CN100595558C - 透过率脉动法颗粒测量方法及其装置 - Google Patents

透过率脉动法颗粒测量方法及其装置 Download PDF

Info

Publication number
CN100595558C
CN100595558C CN200710042873A CN200710042873A CN100595558C CN 100595558 C CN100595558 C CN 100595558C CN 200710042873 A CN200710042873 A CN 200710042873A CN 200710042873 A CN200710042873 A CN 200710042873A CN 100595558 C CN100595558 C CN 100595558C
Authority
CN
China
Prior art keywords
signal
obtains
transmitted light
transmitance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710042873A
Other languages
English (en)
Other versions
CN101187617A (zh
Inventor
沈建琪
蔡小舒
于彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN200710042873A priority Critical patent/CN100595558C/zh
Publication of CN101187617A publication Critical patent/CN101187617A/zh
Application granted granted Critical
Publication of CN100595558C publication Critical patent/CN100595558C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种透过率脉动法颗粒测量方法及其装置,窄光束照射到流过的颗粒产生透过率脉动信号,通过光电探测器检测,采用模拟电路处理信号,降低了对数据采集速度、数据采集量、储存量、处理量等方面的要求,缩短了数据处理时间,可实现实时测量。加入了参考光探测用于获得入射光强度变化信息,参考光探测起到校正作用,可避免光源不稳定对测量结果的干扰影响。可实现同时对颗粒平均粒径和浓度进行测试。对颗粒粒径与光束截面大小没有Gregory方法的限制,可测颗粒粒径范围大。本发明可用于科学研究、化工能源的生产与过程控制、环境保护、水质检测等涉及颗粒测量的多个领域。

