CN201017224Y - 工业聚丙烯生产熔融指数检测故障诊断装置 - Google Patents

工业聚丙烯生产熔融指数检测故障诊断装置 Download PDF

Info

Publication number
CN201017224Y
CN201017224Y CNU2006201413657U CN200620141365U CN201017224Y CN 201017224 Y CN201017224 Y CN 201017224Y CN U2006201413657 U CNU2006201413657 U CN U2006201413657U CN 200620141365 U CN200620141365 U CN 200620141365U CN 201017224 Y CN201017224 Y CN 201017224Y
Authority
CN
China
Prior art keywords
module
data
wavelet
principal component
dcs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU2006201413657U
Other languages
English (en)
Inventor
刘兴高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNU2006201413657U priority Critical patent/CN201017224Y/zh
Application granted granted Critical
Publication of CN201017224Y publication Critical patent/CN201017224Y/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种工业聚丙烯生产熔融指数检测故障诊断装置,包括与工业过程对象连接的现场智能仪表、DCS系统以及上位机,所述的DCS系统由数据接口、控制站、数据库构成;智能仪表、DCS系统、上位机依次相连,所述的上位机包括标准化处理模块、小波分解模块、主元分析功能模块、小波重构功能模块、支持向量机分类器功能模块以及故障判断模块。本实用新型提供一种同时考虑工业过程数据的复共线性、非线性特性和多尺度特性、能够得到良好的诊断效果的工业聚丙烯生产熔融指数检测故障诊断装置。

