CN201035086Y - Voltage measurement instrument - Google Patents

Voltage measurement instrument Download PDF

Info

Publication number
CN201035086Y
CN201035086Y CNU2007201099946U CN200720109994U CN201035086Y CN 201035086 Y CN201035086 Y CN 201035086Y CN U2007201099946 U CNU2007201099946 U CN U2007201099946U CN 200720109994 U CN200720109994 U CN 200720109994U CN 201035086 Y CN201035086 Y CN 201035086Y
Authority
CN
China
Prior art keywords
resistance
contact
range
node
measuring disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNU2007201099946U
Other languages
Chinese (zh)
Inventor
张春雷
方李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNU2007201099946U priority Critical patent/CN201035086Y/en
Application granted granted Critical
Publication of CN201035086Y publication Critical patent/CN201035086Y/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

A novel voltage measuring apparatus is disclosed in the utility model. A first stepping disk of the voltage measuring disk consists of a measuring disk and two non-resistance auxiliary disks; a second stepping disk consists of a measuring disk which is composed of eleven resistances of 110 Omega connected into a ring, and an auxiliary disk which is composed of ten resistances of 5 Omega; a third stepping disk consists of a measuring disk of 10*10 Omega and a substitution disk of 10*10 Omega; each contact of a fourth stepping disk is connected with the corresponding contact of the measuring disk of the third stepping disk. The measuring disks are connected by wires therebetween, thus switching is not needed when measuring, which can neglect variation and thermoelectric force influence when the voltage measuring apparatus measures. The voltage measuring apparatus has four ranges of 10-multiply, 1-multiply, 0.1-multiply and 0.01-multiply, and the minimum resolution is 0.1 mu V.

