与其连接的信号处理装置构成。
所述的窄光束产生器由产生平行光束的激光器、分束器、凸透镜或透镜组构成,由激光器发射出的宽光束经分束器分成传播方向不同的几束光,通过凸透镜或透镜组会聚,在焦点附近的瑞利区得到窄光束组。
所述的窄光束产生器由产生平行光束的激光器和在光信号发射端和光信号接收端的设置的多孔光阑中任选二个或二个以上构成,通过激光器发射出的宽光束在传播方向上设置的多孔光阑得到窄光束组。
所述的窄光束产生器由产生平行光束的激光器和微元信号探测器构成,所述的微元信号探测器由多个微小受光面光电探测单元组合而成。可从这种安排的微元探测器上选择适当的单元(单元受光面积大小和单元之间的间隔)达到对不同的测量对象进行测试的目的。
所述的窄光束产生器中的多孔光阑的孔形状为矩形孔或圆孔的组合,光导纤维组受光面的形状为圆形孔的组合,微元信号探测器的受光面形状为圆形或多边形的形状。
所述的信号处理装置由信号放大电路模块、信号采集模块、信号自相关和互相关处理模块构成。
本实用新型的有益效果是测量装置简单、价廉,可实现在线、实时检测,可实现同时对颗粒粒径分布、浓度和速度进行测试。可用于科学研究、化工能源的生产与过程控制、环境保护、水质检测等涉及颗粒测量的多个领域。
附图说明
图1为本实用新型测量装置原理示意图;
图2为本实用新型实施例1测量装置示意图;
图3为本实用新型实施例2测量装置示意图;
图4为本实用新型实施例3测量装置示意图;
图5为多孔光阑的孔、光导纤维组受光面和微元信号探测器的受光面形状示意图;
图6为单分散颗粒系的透过率起伏相关频谱曲线;
图7为双峰分布颗粒系的透过率起伏相关频谱曲线;
图8信号处理装置示意图。
本实用新型基本测量原理
本实用新型利用颗粒在窄光束照射下透过率信号的脉动特性,对透过率脉动信号作相关处理,由此得到颗粒的速度、颗粒的粒度分布和颗粒浓度信息。这种方法称为透过率脉动相关频谱法。采用了光信号的动态特性和信号的相关处理。可以测量微米级以上颗粒的粒径分布、浓度和速度。本实用新型的测量原理如图1所示,设置二束相互平行的线度范围在10微米到1.5毫米之间的窄光束,两平行窄光束1和2之间距离相距为d,二光束的连线与颗粒的流动方向一致,测量区3内颗粒受光照射的厚度为L。二光束的入射强度分别为I1,0和I2,0的入射光照射,在一段比较长的时间范围{0,ts}内通过光电信号探测器4和5分别测量透射光信号I1(t)和I2(t),透射光信号随时间脉动。光电信号探测器4和5测得的透射光信号输入到信号处理装置,通过CPU对信号进行处理,用透过率信号(透射光强度和入射光强度之比)T1(t)=I1(t)/I1,0和T2(t)=I2(t)/I2,0表示。
颗粒的速度信息可从二束窄光束透过率脉动信号的互相关处理得到,互相关信号Pd,τ由下式定义。
P d , τ = e { T 1 ( t ) T 2 ( t + τ ) } = lim t s → ∞ 1 t s ∫ 0 t s T 1 ( t ) T 2 ( t + τ ) dt - - - ( 1 )
改变相关时间τ的大小,得到Pd,τ达到最大值时所对应的τ(记做τmax)并与光束距离d结合可得颗粒速度v=d/τmax
在透过率脉动信号T(t)(可以是二光束当中的任一束)中包含了颗粒的粒径分布、浓度、速度和颗粒流动状态的信息,采用透过率脉动信号T(t)的自相关值Pτ表示。
P τ = e { T ( t ) T ( t + τ ) } = lim t s → ∞ 1 t s ∫ 0 t s T ( t ) T ( t + τ ) dt - - - ( 2 )
与上面一样,τ是相关时间。当τ→0时,T(t)=T(t+τ),此时相关值最大。随着相关时间τ的增大,相关性逐渐减弱。对于光束直径为DB、颗粒粒径为DP、颗粒的流速为v的情况,当τ>(DP+DP)/v时,相关性降为最小。由此,可得颗粒的粒径和浓度信息。
理论上得到T(t)的相关值Pτ是光束直径为DB、颗粒粒径为DP,i、颗粒的流速为v、颗粒体积浓度CV,i、光程L和相关时间τ的函数,
ln P τ = - Σ i 1.5 L D P , i C V , i [ 2 - Π ( D B D P , i , vτ D P , i ) ] - - - ( 3 )
其中特征函数∏描述透过率自相关频谱中包含的颗粒粒度分布信息,
Π ( Λ , Γ ) = ∫ 0 ∞ F S ( Λ ) · J 0 ( 2 uΓ ) · 2 J 1 2 ( u ) u du - - - ( 4 )
Λ=DB/DP是光束直径与颗粒粒径的比值,Γ=vτ/DP。FS是窄光束在截面上的光强分布因子,适用于圆形高斯光束、圆形均匀光束、矩形光束和多边形光束等;对于高斯光束为