Description

工业聚丙烯生产熔融指数检测故障诊断装置
(一)技术领域
本实用新型涉及工业过程故障诊断领域,特别地,特别地,涉及一种工业聚丙烯生产熔融指数检测故障诊断装置。
(二)背景技术
聚丙烯是以丙烯单体为主聚合而成的一种合成树脂,是塑料工业中的重要产品。在目前我国的聚烯烃树脂中,成为仅次于聚乙烯和聚氯乙烯的第三大塑料。在聚丙烯生产过程中,熔融指数(MI)是反映产品质量的一个重要指标,是生产质量控制和牌号切换的重要依据。但MI只能离线检测,一般离线分析至少需要近2小时,耗资而且耗时,特别是离线分析的2小时期间将无法及时了解聚丙烯生产过程的状态。因此,选取与熔融指数密切相关的易测变量作为二次变量,从中分析熔融指数,检测生产过程是否正常,对丙烯聚合生产过程进行监控就显得异常重要。
聚丙烯生产过程从本质上来说是具有多尺度特性的,比如微观、宏观聚合动力学的空间多尺度特性,过程变量总是在不同采样率或尺度下得到的,相应的控制或操作也是在不同的时间和空间尺度下发生的。只有全面考虑到过程的复共线性和非线性特性,同时考虑丙烯聚合生产过程的多尺度特性,才能对聚丙烯生产进行准确、可靠的故障诊断。采用统计的方法进行故障诊断,避开了复杂的机理分析,求解相对方便。但是目前的故障诊断只考虑了聚丙烯生产过程的复共线性和非线性特性,而没有考虑到过程的多尺度特性,往往难以得到较好的故障诊断效果。
(三)发明内容
为了克服已有的聚丙烯生产熔融指数检测故障诊断装置的没有考虑过程的多尺度特性、难以得到较好的诊断效果的不足,本实用新型提供一种同时考虑工业过程数据的复共线性、非线性特性和多尺度特性、能够得到良好的诊断效果的工业聚丙烯生产熔融指数检测故障诊断装置。
本实用新型解决其技术问题所采用的技术方案是:
一种工业聚丙烯生产熔融指数检测故障诊断装置,包括与聚丙烯生产过程对象连接的现场智能仪表、DCS系统以及上位机,所述的DCS系统由数据接口、控制站、数据库构成;智能仪表、DCS系统、上位机依次相连,所述的上位机包括:
标准化处理模块,用于对数据进行标准化处理,各变量的均值为0,方差为1,得到输入矩阵X,采用以下过程来完成:
1)计算均值: TX ‾ = 1 N Σ i = 1 N TX i , - - - ( 1 )
2)计算方差: σ x 2 = 1 N - 1 Σ i = 1 N ( TX i - TX ‾ ) , - - - ( 2 )
3)标准化: X = TX - TX ‾ σ x , - - - ( 3 )
其中,TX为训练样本,N为训练样本数,
Figure Y20062014136500054
为训练样本的均值;
小波分解功能模块,用于采用Mallat塔式分解算法将原始信号分解为一系列近似信息和细节信息,采用以下步骤来实现:
①将原始信号空间V0可以分解为一系列逼近空间VJ与细节空间Wj,其中J是最粗的尺度,也称为分解的尺度;
②计算逼近空间VJ。空间VJ由尺度函数{J,k(t),k∈Z}张成,采用下式来计算:
VJ={J,k(t)|J,k(t)=2-J/2(2-Jt-k)}    (4)
③计算细节空间Wj。细节空间Wj由小波函数{ψj,k(t),j=1,…,J,k∈Z}张成,采用下式来计算:
Wj={ψj,k(t)|ψj,k(t)=2-j/2ψ(2-jt-k)}    (5)
其中j是尺度因子,k是平移因子;
④从而得到原始信息的分解信息,采用下式进行计算:
Figure Y20062014136500055
其中,第一项代表近似信息,第二项为细节信息,逼近因子aJ,k与细节因子dj,k采用Mallat算法计算;
所述的近似信息AJf(t)与细节信息Djf(t)(j=1,2,…,J),定义如下:
Figure Y20062014136500056
D j f ( t ) = Σ k ∈ Z d j , k ψ j , k ( t ) - - - ( 8 )
主元分析功能模块,用于进行主元分析提取主成分,采用协方差奇异值分解的方法,采用以下步骤来实现:
①计算X的协方差阵,记为∑X
②对∑X进行奇异值分解,得到特征根λ1,λ2,...,λp,其中λ1≥2≥…≥λp,对应的特征向量矩阵为U;
③计算总方差和每个特征值对应的方差贡献率,按各个特征值的方差贡献率从大到小累加直到总的方差贡献率达到给定值;
④选取特征向量矩阵U的前k列,作为变换矩阵T;
⑤计算主元,通过式子F=T×X计算得到主元F;
小波重构功能模块,用于进行小波重构,根据小波理论,将各尺度下得到的主元相加,即得到总的主元;
支持向量机分类器功能模块,用于核函数采用径向基函数K(xi,x)=exp(-||x-xi||/σ2),将训练过程化为如下二次规划求解问题:
ω ( α ) = Σ i = 1 N α i - 1 2 Σ i , j = 1 N α i α j y i y j K ( x i , x j ) - - - ( 9 )
得到分类函数,即如下函数的符号函数:
f ( x ) = Σ i = 1 m y i α i K ( x i , x ) + b - - - ( 10 )
其中,αi(i=1,…,N)是拉各朗日乘子,xi(i=1,…,N)是输入向量,y是输出变量,ω是支持向量机超平面的法向量,决定超平面的的方向,b为决定超平面位置的参数,δ为核参数;
定义当f(x)>=0,数据样本处于正常状态;当f(x)<0时,处于异常状态;
信号采集模块,用于设定每次采样的时间间隙,采集现场智能仪表的信号;
待诊断数据确定模块,用于将采集的数据传送到DCS实时数据库中,在每个定时周期从DCS数据库的实时数据库中,得到最新的变量数据作为待诊断数据VX;
故障诊断模块,用于对待检测数据VX用训练时得到的
Figure Y20062014136500063
和σx 2进行标准化处理,并将标准化处理后的数据作为小波分解模块的输入,用训练时相同的参数对输入数据进行小波分解,得到的系数作为中主元分析模块的输入;用训练时得到的变换矩阵T对输入进行变换,变换后矩阵输入到小波重构模块;将对应的数据相加即得到原待测数据的主成分,并将所得到的主成分输入到支持向量机分类器模块;将输入代入训练得到的判别函数,计算判别函数值,判别过程的状态;
所述现场智能仪表与信号采集单元数据连接,所述信号采集单元连接待诊断数据确定模块,所述的待诊断数据确定模块连接故障诊断模块,所述标准化处理模块与数据库数据连接,所述标准化处理模块与小波分解模块连接,所述小波分解模块与主元分析模块连接,所述主元分析模块与小波重构模块连接,所述小波重构模块与支持向量机分类器功能模块连接,所述支持向量机分类器功能模块与故障诊断模块连接。
作为优选的一种方案:所述的上位机还包括:判别模型更新模块,用于定期将过程状态正常的点添加到训练集VX中,输出到标准化处理模块、小波分解模块、主元分析功能模块、小波重构功能模块,并更新支持向量机分类器的分类模型;所述判别模型更新模块与支持向量机分类器功能模块连接。
作为优选的另一种方案:所述的上位机还包括:结果显示模块,用于将故障诊断结果传给DCS系统,并在DCS的控制站显示过程状态,并通过DCS系统和现场总线将过程状态信息传递到现场操作站进行显示;所述故障诊断模块的输出连接所述结果显示模块。
作为优选的再一种方案:所述关键变量包括主催化剂流率f4、辅催化剂流率f5、三股丙烯进料流率(f1、f2、f3)、釜内流体温度T、釜内流体压强P、釜内液位l和釜内氢气体积浓度α。
本实用新型同时考虑聚丙烯生产过程数据的复共线性、非线性特性和多尺度特性,将主元分析、支持向量机和小波分析相结合,对工业过程进行故障诊断。其中,主元分析用于处理工业过程生产数据的复相关性,支持向量机分类器用于解决非线性分类问题,小波分析用于获取过程在不同尺度下的信息。
本实用新型的有益效果主要表现在:同时兼顾聚丙烯生产过程数据中的复相关性、多尺度特性和非线性特性等特性,充分利用了主元分析,多尺度系统理论和支持向量机各自的特点,将主元分析的解相关性能力,小波分析对信息不同尺度下的强分解与重构能力以及支持向量机的多变量非线性映射能力很好地结合了起来,发挥了各自的优势,使得故障诊断更加可靠有效,能更好的指导生产,提高生产效益。
(四)附图说明
图1是本实用新型所提出的故障诊断装置的硬件结构图。
图2是本实用新型所提出的故障诊断装置功能模块图。
图3是小波分析的Mallat算法分解图。
图4是聚丙烯生产流程简图。
图5是MS-PAC-SVM检测效果图。
图6是本实用新型上位机的原理框图。
(五)具体实施方式
下面结合附图对本实用新型作进一步描述。
实施例1
参照图1、图2、图3、图4、图5以及图6,工业聚丙烯生产熔融指数检测故障诊断装置,包括与聚丙烯生产过程对象1连接的现场智能仪表2、DCS系统以及上位机6,所述的DCS系统由数据接口3、控制站4、数据库5构成;智能仪表2、DCS系统、上位机6通过现场总线依次相连,所述的上位机6包括:
标准化处理模块7,用于对数据进行标准化处理,各变量的均值为0,方差为1,得到输入矩阵X,采用以下过程来完成:
1)计算均值: TX ‾ = 1 N Σ i = 1 N TX i , - - - ( 1 )
2)计算方差: σ x 2 = 1 N - 1 Σ i = 1 N ( TX i - TX ‾ ) , - - - ( 2 )