Description

A kind of pressure measuring instrument of novelty
Technical field
The utility model relates to the instrument that DC voltage is measured.
Background technology
Current for the potential difference meter that four measurement disks is arranged, in the connection between the four measurement disks, telophragma generally adopts switch to switch, and so just produces the variation of contact resistance, brings restriction to resolution.In order to overcome this problem, generally adopt big brush with the increase contact area, and adopt silver-carbon/carbon-copper composite material; Application number 200510062369.6 discloses the new method that the potential difference meter that four measurement disks is arranged solves the switch contact resistance variation, its first, each is made up of second step disc measuring disk and replacement dish, measuring disk is identical with resistance on the replacement dish, resistance of the every increase of measuring disk, the replacement dish just reduces same resistance, its the 3rd, the 4th step disc respectively has measuring disk, replacement dish and bracket panel are formed, because the 3rd step disc was declined at 10 o'clock, the total resistance of circuit changed when the 4th step disc was put different indicating value, the 3rd step disc was put at 10 o'clock, the total resistance of circuit was constant when the 4th step disc was put different indicating value, the 3rd step disc removes for this reason measuring disk, outside the replacement dish, increased bracket panel distinguish step disc put 10 and the circuit of declining 10 two kinds of situations connect, the 4th step disc has also increased bracket panel, has 10 resistance to insert or cut out several resistance respectively above and makes the total resistance of circuit constant.Four measurement disks is connected two and measures between terminal, and the brush on the step disc switch is got rid of outside the measurement loop, does not exist switch to switch between the resistance on the four measurement disks, does not also just produce variation; Because 15 ° of angles are rotated in each stepping of potential difference meter step disc switch, every layer of 24 contact that can distribute, the measuring disk of first step disc and replacement dish are 21 contacts, two-layer inside and outside needing, every layer all has resistance, and internal layer resistance is overproof makes troubles to maintenance, the measuring disk of the 4th step disc, replacement dish and each half storey of bracket panel, the step disc switch also needs inside and outside two-layer, and internal layer also has resistance, and maintenance is also inconvenient.
The utility model content
The purpose of this utility model is the pressure measuring instrument of a kind of novelty of design, in the connection of four measurement disks, do not switch by switch, and first step disc cancellation replacement dish, and make four resistance on the step disc can both be contained in one deck.
The technical solution of the utility model is taked like this: from the positive pole of external 15V working power through the resistance measurement network formed by four step discs, range transfer resistance and range selector setting resistance R to 509 Ω NAnd the lockable adjustable resistance R of 0~1 Ω P3Again through 0~75 Ω adjustable resistance R PAnd 20 * 70 Ω adjustable resistance R P1The negative pole of getting back to external 15V working power is formed the work loop of pressure measuring instrument; Standard cell E NAnodal through being connected to the double-point double-throw switch K of galvanometer G between two normally closed contacts 2To setting up resistance R NAnd lockable adjustable resistance R P3Sliding contact, again through 75K Ω current-limiting resistance R to standard cell E NNegative pole is formed the standard loop of pressure measuring instrument; Be used to connect measured " U X" two terminals, anodal terminal is through behind the four measurement disks, again through being connected to the double-point double-throw switch K of galvanometer G between two normally closed contacts 2The equalizing network of forming pressure measuring instrument to the negative pole terminal; It is characterized in that first step disc has measuring disk I, it has 0,1,2 ... 22 totally 23 gears, except that between 0,1 contact, directly connecting, connect one of 100 Ω resistance between all the other each grade contacts, other has bracket panel I ' and bracket panel I "; the brush of bracket panel I ' and bracket panel I " the tie point that is connected with lead of brush be circuit node B, bracket panel I ' and bracket panel I " 0 contact isolated, all the other all contacts connect with lead; Second step disc is made up of measuring disk II and bracket panel II ', measuring disk II has 0,1,2 ... 