Figure Y20072007174400055
,对于光强均匀分布的圆形光束为[2J1(uΛ)/uΛ]2
可以改变相关时间τ即可得到透过率自相关频谱,当光束直径为DB、颗粒的流速为v、光程L已知时,可得颗粒的粒径分布信息并由此得到颗粒的浓度信息。
当颗粒为单分散系时,透过率自相关频谱由图6所示。从频谱曲线的转折点结合颗粒系的流速即可得到颗粒的粒径,从曲线在纵坐标上的高度可得颗粒的浓度。图7是一个双峰分布颗粒系的透过率自相关频谱,可以求出二种特征粒径及其浓度值。依此类推,可得多分散颗粒系的粒度分布和浓度。
本实用新型的理论模型要求光束直径不能大于颗粒粒径的10倍。因此,可测量的颗粒粒径分布范围存在下限,但无上限。当光束直径为10微米时,测量范围大于1微米。在颗粒粒径接近或者大于光束粒径的情况下有很好的测量精度。此外,速度的测量对颗粒粒径分布的测量至关重要,颗粒浓度的测量依据颗粒粒度分布的测量。
在本实用新型中窄光束的线度由光阑尺寸、光导纤维尺寸或多元光电探测器的微元尺寸决定,其范围在10微米到1.5毫米之间,可适用于测量1微米至数毫米的颗粒粒径,颗粒的体积浓度范围为0.01%至50%。圆形情况下,窄光束的线度是直径,如光导纤维的直径、圆形微元探测单元的直径;多边形情况下,光束的线度是最大对角距离,如矩形光阑或矩形微元光电探测单元的对角距离。
参与互相关处理的二束窄光束的中心距在0.3至5毫米之间,可以探测的颗粒流动速度范围为0.1至200米/秒。
具体实施方式
一种透过率相关频谱法颗粒测量装置,它由测量区、产生光束的线度范围在10微米到1.5毫米之间的窄光束产生器、光电信号探测器和与其连接的信号处理装置构成。具体的测量装置分为插入式探针结构和分体式探测结构二种,具体实施方式由图2-5表示,用实施例作进一步说明。
实施例1:
由图2所示,测量装置由测量区、窄光束产生器、光电信号探测器和信号接收处理装置组成,所述的窄光束产生器由产生平行光束的激光器、分束器、凸透镜或透镜组构成,由激光器发出平行光束1、2经分束器6分束后由凸透镜7(或透镜组)会聚,焦点位于测量区3中心部位,二束光的焦点位置沿颗粒流动方向先后放置,在焦点附近的瑞利区得到近似平行光的窄光束。透射光是二束发散的高斯光束,经接收透镜11会聚到各自光电探测器4、5上,要求测量装置的时间灵敏度高。在发射端和信号接收端各设置气吹式的窗口防污装置8、10,9、12分别为发射端A和信号接收端C的外壳。这种结构为探针结构。
实施例2:
由图3所示,测量装置组成和实施例1相同。而所述的窄光束产生器是由产生平行光束的激光器和在光信号发射端和光信号接收端设置的多孔光阑或光导纤维组中任选一个或两个构成,通过激光器发射出的宽光束在传播方向上设置的多孔光阑或光导纤维组得到窄光束组。在窗口部位平行光束1、2经多孔光阑16后取出窄光束组进入测量区3,各窄光束的位置沿颗粒流动方向先后放置。信号光在进入接收端C后经由多孔光阑17照射到各自的光电信号探测器4、5上,要求光电信号探测器的时间灵敏度高。在发射端A和信号接收端C各设置气吹式的窗口防污装置13、14和15。前方光阑16和后方光阑17可任选一个或者组合使用。当省去前方光阑16只用后方光阑17时,可作为分体式结构使用。多孔光阑亦可由光导纤维来代替。
实施例3
由图4所示的测量装置可做成探针形式也可做成分体式在线测量装置,其组成亦和实施例1、2相同,所述的窄光束产生器由产生平行光束的激光器和微元信号探测器构成,它是由由激光器发出平行光束1、2通过测量区3直接照射到微元光电探测器20,微元光电探测器20既作为光电信号探测单元,又作为窄光束产生器的组成构件,图中18、19为气吹式防污装置,所述的微元光电探测器:由多个微小受光面积的光电探测单元(由硅光薄膜材料制成)组合,每个单元的形状可以是圆形或者多边形(如矩形、六角形等),这种组合方式有利于二束参与速度测量的透射光信号之间相对位置的适当安置,并可与探测颗粒粒径的透射光信号保持探测对象的一致性。
在以上所述的窄光束产生器中的多孔光阑的孔形状为矩形孔或圆孔的组合,光导纤维组受光面的形状为圆形孔的组合,微元信号探测器的受光面形状为圆形或多边形的形状,如图5a)、图5b)所示。
本实用新型所用的信号处理装置由图8所示,由信号放大电路模块、信号采集模块、信号自相关和互相关处理模块构成,4、5为透射光信号探测器,21、22为相应的信号放大电路,23为多路信号采集A/D卡,24为自相关处理模块、25为互相关处理模块。由24得到透过率脉动自相关频谱,由25得到颗粒流动速度。