3)标准化: X = TX - TX ‾ σ x , - - - ( 3 )
其中,TX为训练样本,N为训练样本数,
Figure Y20062014136500084
为训练样本的均值;
小波分解功能模块8,用于采用Mallat塔式分解算法将原始信号分解为一系列近似信息和细节信息,采用以下步骤来实现:
①将原始信号空间V0可以分解为一系列逼近空间VJ与细节空间Wj,其中J是最粗的尺度,也称为分解的尺度;
②计算逼近空间VJ。空间VJ由尺度函数{J,k(t),k∈Z}张成,采用下式来计算:
VJ={J,k(t)|J,k(t)=2-J/2(2-Jt-k)}    (4)
③计算细节空间Wj。细节空间Wj由小波函数{ψj,k(t),j=1,…,J,k∈Z}张成,采用下式来计算:
Wj={ψj,k(t)|ψj,k(t)=2-j/2ψ(2-jt-k)}    (5)
其中j是尺度因子,k是平移因子;
④从而得到原始信息的分解信息,采用下式进行计算:
Figure Y20062014136500091
其中,第一项代表近似信息,第二项为细节信息,逼近因子aJ,k与细节因子dj,k采用Mallat算法计算;
所述的近似信息AJf(t)与细节信息Djf(t)(j=1,2,…,J),定义如下:
Figure Y20062014136500092
D j f ( t ) = Σ k ∈ Z d j , k ψ j , k ( t ) - - - ( 8 )
主元分析功能模块9,用于进行主元分析提取主成分,采用协方差奇异值分解的方法,采用以下步骤来实现:
①计算X的协方差阵,记为∑X
②对∑X进行奇异值分解,得到特征根λ1,λ2,…,λp,其中λ1≥λ2≥…≥λp,对应的特征向量矩阵为U;
③计算总方差和每个特征值对应的方差贡献率,按各个特征值的方差贡献率从大到小累加直到总的方差贡献率达到给定值;
④选取特征向量矩阵U的前k列,作为变换矩阵T;
⑤计算主元,通过式子F=T×X计算得到主元F;
小波重构功能模块10,用于进行小波重构,根据小波理论,将各尺度下得到的主元相加,即得到总的主元;
支持向量机分类器功能模块11,用于核函数采用径向基函数K(xi,x)=exp(-||x-xi||/σ2),将训练过程化为如下二次规划求解问题:
ω ( α ) = Σ i = 1 N α i - 1 2 Σ i , j = 1 N α i α j y i y j K ( x i , x j ) - - - ( 9 )
得到分类函数,即如下函数的符号函数:
f ( x ) = Σ i = 1 m y i α i K ( x i , x ) + b - - - ( 10 )
其中,αi(i=1,…,N)是拉各朗日乘子,xi(i=1,…,N)是输入向量,y是输出变量,ω是支持向量机超平面的法向量,决定超平面的的方向,b为决定超平面位置的参数,δ为核参数;
定义当f(x)>=0,数据样本处于正常状态;当f(x)<0时,处于异常状态;
信号采集模块12,用于设定每次采样的时间间隙,采集现场智能仪表的信号;
待诊断数据确定模块13,用于将采集的数据传送到DCS实时数据库中,在每个定时周期从DCS数据库的实时数据库中,得到最新的变量数据作为待诊断数据VX;
故障诊断模块14,用于对待检测数据VX用训练时得到的
Figure Y20062014136500102
和σx 2进行标准化处理,并将标准化处理后的数据作为小波分解模块的输入,用训练时相同的参数对输入数据进行小波分解,得到的系数作为中主元分析模块的输入;用训练时得到的变换矩阵T对输入进行变换,变换后矩阵输入到小波重构模块;将对应的数据相加即得到原待测数据的主成分,并将所得到的主成分输入到支持向量机分类器模块;将输入代入训练得到的判别函数,计算判别函数值,判别过程的状态;
所述现场智能仪表2与信号采集单元12数据连接,所述信号采集单元12连接待诊断数据确定模块13,所述的待诊断数据确定模块13连接故障诊断模块14,所述标准化处理模块7与数据库5数据连接,所述标准化处理模块7与小波分解模块8连接,所述小波分解模块8与主元分析模块9连接,所述主元分析模块9与小波重构模块10连接,所述小波重构模块10与支持向量机分类器功能模块11连接,所述支持向量机分类器功能模块11与故障诊断模块14连接。
所述的上位机还包括:判别模型更新模块15,用于定期将过程状态正常的点添加到训练集VX中,输出到标准化处理模块7、小波分解模块8、主元分析功能模块9、小波重构功能模块10,并更新支持向量机分类器模块11的分类模型;所述判别模型更新模块15与支持向量机分类器功能模块11连接。