10 totally 11 gears have the resistance of 11 110 Ω to connect circlewise: the 1st resistance R above 1One end welds the 2nd resistance R 2One end, resistance R 2The other end welds the 3rd resistance R 3One end ... welding successively, the 10th resistance R 10The other end and the 11st resistance R 11An end tie point be circuit node C, the 11st resistance R 11The other end and the 1st resistance R 1The other end be connected in 0 contact of measuring disk in the 3rd step disc, 0 contact of measuring disk is circuit node D in the 3rd step disc, resistance R 1With resistance R 2Tie point be connected resistance R through 200 Ω resistance with the 1st contact 2With resistance R 3Tie point be connected resistance R through 120 Ω resistance with the 2nd contact 3With resistance R 4Tie point be connected resistance R through 60 Ω resistance with the 3rd contact 4With resistance R 5Tie point be connected resistance R through 20 Ω resistance with the 4th contact 5With resistance R 6Tie point be connected resistance R with the 5th contact 6With resistance R 7Tie point be connected resistance R with the 6th contact 7With resistance R 8Tie point be connected resistance R through 20 Ω resistance with the 7th contact 8With resistance R 9Tie point be connected resistance R through 60 Ω resistance with the 8th contact 9With resistance R 10Tie point be connected resistance R through 120 Ω resistance with the 9th contact 10With resistance R 11Tie point be connected resistance R through 200 Ω resistance with the 10th contact 1With resistance R 11The node D that connects is connected with 0 contact through 300 Ω resistance, is the resistance of 10 * 5 Ω on the bracket panel II ' of second step disc; The 3rd step disc is made up of measuring disk III that is both 10 * 10 Ω and replacement dish III ', and the brush of the brush of measuring disk III and replacement dish III ' is with a slice metallic brush sheet; The 4th step disc has only measuring disk IV, and the corresponding contact on its each contact and the measuring disk III connects; Bracket panel II ' the 10th contact and 700 Ω range transfer resistance R 17An end and 70 Ω range transfer resistance R 18An end be parallel to node A, node A connects the positive pole of the external working power of pressure measuring instrument, 700 Ω range transfer resistance R 17The other end connect range selector K 1Middle K 1-1Layer * 1 range contact, 70 Ω range transfer resistance R 18The other end connect range selector K 1Middle L 1-1Layer * 0.1 and * 0.01 range contact, 0 contact of bracket panel II ' connects bracket panel I " 0 contact, the brush of bracket panel II ' connects bracket panel I " other contact except that 0 contact, the brush of measuring disk II is through 1900 Ω resistance R 12Back connected node B, bracket panel I ' other contacts except that 0 contact connect measuring disk I the 22nd contact, measuring disk I the 0th, 1 contact is connected with node C, and 0 contact of bracket panel I ' is connected with node D after through 2200 Ω resistance, the brush series connection 1000k Ω resistance R of measuring disk IV 15Back and 147.25 Ω resistance R 16An end tie point be circuit node E, the 10th of replacement dish III ' series connection 99950 Ω resistance R 14Back connected node E, 5293.92 Ω resistance R 13One end connected node D, other end connected node E, 147.25 Ω resistance R 16The other end be connected in range selector K 1Middle K 1-1Layer * 10 range contacts, range selector K 1Middle K 1-1Layer * 10 range contacts and range selector K 1Middle K 1-2Layer * 1 range contact connects K with lead 1-2Layer * pass through 630 Ω resistance R between 1 range contact and * 0.1 range contact 19Connect K 1-2Layer * pass through 63000 Ω resistance R between 0.1 range contact and * 0.01 range contact 20Connect 5670 Ω resistance R 21An end by 560.07 Ω resistance R 23Connect range selector K 1Middle K 1-3Layer * 0.01 range contact, by 560.7 Ω resistance R 22Connect range selector K 1Middle K 1-3The layer * 0.1 range contact and with range selector K 1Middle K 1-3Layer * 1 range contact connects 5670 Ω resistance R with lead 21The other end and range selector K 1Middle K 1-3Layer * 10 range contacts all with set up resistance R NHot end connect range selector K 1In three layers of K 1-1Layer, K 1-2Layer, K 1-3Three normally closed contacts of layer connect with lead; Be used to connect measured " U X" two measure terminal, anodally be connected with measuring disk I brush, negative pole passes through double-point double-throw switch K 2The back is connected with the 10th contact of measuring disk III.