Description

透过率脉动法颗粒测量方法及其装置
技术领域
本发明涉及一种可同时测量颗粒平均粒径和浓度的测量方法及装置,特别涉及一种透过率脉动法颗粒测量方法及其装置,属于测量技术领域。可用于科学研究、化工能源的生产与过程控制、环境保护、水质检测等涉及颗粒测量的很多领域。
背景技术
在大多数光学颗粒测量技术中,一般都对在一定时间范围内测量得到的光信号取平均,目的是消除一些偶然因素带来的信号波动。这些信号波动的来源各不相同,有些与被测颗粒无关,如光电器件的固有噪声;而有些则是颗粒本身某种特性对外界提供的信息,如由于测量区内不同时刻颗粒数量及其粒度变化引起的透射光信号的脉动。对于前者,测量时必须设法消除;而对于后者,如果能建立起适当的理论描述体系,则有可能从这种信号脉动中获取有关颗粒的信息,消光脉动法就是利用这种信息测量颗粒粒径和浓度的一种光学方法。
1985年Gregory首次提出了透过率脉动法,可同时测量颗粒的平均粒径和浓度(J.Gregory,Turbidity Fluctuations in Flowing Suspensions,Journal of Colloid andInterface Science,Vol.105,No.2,1985:357-371)。用一束窄激光照射样品,测量原理见图1。激光束直径为DB,相应的光照截面为
Figure C20071004287300051
颗粒平均粒径为DP,样品区光学照射厚度为L。用光强度为I0的入射光照射,在一段比较长的时间范围{0,ts}内测量透射光信号I(t),I(t)随时间脉动。可计算得到透过率T(t)=I(t)/I0的平均值e{T}及其标准偏差σT
e { T } = 1 t s ∫ 0 t s T ( t ) dt - - - ( 1 )
σ T 2 = 1 t s ∫ 0 t s [ T ( t ) - e { t } ] 2 dt - - - ( 2 )
由Grogery的透过率脉动法模型可得到颗粒的平均粒径DP和体积浓度CV
D P = D B - ln e { T } ln [ σ T e { T } + ( σ T e { T } ) 2 + 1 ] - - - ( 3 )
C V = - 2 D P 3 L ln e { T } - - - ( 4 )
在Gregory方法中,要求光束直径比较小以便有足够的信号脉动幅度得到透过率标准偏差,但同时要求光束直径远比颗粒粒径大。这限制了颗粒粒径的测量范围和准确度。
其次,目前采用透过率脉动法在信号采集方面主要以采集透射光信号序列为主,信号处理由计算机完成。这要求较高的数据采集卡(A/D卡)采样速率、较大的计算机储存资源和一定的CPU处理时间,对实时测量不利。
发明内容
本发明目的是在Gregory的颗粒测量技术基础上,延拓颗粒粒径的测量范围,并且解决Gregory方法数据处理困难、测量准确度不高等问题。其次,采用模拟处理电路替代计算机信号处理,降低对数据采集卡的要求、节省信号处理时间,实现快速、实时测量。实现对颗粒粒度和浓度的在线、实时监测。
本发明的技术方案是,一种透过率脉动法颗粒测量方法,其特点是,方法步骤为:
1.用一直径为DB,相应的光照截面为
Figure C20071004287300064
颗粒平均粒径为DP,光强度为I0的窄光束照射到流过的颗粒平均粒径为DP的测量区,光束传播方向与颗粒流动方向垂直,测量区光学照射厚度为Lo,在一段时间范围{0,ts}内由透射光探测器测量随时间脉动的透射光信号I(t),相应的透过率为T(t)=I(t)/I0
2.透过率脉动信号采用透过率平均值e{T}和透过率平方平均值e{T2}来表达:
e { T } = 1 t s ∫ 0 t s T ( t ) dt - - - ( 1 )
e { T 2 } = 1 t s ∫ 0 t s [ T ( t ) ] 2 dt - - - ( 5 )
透过率平方平均值e{T2}与透过率平均值e{T}和透过率标准偏差σT存在关系
Figure C20071004287300073