所述的上位机还包括:结果显示模块16,用于将故障诊断结果传给DCS,并在DCS的控制站显示过程状态,并通过DCS系统和现场总线将过程状态信息传递到现场操作站进行显示;所述故障诊断模块14的输出连接所述结果显示模块16。
本实施例的工业聚丙烯生产熔融指数检测故障诊断装置的硬件结构图如附图1所示,所述的故障诊断装置核心由包括标准化模块7、小波分解模块8、主元分析模块9、小波重构模块10、支持向量机分类器模块11等五大功能模块和人机界面的上位机6构成,此外还包括:现场智能仪表2,DCS系统和现场总线。所述的DCS系统由数据接口3、控制站4、数据库5构成;丙烯聚合生产过程1、智能仪表2、DCS系统、上位机6通过现场总线依次相连,实现信息流的上传和下达。故障诊断系统在上位机6上运行,可以方便地与底层系统进行信息交换,及时应对系统故障。
本实施例述的故障诊断装置的功能模块图如附图2所示,主要包括标准化处理模块7、小波分解模块8、主元分析模块9、小波重构模块10、支持向量机分类器模块11等五大功能模块。
所述的故障诊断方法按照如下步骤进行实施:
1、从DCS数据库5的历史数据库中采集系统正常时以下九个变量的数据作为训练样本TX:主催化剂流率f4、辅催化剂流率f5、三股丙烯进料流率(f1、f2、f3)、釜内流体温度T、釜内流体压强P、釜内液位l和釜内氢气体积浓度α;
2、在上位机6的小波分解模块8、主元分析模块9和支持向量机分类器模块11中,分别设置小波分解层数、主元分析方差提取率、支持向量机核参数和置信概率等参数,并设定DCS中的采样周期;
3、训练样本TX在上位机6中,依次经过标准化处理7、小波分解8、主元分析9、小波重构10、支持向量机11等功能模块,采用以下步骤来完成诊断系统的训练:
1)上位机6的标准化处理功能模块7,对数据进行标准化处理,使得各变量的均值为0,方差为1,得到输入矩阵X。采用以下步骤来实现:
①计算均值: TX ‾ = 1 N Σ i = 1 N T X i , - - - ( 1 )
②计算方差: σ x 2 = 1 N Σ i = 1 N ( TX i - TX ‾ ) , - - - ( 2 )
③标准化: X = TX - TX ‾ σ x , - - - ( 3 )
其中N为训练样本数,N为训练样本数,
Figure Y20062014136500114
为训练样本的均值;
上位机6的标准化处理功能模块7所进行的标准化处理能消除各变量因为量纲不同造成的影响。
2)在上位机6的小波分解功能模块8中,采用Mallat塔式分解算法将原始信号分解为一系列近似信息和细节信息。所述的上位机6中小波分解模块8的小波分析采用db3小波,分解层数取为3-7。采用以下步骤来实现:
①将原始信号空间V0可以分解为一系列逼近空间VJ与细节空间Wj,其中J是最粗的尺度,也称为分解的尺度;
②计算逼近空间VJ,空间VJ由尺度函数{J,k(t),k∈Z}张成,采用下式来计算:
VJ={J,k(t)|J,k(t)=2-J/2(2-Jt-k)}    (4)
③计算细节空间Wj。细节空间Wj由小波函数{ψj,k(t),j=1,…,J,k∈Z}张成,采用下式来计算:
Wj={ψj,k(t)|ψj,k(t)=2-j/2ψ(2-jt-k)}    (5)
其中j是尺度因子,k是平移因子。
④从而得到原始信息的分解信息,采用下式进行计算:
Figure Y20062014136500121
其中第一项代表近似信息,第二项为细节信息。逼近因子aJ,k与细节因子dj,k采用Mallat算法计算。其中所采用的Mallat算法的塔式分解图,如图2所示。
所述的近似信息AJf(t)与细节信息Djf(t)(j=1,2,…,J),定义如下:
Figure Y20062014136500122
D j f ( t ) = Σ k ∈ Z d j , k ψ j , k ( t ) - - - ( 8 )
实际聚丙烯生产过程从本质上来说是具有多尺度特性的,各个尺度下的信息含量和所体现的系统特性是不同的,如果直接对系统进行建模,将忽略这种不同,从而导致会导致结果上的偏差。用小波分解提取各个尺度的信息,能更充分的挖掘过程数据所携带的信息,提升结果的精确度。
3)上位机6的主元分析功能模块9,进行主元分析,提取主成分。所述的主元分析总方差提取率大于80%,计算过程采用协方差奇异值分解的方法,采用以下步骤来实现:
①计算X的协方差阵,记为∑X
②对∑X进行奇异值分解,得到特征根λ1,λ2,…,λp,其中λ1≥λ2≥…≥λp,对应的特征向量矩阵为U;
③计算总方差和每个特征值对应的方差贡献率,按各个特征值的方差贡献率从大到小累加直到总的方差贡献率达到给定值,记选取个数为k;