By above technical scheme, first step disc need not the replacement dish, does not all have resistance on the two-layer bracket panel, can be contained in the switch nexine, and measuring disk I is contained in the switch skin; Second step disc need not the replacement dish, 15 ° of angles are rotated in each stepping of switch, each 11 contact of the bracket panel II ' of second step disc and measuring disk II are distributed in same one deck of switch, resistance is contained in the switch skin, three, the 4th step disc does not all have bracket panel, resistance can be contained in the switch skin, unloads when resistance is overproof and loads onto easily, and this brings convenience for debugging and maintenance; This makes pressure measuring instrument simple in structure, and volume-diminished has also reduced production cost; On the total circuit partly in pressure measuring instrument internal compensation loop and work loop, there is not switch, so there is not variation influence, when the reset of pressure measuring instrument four measurement disks, the zero potential of pressure measuring instrument is the zero potential that D is ordered, in equalizing network, do not exist working current to flow through lead resistance, so this pressure measuring instrument zero potential is very little, owing on the total circuit partly in pressure measuring instrument internal compensation loop and work loop, do not have switch to switch, so this pressure measuring instrument thermoelectrical potential and variable thermoelectrical potential are also very little.
Description of drawings
Accompanying drawing is the utility model schematic circuit.
Embodiment
Among the figure, measuring disk II is 11 the 110 end to end resistance rings of Ω between node C and node D, when measuring disk II puts " 5 " or puts " 6 ", the brush of measuring disk II is to being that 5 110 Ω resistance are in parallel with 6 110 Ω resistance between the node D, back in parallel resistance is 300 Ω to the maximum, other contact of measuring disk II all is connected to 300 Ω to the resistance value between the node D and is as the criterion, and corresponding point directly are connected on 5,6 contacts and the resistance ring; When measuring disk II put " 4 " or puts " 7 ", the brush of measuring disk II was to being that 4 110 Ω resistance are in parallel with 7 110 Ω resistance between the node D, and back in parallel resistance is 280 Ω, so 4,7 contacts are connected with corresponding point on the resistance ring through 20 Ω resistance; When measuring disk II put " 3 " or puts " 8 ", the brush of measuring disk II was to being that 3 110 Ω resistance are in parallel with 8 110 Ω resistance between the node D, and back in parallel resistance is 240 Ω, so 3,8 contacts are connected with corresponding point on the resistance ring through 60 Ω resistance; When measuring disk II put " 2 " or puts " 9 ", the brush of measuring disk II was to being that 2 110 Ω resistance are in parallel with 9 110 Ω resistance between the node D, and back in parallel resistance is 180 Ω, so 2,9 contacts are connected with corresponding point on the resistance ring through 120 Ω resistance; When measuring disk II set or when putting " 10 ", the brush of measuring disk II is to being that 1 110 Ω resistance is in parallel with 10 110 Ω resistance between the node D, and back in parallel resistance is 100 Ω, so 1,10 contacts are connected with corresponding point on the resistance ring through 200 Ω resistance; When measuring disk II reset, the brush of measuring disk II is between the node D being the connections of 300 Ω resistance.
The first step disc reset, second step disc are put " n " (n=0,1,2,3 ... 10) time, Node B is that two resistance that are both 2200 Ω are in parallel with resistance value between the node D, is 1100 Ω resistance values therefore.
First step disc is put " n " (n=0,1,2,3 ... 22), during the second step disc reset, Node B and resistance value between the node D also are that the resistance of two 2200 Ω is in parallel, also are 1100 Ω resistance values therefore.
When first, second step disc during not reset, except that second step disc was put " 10 ", the calculating of the resistance value between Node B and the node D need be carried out triangle-star conversion.
During the second step disc set, the calculating of the resistance value between Node B and the node D: establish resistance (R 2+ R 3+ ... + R 9+ R 10) and resistance R 11The both sides resistance is equivalent to resistance r 1, resistance R 11With resistance R 1The both sides resistance is equivalent to resistance r 1' resistance (R 2+ R 3+ ... + R 9+ R 10) and resistance R 1The both sides resistance is equivalent to resistance r 1", be equivalent to resistance r 1, r 1', r 1" intersection point is Q 1:
R then 1=(R 2+ R 3+ ... + R 9+ R 10) * R 11/ (R 1+ R 2+ ... + R 10+ R 11)=9 * 110 * 110/11 * 110 Ω=90 Ω
r 1’=R 1×R 11/(R 1+R 2+…+R 10+R 11)=110×110/11×110Ω=10Ω
r 1”=(R 2+R 3+…+R 9+R 10)×R 1/(R 1+R 2+…+R 10+R 11)=9×110×110/11×110Ω=90Ω
Resistance value between Node B and the node D equals (2100 Ω+r 1) * (1900 Ω+200 Ω+r 1")/(2 * 2190) Ω+r 1'=2190 Ω/2+10 Ω=1095 Ω+10 Ω=1105 Ω
When second step disc is put " 2 ", the calculating of the resistance value between Node B and the node D: establish resistance (R 3+ R 4+ ... + R 9+ R 10) and resistance R 11The both sides resistance is equivalent to resistance r 2, resistance R 11With resistance (R 1+ R 2) the both sides resistance is equivalent to resistance r 2' resistance (R 3+ R 4+ ... + R 9+ R 10) and resistance (R 1+ R 2) the both sides resistance is equivalent to resistance r 2", be equivalent to resistance r 2, r 2', r 2" intersection point is Q 2:
R then 2=80 Ω r 2'=20 Ω r 2"=160 Ω