并可由
ln e { T 2 } = - 1.5 L D P C V [ 2 - χ ( Λ ) ] - - - ( 7 )
表示,其中特征函数χ(Λ)可由
χ ( Λ ) = ∫ 0 + ∞ F S · 2 J 1 2 ( u ) u du - - - ( 8 )
求解得到,FS是光束光强在截面上的分布因子,适用于圆形高斯光束、圆形均匀光束,对于高斯光束Fs为
Figure C20071004287300076
对于光强均匀分布的圆形光束Fs为[2J1(uΛ)/uΛ]2,Λ=DB/DP是光束直径与颗粒粒径的比值,特征函数χ(Λ)与Λ=DB/DP存在单值关系,
透过率平均值e{T}由
ln e { T } = - 1.5 L D P C V - - - ( 6 )
表示,
本发明数据处理模型公式(6)和(7)结合可得χ(Λ)与e{T}和e{T2}的关系:
χ ( Λ ) = 2 - ln e { T 2 } ln e { T } - - - ( 9 )
3.由透射光探测器测量得到的透过率脉动信号采用模拟电路方法得到的e{T}和e{T2}代入公式(9)可得到χ(Λ)的具体数值;
4.对公式(8)作数值计算得到χ(Λ),根据数值计算结果作χ(Λ)和Λ(=DB/DP)的函数曲线图,测试得到的χ(Λ)数值在曲线上查到对应的Λ值,结合已知光束直径DB即可求出颗粒粒径DP,并通过公式(6)或(7)可计算得到颗粒体积浓度CV
步骤3中所述的模拟电路方法的具体步骤是:
1)由透射光探测器测量得到透射光脉动信号预放大后,一路送低通滤波器得到透射光平均值e{I}表示为S1,另一路经高通滤波器滤波后送入RMS方均根处理器,如AD536芯片模块,得到透射光脉动信号的表示为S2的标准偏差平方值σI 2或直接送入RMS均方根处理器得到表示为S2’的透射光脉动信号平方的平均值
Figure C20071004287300081
2)采集入射光信号I0,经放大后的信号表示为S0,S0结合上述得到的信号S1,得到特征信号e{T}=e{I}/I0,S0与上述得到的二路信号S1和S2结合或者S0与S2’结合得到特征信号e{T2}=e{T}2+(σI/I0)2
3)由上述1)和2)步骤得到的三路信号S0、S1和S2或者三路信号S0、S1和S2’通过由加法器、乘法器、除法器、对数放大器组成的信号后续处理器的运算处理,最后S3输出lne{T}、S4输出lne{T2}/lne{T}进入数据采集A/D卡。
一种为实现透过率脉动法颗粒测量方法的装置,它由测量区、获得入射光强度的参考光探测器、产生光束线度范围在10微米到1.5毫米之间的窄光束产生器、光电信号探测器和与其连接的信号处理装置构成,特点是,所述的信号处理装置包括模拟信号处理器和信号后续处理器构成,用以实现透过率信号处理。
所述的窄光束产生器由产生平行光束的激光器、扩束器、透镜或透镜组构成,由激光器发射出的宽光束经扩束器后,通过透镜或透镜组会聚,在焦点附近的瑞利区得到窄光束。
所述的窄光束产生器由产生平行光束的激光器和在光信号发射端和光信号接收端设置的光阑或光导纤维构成,通过激光器发射出的宽光束在传播方向上设置的光阑或光导纤维得到窄光束。
所述的窄光束产生器由产生平行光束的激光器和微元信号探测器构成,所述的微元光电探测器由微小受光面积的由硅光薄膜材料制成的光电探测单元构成。
所述的窄光束产生器中的光阑的孔形状为矩形孔或圆孔,光导纤维受光面的形状为圆形孔,微元信号探测器的受光面形状为圆形或多边形的形状。
所述的信号处理装置包括模拟信号处理器和信号后续处理器,所述的模拟信号处理器由放大器、低通滤波器、高通滤波器、RMS方均根处理器和A/D卡组成,透射光探测器检测到的透射光脉动信号通过放大器放大,一路经低通滤波器得到透射光平均值e{I}表示为S1的信号,另一路直接经RMS方均根处理器得到表示为S2’的透射光脉动信号平方的平均值
Figure C20071004287300091