④选取特征向量矩阵U的前k列,作为变换矩阵T;
⑤计算主元,通过式子F=T×X计算得到主元F。
很显然,分析系统在一个低维空间要比在一个高维空间容易得多。主元分析在力求数据信息丢失最少的原则下,对高维的变量空间降维,以得到丙烯聚合生产过程变量体系的少数几个线性组合,并且这几个线性组合所构成的综合变量将尽可能多地保留原丙烯聚合生产过程变量变异方面的信息。
4)上位机6的小波重构功能模块10,进行小波重构。
根据小波理论,将丙烯聚合生产过程各尺度下得到的主元相加,即得到丙烯聚合生产过程总的主元。
5)训练上位机6中的支持向量机分类器功能模块11的分类模型。
所述的上位机6中的支持向量机分类器功能模块9的核函数,采用径向基函数K(xi,x)=exp(-||x-xi||/σ2),将训练过程化为如下二次规划求解问题:
ω ( α ) = Σ i = 1 N α i - 1 2 Σ i , j = 1 N α i α j y i y j K ( x i , x j ) - - - ( 9 )
从而得到分类函数,即如下函数的符号函数:
f ( x ) = Σ i = 1 m y i α i K ( x i , x ) + b - - - ( 10 )
其中,αi(i=1,…,N)是拉各朗日乘子,xi(i=1,…,N)是输入向量,y是输出变量,ω是支持向量机超平面的法向量,决定超平面的的方向,b为决定超平面位置的参数,δ为核参数;
定义当f(x)>=0,数据样本处于正常状态;当f(x)<0时,处于异常状态。
支持向量机基于统计学习理论,采用结构风险最小化准则,很好地解决了工业聚丙烯生产熔融指数检测过程中存在的小样本、局部极小点、高维数等难题,用于工业聚丙烯生产熔融指数检测的分类问题能提高分类精度。
4、系统开始投运:
1)用定时器,设置好每次采样的时间间隔;
2)现场智能仪表2检测过程数据并传送到DCS数据库5的实时数据库中;
3)上位机6在每个定时周期从DCS数据库5的实时数据库中,得到最新的变量数据,作为待诊断数据VX;
4)待检测数据VX,在上位机6的标准化处理功能模块7中,用训练时得到的
Figure Y20062014136500141
和σx 2进行标准化处理,并将标准化处理后的数据作为小波分解模块8的输入;
5)上位机6的小波分解模块8,用训练时同样的参数对输入数据进行小波分解,得到的系数作为上位机6中主元分析模块9的输入;
6)上位机6的主元分析模块9,用训练时得到的变换矩阵T对输入进行变换,变换后矩阵输入到上位机6的小波重构模块10;
7)上位机6的小波重构模块10,将对应的数据相加即得到原待测数据的主成分,并将所得到的组成分输入到上位机6的支持向量机分类器模块11;
8)上位机6的支持向量机分类器模块11,将输入代入训练得到的判别函数,计算判别函数值,判别过程的状态,并在上位机6的人机界面上显示过程的状态
9)上位机6将故障诊断结果传给DCS,并在DCS的控制站4显示过程状态,同时通过DCS系统和现场总线将过程状态信息传递到现场操作站进行显示,使得现场操作工可以及时应对。
5、分类器模型更新
在系统投运过程中,定期将工业聚丙烯生产过程状态正常的点添加到训练集TX中,重复步骤3的训练过程,以便及时更新上位机6的支持向量机分类器11的分类模型,使分类器模型具有较好的分类效果。
下面详细说明本实用新型的一个具体实施例。
以聚丙烯生产HYPOL工艺实际工业生产为例。图三给出了典型的Hypol连续搅拌釜(CSTR)法生产聚丙烯的工艺流程图,前2釜是CSTR反应器、后2釜是流化床反应器(FBR)。选取主催化剂流率、辅催化剂流率、三股丙烯进料流率、釜内流体温度、釜内流体压强、釜内液位、釜内氢气体积浓度九个易测操作变量作为模型的输入量,从生产过程的DCS系统中获取这九个参数的数据作为训练样本,其中五十个正常的样本作为训练集,另二十二个样本点作为测试集数据验证诊断效果。小波分解层数为5,PCA提取主成分个数为7,支持向量机核参数为5,置信概率0.98,采样周期为2小时。图5为MS-PAC-SVM检测效果图,图中只画出了前两个主成分的分布。表1列出了图5相对应的测试集中实际故障点和本系统检测出的故障点,可以看出仅15号故障点漏报,误报率为0。显然,本系统具有较高的诊断准确性。
实际故障点     1,2,12,15,16
检测故障点     1,2,12,16
表1。
上述实施例用来解释说明本实用新型,而不是对本实用新型进行限制,在本实用新型的精神和权利要求的保护范围内,对本实用新型作出的任何修改和改变,都落入本实用新型的保护范围。