Resistance value between Node B and the node D equals (2100 Ω+r 2) * (1900 Ω+120 Ω+r 2")/(2 * 2180) Ω+r 2'=2180 Ω/2+20 Ω=1090 Ω+20 Ω=1110 Ω.
In like manner, when second step disc was put " 3 ", the resistance value between Node B and the node D was 1115 Ω,
When second step disc was put " 4 ", the resistance value between Node B and the node D was 1120 Ω,
When second step disc was put " 5 ", the resistance value between Node B and the node D was 1125 Ω,
……
When second step disc was put " 10 ", the resistance value between Node B and the node D was 1150 Ω.Because the every stepping of measuring disk II increases by 5 Ω, so the every stepping of bracket panel II ' reduces by 5 Ω, makes the total resistance of circuit constant; When the first or second step disc reset, the resistance value between Node B and the node D is 1100 Ω, and 10 * 5 Ω resistance of bracket panel II ' all enter circuit.
When three, the 4th step disc was put different indicating value, the resistance between node D and node E changed between 5002.728 Ω~5002.780 Ω, and node E connects 147.25 Ω resistance R 16After, pass through node D to K switch from node A 1* resistance value between 10 range contacts is 6300 Ω, the change in resistance of 0.05 Ω, to the relative variation of 6300 Ω less than 100,000/, influence can be ignored.
Electric current during the standardization of pressure measuring instrument working current is 2m A, when * 10 ranges, and 700 Ω range transfer resistance R 17And 70 Ω range transfer resistance R 18To working current shunting, thus 2m A electric current from node A to Node B again to node D.
When * 10 ranges, measuring disk II puts " n " (n=1,2,3 ... 9) time, I is to being equivalent to resistance r for Node B process measuring disk n, r n', r n" intersection point Q n(n=1,2,3 ... 9) with through 1900 Ω resistance R 12To intersection point Q nResistance value equates that when measuring disk II put " 10 ", I was to the resistance value of node C and through 1900 Ω resistance R for Node B process measuring disk 12Resistance value to node C all equals 2100 Ω, so flow through measuring disk I and 1900 Ω resistance R 12Electric current also respectively be 1m A.It is 100mV that 1m A electric current flows through the ohmically voltage of 100 Ω, and the every stepping of measuring disk I is 100mV.
When not considering measuring disk I, ten one the 110 Ω end to end resistance rings of measuring disk II between 1~10 contact, resistance R during measuring disk II set 1To be all 110 Ω resistance in parallel with 10 resistances, flows through resistance R 11Electric current be 1/11mA, the voltage U between node C and the node D CD=1/11 * 110mV=10mV; Resistance (R when measuring disk II puts " 2 " 1+ R 2) to be all 110 Ω resistance in parallel with 9 resistances, flows through resistance R 11Electric current be 2/11mA, the voltage U between node C and the node D CD=2/11 * 110mV=20mV; (n=1,2,3 when in like manner, measuring disk II puts " n " ... 10) voltage U between resistance nodes C and the node D CD=n * 10mV; When measuring disk I and measuring disk II reset, electric current is without resistance R 11, U CD=0mV.
The electric current that flows through measuring disk I when not reset of measuring disk I is superimposed upon on the measuring disk II at the 100mV voltage between node C, the D, the resistance between 0,1 contact of replacement measuring disk I.
The 2mA working current is divided into three the tunnel: the one tunnel through measuring disk IV through first, second step disc behind node D, another road is through replacement dish III ', and one the tunnel through 5293.92 Ω resistance R again 13, three road electric currents meet at node E.When three, the 4th step disc is put different indicating value between node D and the node E resistance change, three, resistance minimum between node D and node E during the 4th step disc reset indicating value, resistance maximum between node D and node E when three, the 4th step disc is put " 10 " indicating value, get intermediate value, resistance is not having resistance R between node D and the node E when the 3rd, the 4th step disc is put " 5 " indicating value for this reason 13When in parallel is (10 6÷ 11+50) Ω is 0.11mA in order to make the total current that flows through the 3rd, the 4th step disc, with 5293.92 Ω resistance R 13The electric current of shunting 1.89mA; Three, during the 4th step disc reset indicating value, the total current that flows through the 3rd, the 4th step disc is 0.11001mA, and when the 3rd, the 4th step disc was put " 10 " indicating value, the total current that flows through the 3rd, the 4th step disc was 0.10999mA, error is ten thousand/, influence can be ignored; Flow through resistance R 14With resistance R 15The current ratio exact value be 10, when the 3rd, the 4th step disc reset indicating value, flow through resistance R 14With resistance R 15Current ratio be 9.995, when the 3rd, the 4th step disc is put " 10 " indicating value, flow through resistance R 14With resistance R 15Current ratio be 10.005, error is 5/10000ths owing to be last two dishes, influence also can be ignored; The 3rd step disc is got the 0.1mA electric current on the resistance of measuring disk III, and the 4th step disc is got the 0.01mA electric current, and the resistance on the measuring disk III is 10 Ω, and the every stepping of the 3rd step disc is 1mV, and the every stepping of the 4th step disc is 0.1mV.