或通过高通滤波器后再经RMS方均根处理器得到表示为S2的透射光脉动信号标准偏差平方值σI 2,参考光探测器输出经另一放大器放大后得到表示为S0的入射光信号I0;所述的信号后续处理器包括加法器、乘法器、除法器、对数放大器,由模拟信号处理器得到的三个信号S0、S1和S2或者三个信号S0、S1和S2’通过加法器、乘法器、除法器、对数放大器运算得到最后S3输出lne{T}、S4输出lne{T2}/lne{T}进入数据采集A/D卡。
本发明的有益效果:测量方法和测量装置简单、价廉,可实现在线监测。由于采用模拟电路信号处理模块,降低了对数据采集速度、数据采集量、数据储存量和数据处理量等方面的要求,大大缩短了数据处理时间,可实现实时测量。在模拟信号处理电路中,加入了参考光探测用于获得入射光强度变化信息,参考光探测起到了校正作用,可有效避免光源不稳定对测量结果的干扰影响。可实现同时对颗粒多参数(颗粒平均粒径和浓度)进行测试。对颗粒粒径与光束截面大小没有Gregory方法的限制,可测颗粒粒径范围大。可用于科学研究、化工能源的生产与过程控制、环境保护、水质检测等涉及颗粒测量的多个领域。
技术原理:
本发明建立新的数据处理模型。与Gregory方法不同,本发明中透过率脉动信号采用透过率平均值e{T}和透过率平方平均值e{T2}来表达。
e { T 2 } = 1 t s ∫ 0 t s T 2 ( t ) dt - - - ( 5 )
透过率平方平均值e{T2}与透过率标准偏差σT存在关系
Figure C20071004287300102
并可由
ln e { T 2 } = - 1.5 L D P C V [ 2 - χ ( Λ ) ] - - - ( 7 )
表示,其中特征函数χ(Λ)可由
χ ( Λ ) = ∫ 0 + ∞ F S · 2 J 1 2 ( u ) u du - - - ( 8 )
求解得到。FS是光束光强在截面上的分布因子,适用于圆形高斯光束、圆形均匀光束、对于高斯光束Fs为对于光强均匀分布的圆形光束Fs为[2J1(uΛ)/uΛ]2。Λ=DB/DP是光束直径与颗粒粒径的比值。特征函数χ(Λ)与Λ=DB/DP存在单值关系,
透过率平均值e{T}由
ln e { T } = - 1.5 L D P C V - - - ( 6 )
表示,
通过本发明数据处理模型公式(6)和(7)结合可得χ(Λ)与e{T}和e{T2}的关系:
χ ( Λ ) = 2 - ln e { T 2 } ln e { T } - - - ( 9 )
实际测试中,由测量得到的透过率脉动信号可采用模拟电路方法得到,代入公式(9)可得到χ(Λ)的具体数值。χ(Λ)可对公式(8)作数值计算得到,图7是χ(Λ)的数值计算结果。由测试得到的χ(Λ)数值可在曲线上查到对应的Λ值,结合光束直径DB即可求出颗粒粒径DP,并通过公式(6)或(7)可计算得到颗粒体积浓度CV
当光束直径远大于颗粒粒径(Λ≥3)时,标准偏差远小于透过率平均值。因此,存在
Figure C20071004287300111
且在数值上χ(Λ)逼近Λ-2。由此可得
D P = D B 1 - ln e { T } · σ T e { T } - - - ( 10 )
同理,在标准偏差远小于透过率平均值时公式(3)中的
Figure C20071004287300113
由此得到公式(3)的近似式与公式(10)一致。这表示:Gregory方法是本发明理论模型中光束直径远大于颗粒粒径时的特殊情况。
本发明的理论模型对光束直径与颗粒粒径的关系没有Gregory方法中的限制。因此,可测量颗粒粒径范围要宽得多。其次,Gregory方法要求光束截面内的光强均匀分布,而本模型中对光束截面强度因子可灵活掌握,譬如可取高斯光束照射颗粒系。此外,从χ(Λ)曲线可发现,在Λ≈1附近χ(Λ)具有较大的斜率绝对值,说明在这范围透过率脉动方法具有较高的测量精度,而Gregory适用的区域测量精度明显偏低。
附图说明
图1透过率起伏法测量原理图;
图2模拟信号处理系统;
图3信号后续处理系统;
图4本发明测量装置实施例1示意图;
图5本发明测量装置实施例2示意图;
图6本发明测量装置实施例3示意图;