Claims (6)

1. 一种透过率相关频谱法颗粒测量装置,其特征在于,它由测量区、产生光束的线度范围在10微米到1.5毫米之间的窄光束产生器、光电信号探测器和与其连接的信号处理装置构成。
2. 根据权利要求1所述的测量装置,其特征在于,所述的窄光束产生器由产生平行光束的激光器、分束器、凸透镜或透镜组构成,由激光器发射出的宽光束经分束器分成传播方向不同的几束光,通过凸透镜或透镜组会聚,在焦点附近的瑞利区得到窄光束组。
3. 根据权利要求1所述的装置,其特征在于,所述的窄光束产生器由产生平行光束的激光器和在光信号发射端和光信号接收端设置的多孔光阑或光导纤维组中任选二个或二个以上构成,通过激光器发射出的宽光束在传播方向上设置的多孔光阑或光导纤维组得到窄光束组。
4. 根据权利要求1所述的测量装置,其特征在于,所述的窄光束产生器由产生平行光束的激光器和微元信号探测器构成,所述的微元光电探测器:由多个微小受光面积的由硅光薄膜材料制成的光电探测单元组合而成。
5. 根据权利要求3或4所述的测量装置,其特征在于,所述的窄光束产生器中的多孔光阑的孔形状为矩形孔或圆孔的组合,光导纤维组受光面的形状为圆形孔的组合,微元信号探测器的受光面形状为圆形或多边形的形状。
6. 根据权利要求1所述的装置,其特征在于,所述的信号处理装置由信号放大电路模块、信号采集模块、信号自相关和互相关处理模块构成。
CNU2007200717448U 2007-06-27 2007-06-27 透过率相关频谱法颗粒测量装置 Expired - Fee Related CN201096701Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2007200717448U CN201096701Y (zh) 2007-06-27 2007-06-27 透过率相关频谱法颗粒测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2007200717448U CN201096701Y (zh) 2007-06-27 2007-06-27 透过率相关频谱法颗粒测量装置