When * 10 range working current standardization, first step disc is put n 1, second step disc puts n 2, the 3rd step disc puts n 3, the 4th step disc puts n 4, " U at this moment x" two measure that voltage is between terminal:
U x=100n 1+10n 2+1n 3+0.1n 4 (mV)
During * 1 range, node A process node D is to range selector K 1Middle K 1-2* 6300 Ω resistance and 700 Ω resistance R between the 1 range contact 17Parallel connection, 6300 Ω are 9 times of 700 Ω, therefore, 1/10 working current is that the 0.2mA electric current flows through Node B process node D to range selector K 1Middle K 1-2* 1 range contact, the resistance value that reduces after the parallel connection is advanced 5670 Ω auxiliary resistance R by series connection 21Come the total resistance of holding circuit constant; At this moment first step disc is put n 1, second step disc puts n 2, the 3rd step disc puts n 3, the 4th step disc puts n 4, " U x" two measure that voltage is between terminal:
U x=10n 1+1n 2+0.1n 3+0.01n 4 (mV)
During * 0.1 range, node A process node D is to range selector K 1Middle K 1-2* between the 0.1 range contact 6300 Ω resistance, the 630 Ω resistance R of having connected 19Sum equals 6930 Ω, with its parallel resistor R 18Be 70 Ω, 6930 Ω are 99 times of 70 Ω, and therefore, 1/100 working current is that the 0.02mA electric current flows through Node B process node D to resistance R 19, the resistance value that reduces after the parallel connection is advanced 560.7 Ω auxiliary resistance R by series connection 22With 5670 Ω auxiliary resistance R 21Come the total resistance of holding circuit constant; At this moment first step disc is put n 1, second step disc puts n 2, the 3rd step disc puts n 3, the 4th step disc puts n 4, " U x" two measure that voltage is between terminal:
U x=n 1+0.1n 2+0.01n 3+0.001n 4 (mV)
During * 0.01 range, node A process node D is to range selector K 1Middle K 1-2* between the 0.01 range contact 6300 Ω resistance, the 630 Ω resistance R of having connected 19And 63000 Ω resistance R 20Sum equals 69930 Ω, with its parallel resistor R 18Be 70 Ω, 69930 Ω are 999 times of 70 Ω, and therefore, 1/1000 working current is that the 0.002mA electric current flows through Node B process node D to range selector K 1Middle K 1-2* 0.01 range contact, the resistance value that reduces after the parallel connection is advanced 560.07 Ω auxiliary resistance R by series connection 23With 5670 Ω auxiliary resistance R 21Come the total resistance of holding circuit constant; At this moment first step disc is put n 1, second step disc puts n 2, the 3rd step disc puts n 3, the 4th step disc puts n 4, " U x" two measure that voltage is between terminal:
U x=0.1n 1+0.01n 2+0.001n 3+0.0001n 4 (mV)
The electromotive force of every series-produced standard cell disperses, and between 1.0188V~1.0196V, standardized working current is 2mA, therefore sets up resistance R NGet 509 Ω, add the lockable adjustable resistance R of 0~1 Ω P3, variation range that can the coverage criteria cell emf.
Node A is to setting up resistance R NHot end between the resistance of four ranges all be 6300 Ω, the setting resistance R of 509 Ω NWith 0~1 Ω adjustable resistance R P3Be 510 Ω, amount to 6810 Ω, bear about 13.62V voltage; The pressure measuring instrument external power supply is as adopting dry cell power supply, will ten groups of dry cells series connection, and under new, former affection condition, can both make the working current of pressure measuring instrument be adjusted to standardization in order to make dry cell, for this reason, get adjustable resistance R P1Be 20 * 70 Ω, adjustable resistance R P2Be 0~75 Ω, dry cell voltage usable range is between 13.62V~16.57V, and the suggestion of this pressure measuring instrument external power supply adopts the new electronics factory in Shanghai to produce YJ49b type stabilized voltage supply, and it has many grades of high stability voltage outputs.
The normalized current of pressure measuring instrument is such acquisition: 2V standard signal voltage is pressed polarity and pressure measuring instrument " U x" two measure terminal and connect, the total indicating value of each step disc of pressure measuring instrument is identical with the standard signal magnitude of voltage, double-point double-throw switch K 2Throw to the left side, regulate adjustable resistance R P1And adjustable resistance R P2, make galvanometer G nulling; Again with double-point double-throw switch K 2Throw to the right, regulate adjustable resistance R P3, make galvanometer G nulling, repeat once again after, adjustable resistance R P3Locking, at this moment the working current of pressure measuring instrument is with regard to standardization.