图7圆形均匀光束情况下的χ(Λ)的曲线图。
具体实施方式
本发明采用模拟电路处理方式实现透过率脉动信号及其平均值的记录和处理,具体实施结合附图作详细描述:其方法实施步骤为:
1、由图1所示,由窄光束产生器发出光强度为I0的窄光束1垂直入射照射到流过的颗粒平均粒径为DP的测量区2,测量区光学照射厚度为L,在一段时间范围{0,ts}内由透射光探测器3测量随时间脉动的透射光信号I(t),相应的透过率为T(t)=I(t)/I0
2、建立新的数据处理模型,透过率脉动信号采用透过率平均值e{T}和透过率平方平均值e{T2}来表达:
e { T 2 } = 1 t s ∫ 0 t s T 2 ( t ) dt - - - ( 5 )
透过率平方平均值e{T2}与透过率标准偏差σT存在关系
Figure C20071004287300122
并可由
ln e { T 2 } = - 1.5 L D P C V [ 2 - χ ( Λ ) ] - - - ( 7 )
表示,其中特征函数χ(Λ)可由
χ ( Λ ) = ∫ 0 + ∞ F S · 2 J 1 2 ( u ) u du - - - ( 8 )
求解得到,FS是光束光强在截面上的分布因子,适用于圆形高斯光束、圆形均匀光束,对于高斯光束Fs为对于光强均匀分布的圆形光束Fs为[2J1(uΛ)/uΛ]2,Λ=DB/DP是光束直径与颗粒粒径的比值,特征函数χ(Λ)与Λ=DB/DP存在单值关系,
透过率平均值e{T}由
ln e { T } = - 1.5 L D P C V - - - ( 6 )
表示,
由本发明数据处理模型公式(6)和(7)可得χ(Λ)与e{T}和e{T2}的关系:
χ ( Λ ) = 2 - ln e { T 2 } ln e { T } - - - ( 9 )
3、采用模拟电路方法得到的e{T}和e{T2}代入公式(9)可得到χ(Λ)的测试数值;
4、对公式(8)作数值计算得到χ(Λ),根据数值计算结果作χ(Λ)和Λ(=DB/DP)的函数曲线图7,测试得到的χ(Λ)数值在曲线上查到对应的Λ值,结合已知光束直径DB即可求出颗粒粒径DP,并通过公式(6)或(7)可计算得到颗粒体积浓度CV。在0.1≤Λ≤10范围内,本发明理论模型可得到好的测量结果;然而Gregory方法的适用范围为Λ≥3。
步骤3中所述的模拟电路方法,结合图2、图3,其具体步骤是:
1)透射光探测器3测量得到透射光脉动信号经信号放大器4预放大后,一路送入低通滤波器5得到透射光平均值e{I}表示为S1,另一路经高通滤波器6滤波后送入RMS方均根处理器7(如AD536芯片模块)得到透射光脉动信号的表示为S2的标准偏差平方值σI 2或不经高通滤波器6而直接送入RMS方均根处理器7得到表示为S2’的透射光脉动信号平方的平均值
Figure C20071004287300133
2)通过参考光探测器8采集入射光信号I0,经放大器9放大后的信号表示为S0,并结合上述得到的二路信号S1和S2或二路信号S1和S2’,经模拟信号处理模块后由A/D卡10采集送计算机处理,得到特征信号e{T}=e{I}/I0和e{T2}=e{T}2+(σI/I0)2
3)由图3所示,上述1)和2)步骤得到的三路信号S0、S1和S2或者三路信号S0、S1和S2’通过由加法器15、乘法器12和13、除法器11、14和18、对数放大器16和17组成的信号后续处理器的运算处理,最后S3输出lne{T}、S4输出lne{T2}/lne{T}进入A/D卡10。
当采用图2的信号处理电路时,S1输出e{I},S2输出σI 2(采用高通滤波器的形式),S0输出入射光强度I0。则可得
e { T } = e { I } I 0 - - - ( 11 )
e { T 2 } = e { T } 2 + ( σ I I 0 ) 2
当采用图2的信号处理电路、并不使用高通滤波器时,S2’输出e{I2}。公式(11)为
e { T } = e { I } I 0 - - - ( 12 )