Publications (1)

Publication Number Publication Date
CN201096701Y true CN201096701Y (zh) 2008-08-06

Family

ID=39923754

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2007200717448U Expired - Fee Related CN201096701Y (zh) 2007-06-27 2007-06-27 透过率相关频谱法颗粒测量装置

Country Status (1)

Country Link
CN (1) CN201096701Y (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082559B (zh) * 2007-06-27 2010-11-03 上海理工大学 透过率相关频谱法颗粒测量方法及其装置
CN102928389A (zh) * 2012-11-02 2013-02-13 哈尔滨工业大学 一种快速实时检测浸渍量的装置及其使用方法
CN105806768A (zh) * 2016-04-28 2016-07-27 绍兴文理学院 污水激光测试台
CN108844870A (zh) * 2018-08-08 2018-11-20 重庆交通大学 基于光纤结构的pm10和pm2.5探测仪器装置和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101082559B (zh) * 2007-06-27 2010-11-03 上海理工大学 透过率相关频谱法颗粒测量方法及其装置
CN102928389A (zh) * 2012-11-02 2013-02-13 哈尔滨工业大学 一种快速实时检测浸渍量的装置及其使用方法
CN105806768A (zh) * 2016-04-28 2016-07-27 绍兴文理学院 污水激光测试台
CN108844870A (zh) * 2018-08-08 2018-11-20 重庆交通大学 基于光纤结构的pm10和pm2.5探测仪器装置和系统
CN108844870B (zh) * 2018-08-08 2021-09-21 重庆交通大学 基于光纤结构的pm10和pm2.5探测仪器装置和系统

Similar Documents

Publication Publication Date Title
CN101082559B (zh) 透过率相关频谱法颗粒测量方法及其装置
JP3352092B2 (ja) 分子特性解析の方法及び装置
CN100595558C (zh) 透过率脉动法颗粒测量方法及其装置
CN102353621A (zh) 一种光散射颗粒测量装置及方法
CN108020504A (zh) 基于量子弱测量的光学测量仪以及样品折射率、旋光谱和手性分子对映体含量测量分析方法
CN102121818B (zh) 纳米分辨全反射差分微位移测量的方法和装置
CN104089855A (zh) 一种偏振光散射测量颗粒物的方法及装置
CN101699265A (zh) 动态偏振光散射颗粒测量装置及测量方法
CN201063015Y (zh) 透过率脉动法颗粒测量装置
CN108801930A (zh) 一种高时间分辨率的穆勒矩阵椭偏测量装置与方法
CN201096701Y (zh) 透过率相关频谱法颗粒测量装置
CN104833816B (zh) 基于旋转光栅的激光多普勒测速装置及其测速方法
CN102768184A (zh) 一种用于薄膜杨氏模量测量的系统
CN101504352A (zh) 厚样品池反傅立叶变换颗粒在线测量装置
CN202631566U (zh) 一种双光束激光多普勒测速仪
CN106500844A (zh) 一种六通道分振幅高速斯托克斯偏振仪及其参数测量方法
CN104198055A (zh) 一种波面检测装置
CN102890051A (zh) 基于光纤式动态光散射互相关技术的颗粒测量方法及装置
CN108267428A (zh) 便携式增强型表面等离子体共振生物传感器
CN201622228U (zh) 动态偏振光散射颗粒测量装置
CN101706405B (zh) 获取透过率起伏空间相关频谱的装置及其方法
CN101532944A (zh) 光反射差法检测生物芯片装置中的小孔部件与检测方法
CN104237086B (zh) 动态光散射可变角度光纤探头检测装置及检测方法
Lin et al. Measurement of droplet velocity, size and refractive index using the pulse displacement technique
US5517298A (en) Diode array velocimeter

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080806