Claims (1)

1. the pressure measuring instrument of a novelty, from the positive pole of external 15V working power through the resistance measurement network formed by four step discs, range transfer resistance and range selector setting resistance R to 509 Ω NAnd the lockable adjustable resistance R of 0~1 Ω P3Again through 0~75 Ω adjustable resistance R P2And 20 * 70 Ω adjustable resistance R P1The negative pole of getting back to external 15V working power is formed the work loop of pressure measuring instrument; Standard cell E NAnodal through being connected to the double-point double-throw switch K of galvanometer G between two normally closed contacts 2To setting up resistance R NAnd lockable adjustable resistance R P3Sliding contact, again through 75K Ω current-limiting resistance R to standard cell E NNegative pole is formed the standard loop of pressure measuring instrument; Be used to connect measured " U X" two terminals, anodal terminal is through behind the four measurement disks, again through being connected to the double-point double-throw switch K of galvanometer G between two normally closed contacts 2The equalizing network of forming pressure measuring instrument to the negative pole terminal; It is characterized in that first step disc has measuring disk I, it has 0,1,2 ... 22 totally 23 gears, except that between 0,1 contact, directly connecting, connect one of 100 Ω resistance between all the other each grade contacts, other has bracket panel I ' and bracket panel I "; the brush of bracket panel I ' and bracket panel I " the tie point that is connected with lead of brush be circuit node B, bracket panel I ' and bracket panel I " 0 contact isolated, all the other all contacts connect with lead; Second step disc is made up of measuring disk II and bracket panel II ', measuring disk II has 0,1,2 ... 10 totally 11 gears have the resistance of 11 110 Ω to connect circlewise: the 1st resistance R above 1One end welds the 2nd resistance R 2One end, resistance R 2The other end welds the 3rd resistance R 3One end ... welding successively, the 10th resistance R 10The other end and the 11st resistance R 11An end tie point be circuit node C, the 11st resistance R 11The other end and the 1st resistance R 1The other end be connected in 0 contact of measuring disk in the 3rd step disc, 0 contact of measuring disk is circuit node D in the 3rd step disc, resistance R 1With resistance R 2Tie point be connected resistance R through 200 Ω resistance with the 1st contact 2With resistance R 3Tie point be connected resistance R through 120 Ω resistance with the 2nd contact 3With resistance R 4Tie point be connected resistance R through 60 Ω resistance with the 3rd contact 4With resistance R 5Tie point be connected resistance R through 20 Ω resistance with the 4th contact 5With resistance R 6Tie point be connected resistance R with the 5th contact 6With resistance R 7Tie point be connected resistance R with the 6th contact 7With resistance R 8Tie point be connected resistance R through 20 Ω resistance with the 7th contact 8With resistance R 9Tie point be connected resistance R through 60 Ω resistance with the 8th contact 9With resistance R 10Tie point be connected resistance R through 120 Ω resistance with the 9th contact 10With resistance R 11Tie point be connected resistance R through 200 Ω resistance with the 10th contact 1With resistance R 11The node D that connects is connected with 0 contact through 300 Ω resistance, is the resistance of 10 * 5 Ω on the bracket panel II ' of second step disc; The 3rd step disc is made up of measuring disk III that is both 10 * 10 Ω and replacement dish III ', and the brush of the brush of measuring disk III and replacement dish III ' is with a slice metallic brush sheet; The 4th step disc has only measuring disk IV, and the corresponding contact on its each contact and the measuring disk III connects; Bracket panel II ' the 10th contact and 700 Ω range transfer resistance R 17An end and 70 Ω range transfer resistance R 18An end be parallel to node A, node A connects the positive pole of the external working power of pressure measuring instrument, 700 Ω range transfer resistance R 17The other end connect range selector K 1Middle K 1-1Layer * 1 range contact, 70 Ω range transfer resistance R 18The other end connect range selector K 1Middle K 1-1Layer * 0.1 and * 0.01 range contact, 0 contact of bracket panel II ' connects bracket panel I " 0 contact, the brush of bracket panel II ' connects bracket panel I " other contact except that 0 contact, the brush of measuring disk II is through 1900 Ω resistance R 12Back connected node B, bracket panel I ' other contacts except that 0 contact connect measuring disk I the 22nd contact, measuring disk I the 0th, 1 contact is connected with node C, and 0 contact of bracket panel I ' is connected with node D after through 2200 Ω resistance, the brush series connection 1000k Ω resistance R of measuring disk IV 15Back and 147.25 Ω resistance R 16An end tie point be circuit node E, the 10th of replacement dish III ' series connection 99950 Ω resistance R 14Back connected node E, 5293.92 Ω resistance R 13One end connected node D, other end connected node E, 147.25 Ω resistance R 16The other end be connected in range selector K 1Middle K 1-1Layer * 10 range contacts, range selector K 1Middle K 1-1Layer * 10 range contacts and range selector K 1Middle K 1-2Layer * 1 range contact connects K with lead 1-2Layer * pass through 630 Ω resistance R between 1 range contact and * 0.1 range contact 19Connect K 1-2Layer * pass through 63000 Ω resistance R between 0.1 range contact and * 0.01 range contact 20Connect 5670 Ω resistance R 21An end by 560.07 Ω resistance R 23Connect range selector K 1Middle K 1-3Layer * 0.01 range contact, by 560.7 Ω resistance R 22Connect range selector K 1Middle K 1-3The layer * 0.1 range contact and with range selector K 1Middle K 1-3Layer * 1 range contact connects 5670 Ω resistance R with lead 21The other end and range selector K 1Middle K 1-3Layer * 10 range contacts all with set up resistance R NHot end connect range selector K 1In three layers of K 1-1Layer, K 1-2Layer, K 1-3Three normally closed contacts of layer connect with lead; Be used to connect measured " U X" two measure terminal, anodally be connected with measuring disk I brush, negative pole passes through double-point double-throw switch K 2The back is connected with the 10th contact of measuring disk III.
CNU2007201099946U 2007-05-29 2007-05-29 Voltage measurement instrument Expired - Lifetime CN201035086Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2007201099946U CN201035086Y (en) 2007-05-29 2007-05-29 Voltage measurement instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2007201099946U CN201035086Y (en) 2007-05-29 2007-05-29 Voltage measurement instrument