e { T 2 } = e { I 2 } I 0 2
当采用图3的后续处理电路时,输出的二路信号即是lne{T}和lne{T2}/lne{T}。
代入公式(9)可得到函数χ(Λ)的数值,与χ(Λ)曲线比较即可确定颗粒平均粒径进而由公式(6)或(7)得到颗粒体积浓度。
一种为实现透过率脉动法的颗粒测量方法的装置,它由测量区、获得入射光强度的参考光探测器、产生光束线度范围在10微米到1.5毫米之间的窄光束产生器、光电信号探测器和与其连接的信号处理装置构成。装置中的参考光探测器用于监视入射光强度的波动,避免对测试结果干扰。在调试阶段测量区中无颗粒时,同时测量透射光信号和参考光信号,调整参考光信号的放大倍数使透射光信号和参考光信号相等。
本发明测量装置实施例1:
由图4所示,所述的窄光束产生器由产生平行光束的激光器19、扩束器22、透镜或透镜组23构成。由激光器19发射出的光束经分束器20和扩束器22后,通过透镜或透镜组23会聚,在焦点附近的瑞利区得到窄光束。窄光束通过测量区2后的透射光经接收透镜24后由光电探测器3接收。分束器20和参考光探测器21用于监视入射光强度的波动。
本发明测量装置实施例2:
由图5所示,它包括激光器19、分束器20、参考光探测器21、扩束器22。本实施例中的窄光束产生器由在光信号发射端和光信号接收端设置的光阑或光导纤维构成。通过激光器发射出的宽光束在传播方向上设置的光阑或光导纤维得到窄光束。光阑设置为前方光阑25和后方光阑26,两者可任选一或组合使用。激光器19发射出的宽光束经前方光阑25成窄光束通过测量区2后的透射光由光电探测器3接收或激光器19发射出的宽光束经通过测量区2后的透射光经后方光阑26由光电探测器3接收。
本发明测量装置实施例3:
由图6所示,它包括激光器19、分束器20、参考光探测器21、扩束器22、测量区2和光电探测器3。特点是,本实施例中所述的窄光束产生器由激光器19、分束器20、扩束器22和置于透射光探测器3前的采用微孔光阑或光导纤维的窄光束引导器27组成或是由产生平行光束的激光器和微元信号探测器构成,所述的微元光电探测器由微小受光面积的由硅光薄膜材料制成的光电探测单元构成。
由图2、图3所示,信号处理装置包括模拟信号处理器和信号后续处理器。
所述的模拟信号处理器由放大器、低通滤波器、高通滤波器和RMS方均根处理器组成,透射光探测器3检测到的透射光脉动信号通过放大器4放大,一路经低通滤波器5得到透射光平均值e{I}表示为S1的信号,另一路直接经RMS方均根处理器7(跨接高通滤波器6的输入与输出端)得到表示为S2’的透射光脉动信号平方的平均值或通过高通滤波器6再经RMS方均根处理器7得到表示为S2的透射光脉动信号标准偏差平方值σI 2,参考光探测器8输出经放大器9放大后得到表示为S0的入射光信号I0
所述的信号后续处理器包括加法器、乘法器、除法器、对数放大器。由模拟信号处理器得到的三路信号S0、S1和S2,或者由模拟信号处理器得到的三路信号S0、S1和S2’通过加法器、乘法器、除法器、对数放大器运算,最后得到S3输出lne{T}、S4输出lne{T2}/lne{T}进入数据采集卡(A/D卡)。具体地说:S0和S1经除法器11得到透过率平均值e{T},再由乘法器13得到透过率平均值的平方e{T}2;S0经乘法器12得到入射光强度平方,再与S2经除法器14得到透过率的标准偏差σT 2;由乘法器13输出的透过率平均值的平方e{T}2与除法器14输出的透过率的标准偏差σT 2经加法器15得到透过率平方的平均值e{T2},再经过对数放大器16得到lne{T2}。除法器11得到透过率平均值e{T}经对数放大器17得到lne{T}表示为S3。对数放大器16和17输出得lne{T2}和lne{T}经除法器18得到lne{T2}/lne{T}表示为S4。信号S3和S4经数据采集卡送计算机处理可得颗粒平均粒径和浓度。
当输入的信号为S2’时,除法器14输出的信号是透过率平方的平均值e{T2},将e{T2}直接送对数放大器16得到lne{T2}。因此,乘法器13和加法器15可省去。