Claims (3)

1.一种工业聚丙烯生产熔融指数检测故障诊断装置,包括与聚丙烯生产过程对象连接的现场智能仪表、DCS系统以及上位机,所述的DCS系统由数据接口、控制站、数据库构成;智能仪表、DCS系统、上位机依次相连,其特征在于:所述的上位机包括:
用于对数据库中采集系统正常时关键变量数据进行标准化处理的标准化处理模块;
用于采用Mallat塔式分解算法将原始信号分解为一系列近似信息和细节信息的小波分解功能模块;
用于进行主元分析提取主成分,采用协方差奇异值分解的方法的主元分析功能模块;
用于进行小波重构,根据小波理论,将各尺度下得到的主元相加,即得到总的主元的小波重构功能模块;
用于核函数采用径向基函数K(xi,x)=exp(-||x-xi||/σ2),将训练过程化为如下二次规划求解问题的支持向量机分类器功能模块;
用于设定每次采样的时间间隙,采集现场智能仪表的信号的信号采集模块;
用于将采集的数据传送到DCS实时数据库中,在每个定时周期从DCS数据库的实时数据库中,得到最新的变量数据作为待诊断数据VX的待诊断数据确定模块;
用于对待检测数据VX用训练时得到的
Figure Y2006201413650002C1
和σx 2进行标准化处理,并将标准化处理后的数据作为小波分解模块的输入,用训练时相同的参数对输入数据进行小波分解,得到的系数作为中主元分析模块的输入;用训练时得到的变换矩阵T对输入进行变换,变换后矩阵输入到小波重构模块;将对应的数据相加即得到原待测数据的主成分,并将所得到的组成分输入到支持向量机分类器模块;将输入代入训练得到的判别函数,计算判别函数值,判别过程的状态的故障诊断模块;
所述现场智能仪表与信号采集单元数据连接,所述信号采集单元连接待诊断数据确定模块,所述的待诊断数据确定模块连接故障诊断模块,所述标准化处理模块与数据库数据连接,所述标准化处理模块与小波分解模块连接,所述小波分解模块与主元分析模块连接,所述主元分析模块与小波重构模块连接,所述小波重构模块与支持向量机分类器功能模块连接,所述支持向量机分类器功能模块与故障诊断模块连接。
2.如权利要求1所述的工业聚丙烯生产熔融指数检测故障诊断装置,其特征在于:所述的上位机还包括:
用于定期将过程状态正常的点添加到训练集VX中,输出到标准化处理模块、小波分解模块、主元分析功能模块、小波重构功能模块,并更新支持向量机分类器的分类模型的判别模型更新模块;
所述判别模型更新模块与支持向量机分类器功能模块连接。
3.如权利要求1或2所述的工业聚丙烯生产熔融指数检测故障诊断装置,其特征在于:所述的上位机还包括:
用于将故障诊断结果传给DCS系统,并在DCS的控制站显示过程状态,并通过DCS系统和现场总线将过程状态信息传递到现场操作站进行显示的结果显示模块;
所述故障诊断模块的输出连接所述结果显示模块。
CNU2006201413657U 2006-12-22 2006-12-22 工业聚丙烯生产熔融指数检测故障诊断装置 Expired - Fee Related CN201017224Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2006201413657U CN201017224Y (zh) 2006-12-22 2006-12-22 工业聚丙烯生产熔融指数检测故障诊断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2006201413657U CN201017224Y (zh) 2006-12-22 2006-12-22 工业聚丙烯生产熔融指数检测故障诊断装置