Publications (1)

Publication Number Publication Date
CN201035086Y true CN201035086Y (en) 2008-03-12

Family

ID=39195977

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2007201099946U Expired - Lifetime CN201035086Y (en) 2007-05-29 2007-05-29 Voltage measurement instrument

Country Status (1)

Country Link
CN (1) CN201035086Y (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063694B (en) * 2007-05-29 2010-06-02 张春雷 Voltage measurement instrument
CN103777051A (en) * 2011-12-30 2014-05-07 孙笑声 Voltage measuring instrument
CN103777050A (en) * 2011-12-30 2014-05-07 孙笑声 Three-range voltage measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063694B (en) * 2007-05-29 2010-06-02 张春雷 Voltage measurement instrument
CN103777051A (en) * 2011-12-30 2014-05-07 孙笑声 Voltage measuring instrument
CN103777050A (en) * 2011-12-30 2014-05-07 孙笑声 Three-range voltage measuring instrument

Similar Documents

Publication Publication Date Title
CN100516891C (en) Two-range DC potentiometer
CN100587499C (en) Three-range portable potentiometer
CN201035086Y (en) Voltage measurement instrument
CN100529768C (en) Voltage measuring instrument with minimum stepping 0.1uV
CN201054007Y (en) Voltage measuring instrument with multiple ranges
CN201053992Y (en) Two-range portable potentiometer
CN101059535B (en) Two-range portable potentiometer
CN201053997Y (en) Two-range DC potentiometer
CN101063691B (en) Three range DC potential difference meter
CN201054006Y (en) Four-range voltage measuring device adopting current splitting branch
CN201035083Y (en) Voltage measurement instrument with multi-range high distinguishability
CN100523827C (en) Voltage measuring instrument with multiple range
CN201035068Y (en) Double range potential difference meter
CN101055286B (en) Four-range voltage measuring device adopting current splitting branch
CN100570378C (en) A kind of pressure measuring instrument of eliminating variation and thermoelectric potential influence
CN201054001Y (en) Voltage measuring instrument without variation
CN201035073Y (en) Three range DC potential difference meter
CN201053994Y (en) Three-range potentiometer adopting transposition branch
CN201054008Y (en) Voltage measuring instrument for eliminating variation and thermoelectric potential influence
CN201053996Y (en) Portable potentiometer
CN201054009Y (en) Four-range voltage measuring instrument
CN201053991Y (en) Four-range potentiometer
CN100587503C (en) Four-range voltage measuring instrument
CN201054003Y (en) Variation-free voltage measuring device adopting transposition branch
CN201053989Y (en) Four-range DC potentiometer

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20080312

Effective date of abandoning: 20070529