Claims (3)

1.一种透过率脉动法颗粒测量方法,其特征在于,方法步骤为:
1)用一直径为DB,相应的光照截面为
Figure C2007100428730002C1
光强度为I0的窄光束照射到流过的颗粒平均粒径为DP的测量区,光束传播方向与颗粒流动方向垂直,测量区光学照射厚度为L,在一段时间范围{0,ts}内由光电探测器测量随时间脉动的透射光信号I(t),相应的透过率为T(t)=I(t)/I0
2)透过率脉动信号采用透过率平均值e{T}和透过率平方平均值e{T2}来表达:
e { T } = 1 t s ∫ 0 t s T ( t ) dt - - - ( 1 )
e { T 2 } = 1 t s ∫ 0 t s [ T ( t ) ] 2 dt - - - ( 5 )
透过率平方平均值e{T2}与透过率平均值e{T}和透过率标准偏差σT存在关系
Figure C2007100428730002C4
并可由
ln e { T 2 } = - 1.5 L D P C V [ 2 - χ ( Λ ) ] - - - ( 7 )
表示,其中特征函数χ(Λ)可由
χ ( Λ ) = ∫ 0 + ∞ F S · 2 J 1 2 ( u ) u du - - - ( 8 )
求解得到,FS是入射光束强度在截面上的分布因子,适用于圆形高斯光束、圆形均匀光束,对于高斯光束Fs为
Figure C2007100428730002C7
对于光强均匀分布的圆形光束Fs为[2J1(uΛ)/uΛ]2,Λ=DB/DP是光束直径与颗粒粒径的比值,特征函数χ(Λ)与Λ=DB/DP存在单值关系,
透过率平均值e{T}由
ln e { T } = - 1.5 L D P C V - - - ( 6 )
表示,
本发明数据处理模型公式(6)和(7)结合可得χ(Λ)与e{T}和e{T2}的关系:
χ ( Λ ) = 2 - ln e { T 2 } ln e { T } - - - ( 9 )
3)由透射光探测器测量得到的透过率脉动信号采用模拟电路处理后得到的e{T}和e{T2}代入公式(9)可得到χ(Λ)的具体数值;
4)对公式(8)作数值计算得到χ(Λ),根据数值计算结果作χ(Λ)和Λ(=DB/DP)的函数曲线图,测试得到的χ(Λ)数值在曲线上查到对应的Λ值,结合已知光束直径DB即可求出颗粒粒径DP,并通过公式(6)或(7)可计算得到颗粒体积浓度CV
2.根据权利要求1所述的一种透过率脉动法颗粒测量方法,特征在于,所述的步骤3)所述的模拟电路方法的具体步骤是:
1)由透射光探测器测量得到透射光脉动信号预放大后,一路送低通滤波器得到透射光平均值e{I}表示为S1,另一路经高通滤波器滤波后送入RMS方均根处理器得到透射光脉动信号的表示为S2的标准偏差平方值σI 2或直接送入RMS方均根处理器得到表示为S2’的透射光脉动信号平方的平均值e{I2}=e{I}2I 2
2)采集入射光信号I0,经放大后的信号表示为S0,S0结合上述得到的信号S1,得到特征信号e{T}=e{I}/I0,S0与上述得到的二路信号S1和S2结合或者S0与S2’结合得到特征信号e{T2}=e{T}2+(σI/I0)2
3)由上述1)和2)步骤得到的三路信号S0、S1和S2或者三路信号S0、S1和S2’通过由加法器、乘法器、除法器、对数放大器组成的信号后续处理器的运算处理,最后S3输出lne{T}、S4输出lne{T2}/lne{T}进入数据采集A/D卡。
3.一种为实现权利要求1所述的透过率脉动法颗粒测量方法的装置,它由测量区、获得入射光强度的参考光探测器、产生光束线度范围在10微米到1.5毫米之间的窄光束产生器、光电探测器和与其连接的信号处理装置构成,其特征在于,所述的信号处理装置包括模拟信号处理器和信号后续处理器,所述的模拟信号处理器由放大器、低通滤波器、高通滤波器、RMS方均根处理器组成,透射光探测器检测到的透射光脉动信号通过放大器放大,一路经低通滤波器得到透射光平均值e{I}表示为S1的信号,另一路直接经RMS方均根处理器得到表示为S2’的透射光脉动信号平方的平均值e{I2}=e{I}2I 2或通过高通滤波器后再经RMS方均根处理器得到表示为S2的透射光脉动信号标准偏差平方值σI 2,参考光探测器输出经另一放大器放大后得到表示为S0的入射光信号I0;所述的信号后续处理器包括加法器、乘法器、除法器、对数放大器,由模拟信号处理器得到的三路信号S0、S1和S2或者由模拟信号处理器得到的三路信号S0、S1和S2’通过加法器、乘法器、除法器、对数放大器运算得到最后S3输出lne{T}、S4输出lne{T2}/lne{T}进入数据采集A/D卡。
CN200710042873A 2007-06-27 2007-06-27 透过率脉动法颗粒测量方法及其装置 Expired - Fee Related CN100595558C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710042873A CN100595558C (zh) 2007-06-27 2007-06-27 透过率脉动法颗粒测量方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710042873A CN100595558C (zh) 2007-06-27 2007-06-27 透过率脉动法颗粒测量方法及其装置