Publications (1)

Publication Number Publication Date
CN201017224Y true CN201017224Y (zh) 2008-02-06

Family

ID=39057720

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2006201413657U Expired - Fee Related CN201017224Y (zh) 2006-12-22 2006-12-22 工业聚丙烯生产熔融指数检测故障诊断装置

Country Status (1)

Country Link
CN (1) CN201017224Y (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585059A (zh) * 2012-02-07 2012-07-18 沈阳华控科技发展有限公司 一种聚氯乙烯批量生产过程控制系统
CN103675005A (zh) * 2013-09-22 2014-03-26 浙江大学 最优模糊网络的工业熔融指数软测量仪表及方法
CN105867345A (zh) * 2016-03-24 2016-08-17 浙江科技学院 一种多变量化工过程的故障源和故障传播路径定位方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585059A (zh) * 2012-02-07 2012-07-18 沈阳华控科技发展有限公司 一种聚氯乙烯批量生产过程控制系统
CN102585059B (zh) * 2012-02-07 2014-03-19 沈阳华控科技发展有限公司 一种聚氯乙烯批量生产过程控制系统
CN103675005A (zh) * 2013-09-22 2014-03-26 浙江大学 最优模糊网络的工业熔融指数软测量仪表及方法
CN105867345A (zh) * 2016-03-24 2016-08-17 浙江科技学院 一种多变量化工过程的故障源和故障传播路径定位方法

Similar Documents

Publication Publication Date Title
Wang Data mining and knowledge discovery for process monitoring and control
CN100461044C (zh) 一种丙烯聚合生产中熔融指数检测的故障诊断系统及方法
CN100480926C (zh) 一种基于小波分析的工业生产过程故障诊断系统及方法
Controllers Other titles published in this Series: Supervision and Control for Industrial Processes
CN100489870C (zh) 用于过程统计控制的方法和多维系统
US20100063611A1 (en) Systems and methods for real time classification and performance monitoring of batch processes
CN115169479A (zh) 污水处理过程远程监控方法、系统及存储介质
Pani et al. A survey of data treatment techniques for soft sensor design
CN110490496B (zh) 一种基于分步约简筛选复杂工业过程中影响产品质量的敏感变量的方法
CN112904810B (zh) 基于有效特征选择的流程工业非线性过程监测方法
CN109298633A (zh) 基于自适应分块非负矩阵分解的化工生产过程故障监测方法
WO2021114320A1 (zh) 一种oica和rnn融合模型的污水处理过程故障监测方法
CN108801950A (zh) 一种基于滑动窗多尺度主元分析的紫外光谱水质异常检测方法
CN201017224Y (zh) 工业聚丙烯生产熔融指数检测故障诊断装置
CN201017233Y (zh) 基于小波分析的工业生产过程故障诊断装置
CN115096627A (zh) 一种液压成形智能装备制造过程故障诊断与运维方法及系统
CN201035376Y (zh) 工业生产过程小样本条件下的故障诊断装置
CN100461043C (zh) 工业聚丙烯生产熔融指数检测故障诊断系统及方法
CN115204257A (zh) 一种用于传感器数据的异常监测方法
CN113703422B (zh) 一种基于特征分析处理的燃气轮机气动执行机构故障诊断方法
Farell et al. Framework for enhancing fault diagnosis capabilities of artificial neural networks
CN201035377Y (zh) 丙烯聚合生产中熔融指数检测的故障诊断装置
CN201017225Y (zh) 丙烯聚合生产数据检测及故障诊断装置
CN114371677B (zh) 基于谱半径-区间主成分分析的工业过程状态监测方法
CN111931574B (zh) 一种气动调节阀鲁棒故障诊断方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080206

Termination date: 20100122