Publications (2)

Publication Number Publication Date
CN101187617A CN101187617A (zh) 2008-05-28
CN100595558C true CN100595558C (zh) 2010-03-24

Family

ID=39480101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710042873A Expired - Fee Related CN100595558C (zh) 2007-06-27 2007-06-27 透过率脉动法颗粒测量方法及其装置

Country Status (1)

Country Link
CN (1) CN100595558C (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002421A1 (de) * 2011-01-04 2012-07-05 Robert Bosch Gmbh Messgerät zur Messung von Partikelkonzentrationen mittels Streulicht und Verfahren zur Überwachung des Messgerätes
CN102160690B (zh) * 2011-01-17 2013-09-18 南京大树智能科技股份有限公司 滤棒圆周在线自动检测与控制方法及装置
CN105004634B (zh) * 2015-07-29 2017-11-24 广东光华科技股份有限公司 固态粉状物质在溶液中溶解时间的检测方法
CN105547930A (zh) * 2015-12-04 2016-05-04 上海同化新材料科技有限公司 粉体材料扬尘的检测装置及其检测方法
CN105510279A (zh) * 2015-12-11 2016-04-20 天津成科传动机电技术股份有限公司 基于光散射法的油品水分检测装置及检测方法
CN106568693B (zh) * 2016-11-16 2020-06-26 西北大学 一种基于光脉动的颗粒粒径检测装置
CN106644867B (zh) * 2016-12-30 2023-08-29 聚光科技(杭州)股份有限公司 气体中颗粒物的检测装置及方法
CN109187426A (zh) * 2018-08-30 2019-01-11 四川莱威盛世科技有限公司 一种基于红外光谱法的油品含水率测量仪及测量方法
CN109307646B (zh) * 2018-10-22 2020-04-07 中国石油大学(北京) 固含率脉动信号的解耦方法和装置
CN111289517B (zh) * 2020-03-27 2022-10-04 安泰科技股份有限公司 测量用于增材制造的粉末的铺展性的工装及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
基于动态光散射法的亚微米级微粒粒度测量. 郭永彩等.重庆大学学报(自然科学版),第29卷第2期. 2006
基于动态光散射法的亚微米级微粒粒度测量. 郭永彩等.重庆大学学报(自然科学版),第29卷第2期. 2006 *
透过率起伏光谱分析法测粒技术. 沈建琪等.光学学报,第26卷第3期. 2006
透过率起伏光谱分析法测粒技术. 沈建琪等.光学学报,第26卷第3期. 2006 *

Also Published As

Publication number Publication date
CN101187617A (zh) 2008-05-28

Similar Documents

Publication Publication Date Title
CN100595558C (zh) 透过率脉动法颗粒测量方法及其装置
CN201063015Y (zh) 透过率脉动法颗粒测量装置
CN101082559B (zh) 透过率相关频谱法颗粒测量方法及其装置
CN207408276U (zh) 一种高精度全粒径覆盖的大气悬浮颗粒浓度测量装置
CN103604777B (zh) 正交偏振光纤生物折射率传感器及其检测方法
CN102012368B (zh) 上转换发光颗粒多参数检测系统和方法
EP0352133A2 (en) Optical polarimeter
CN101699265A (zh) 动态偏振光散射颗粒测量装置及测量方法
CN104914024A (zh) 应用于大气中悬浮颗粒物的颗粒物质量浓度检测装置及其方法
US4801205A (en) Particle size measuring apparatus
CN203616232U (zh) 一种测量大气颗粒物的平均粒径和浓度的测量装置
CN102128639A (zh) 基于双激光器锁频的自发布里渊散射光时域反射仪
CN206557053U (zh) 一种油品质量检测装置
US5012118A (en) Apparatus and method for particle analysis
CN108287126A (zh) 纳米颗粒粒径测量系统
CN102419247B (zh) 高精度反射式光纤湍流检测装置及方法
CN103163051B (zh) 一种基于磁光调制的偏振光散射测量系统及方法
CN108333085B (zh) 一种具有电容及颜色补偿的光电式垂线含沙量检测方法
AU590223B2 (en) Concentration meter
CN201096701Y (zh) 透过率相关频谱法颗粒测量装置
CN106370569A (zh) 基于Mie散射的颗粒物在线监测仪的信号前置处理电路
CN106769731A (zh) 颗粒物浓度的测量方法及装置
CN111272285B (zh) 一种高速实时响应的偏振态测量分析仪
CN205103129U (zh) 新型颗粒物传感器
CN203745361U (zh) 同时检测气溶胶消光和散射系数的激光光腔衰荡光谱仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100324

Termination date: 20120627