CN1998068A - 铜掺杂磁半导体 - Google Patents

铜掺杂磁半导体 Download PDF

Info

Publication number
CN1998068A
CN1998068A CNA2005800161801A CN200580016180A CN1998068A CN 1998068 A CN1998068 A CN 1998068A CN A2005800161801 A CNA2005800161801 A CN A2005800161801A CN 200580016180 A CN200580016180 A CN 200580016180A CN 1998068 A CN1998068 A CN 1998068A
Authority
CN
China
Prior art keywords
copper
doped
doping
manganese
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800161801A
Other languages
English (en)
Inventor
文卡特·拉奥
帕马南德·沙马
阿米塔·格普塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NM Spintronics AB
Original Assignee
NM Spintronics AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NM Spintronics AB filed Critical NM Spintronics AB
Publication of CN1998068A publication Critical patent/CN1998068A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/24Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/227Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0009Antiferromagnetic materials, i.e. materials exhibiting a Néel transition temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/404Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted of III-V type, e.g. In1-x Mnx As
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • H01F1/401Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4 diluted
    • H01F1/407Diluted non-magnetic ions in a magnetic cation-sublattice, e.g. perovskites, La1-x(Ba,Sr)xMnO3

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Soft Magnetic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种半导体材料、制造该材料的方法、以及应用该材料的方式,其中所述材料被掺杂以Cu或CuO,且至少在-55℃和125℃之间范围的一温度下是铁磁的。通常,所述材料可包括GaP或GaN。

Description

铜掺杂磁半导体
技术领域
本发明涉及用于电子部件的材料,所述电子部件在其功能方面利用铁磁性。此类部件影响或校正玻色子和费米子例如电子的自旋取向。近年来对稀磁半导体中室温以上铁磁性的研究已经成为需要,尤其是为了开发探索电子自旋态即自旋电子学的很新类型的未来器件。用于这些器件的部件的类型包括例如磁存储器(例如硬盘)、半导体磁存储器(例如MRAM)、自旋阀晶体管、自旋发光二极管、非易失性存储器、逻辑器件、量子计算机、光学隔离器、传感器和超快光学开关。稀磁半导体还能用在电子和磁基产品中。
背景技术
电子部件技术在为了新部件设计和功能而使用铁磁材料方面日益感兴趣。常规铁磁材料为例如铁、镍、钴及其合金。使用它们的新颖科学活动或新建议在技术和科学期刊上被频繁报导。基本部件设计的材料预期的一些示例可以在Physics World(1999年4月)和IEEE Spectrum(2001年12月)近期的评论文章中发现。所有这些文献描述了设计能在产业、汽车和军事温度范围(通常-55℃至125℃)运行的铁磁材料的问题和需要。
现在已知的大多数感兴趣的材料需要低温。然而,Klaus H.Ploog在Physical Review Letters,July 2001中描述了利用在砷化镓(GaAs)上生长的铁膜来极化注入到半导体GaAs中的电子的自旋。此实验在室温下进行。
自旋电子器件例如自旋阀晶体管、自旋发光二极管、非易失性存储器、逻辑器件、光学隔离器和超快光学开关是两篇参考文献(参考文献6-7)中描述的在半导体中引入室温下的铁磁属性的非常感兴趣的领域的一部分。
近年来,已经对稀磁半导体(DMS)中表现铁磁有序的材料进行了深入研究,如下面的五篇文献(参考文献1-5)中描述的,着重于可能的自旋传输属性,其具有许多潜在感兴趣的器件应用。
在目前报导的材料中,已发现Mn掺杂GaAs的铁磁性具有最高的报导居里温度(见参考文献1),Tc~110K。随此之后,Dietl等人(见参考文献2)在理论上预言ZnO和GaN在掺杂Mn时将表现室温之上的铁磁性。此预言引起了对多种掺杂稀磁半导体的广泛实验工作。近来,分别报导了在Co掺杂TiO2、ZnO和GaN中室温以上的Tc(见参考文献3、8和9)。然而,在Ti1-xCoxO样品中发现了Co的非均质团簇(见参考文献10)。Kim等人(见参考文献11)表明,在Zn1-xCoxO的均质膜表现出自旋玻璃性质的同时,在非均质膜中发现室温的铁磁性,将此发现归因于Co团簇的存在。清楚地,对于器件应用,我们需要均质膜。
更早地,我们已经对锰掺杂氧化锌提出了专利申请。
发明内容
本发明基于通过掺杂铜将铁磁性引入到掺杂稀磁半导体中的概念。这些铁磁半导体材料可以在工业、汽车和军事温度范围(通常-55到125℃以上)工作。铜基于载流子修正效应引起磁耦合。本申请示出若干半导体材料,当掺杂以铜时其变成铁磁的。铜掺杂还可以改善已是铁磁的半导体材料例如锰掺杂氧化锌中的磁强度。
本发明描述了铜掺杂的机制。在本申请中,示出所述材料的一些的结果。引起铁磁性的铜掺杂材料的示例是铜掺杂磷化镓GaP、铜掺杂氮化镓GaN、铜掺杂砷化镓GaAs、铜掺杂硫化镉CdS、铜掺杂硒化镉CdSe、铜掺杂氧化锌ZnO、铜掺杂硫化锌ZnS、铜掺杂硒化锌ZnSe、铜掺杂的锰掺杂氧化锌ZnMnO、铜掺杂的锰掺杂硫化镉CdMnS、铜掺杂的锰掺杂硒化镉CdMnSe、铜掺杂的锰掺杂硫化锌ZnMnS、铜掺杂的锰掺杂硒化锌ZnMnSe。当掺杂以铜时,我们可以发现磁属性的迹象也存在于其他半导体中。
附图说明
图1示出GaP:Cu的X射线粉末衍射谱;
图2示出掺杂和未掺杂的GaP:Cu中横向光学(TO)模式和纵向光学(LO)模式的拉曼谱,表明Cu导致空穴掺杂;
图3示出在所示的各种温度下的DC磁滞数据;
图4示出使用SQUID得到的GaP:Cu的磁化的温度相关性,连续线是T相关性的T3/2布洛赫定律拟合;
图5示出磁矫顽力的温度相关性,穿过数据的线是到指数衰减方程的拟合;
图6示出室温下GaP:Cu的FMR谱,吸收A是低场非共振吸收,其存在于铁磁状态中,线B是铁磁共振吸收,线c可能来自样品中未反应的CuO;
图7示出在(a)300K和(b)138K的FMR;
图8示出室温以上铁磁共振的场位置的温度相关性,显示到524K铁磁性的存在;
图9示出Cu对Mn掺杂ZnO的磁属性的影响;
图10也示出Cu对Mn掺杂ZnO的磁属性的影响;
图11示出增加Cu对1 at%Mn掺杂ZnO的室温磁属性的影响,Ms增强约100%;
图12示出增加6at%Cu到GaN的效果:使GaN在室温下呈铁磁性;
图13示出计算的Cu掺杂ZnO的态密度,显示在Cu位点(site)引发的铁磁属性;
图14示出Cu掺杂GaN的FMR谱:室温下铁磁性的证据,约3000Oe的信号源自未反应的CuO;
图15示出FMR的场位置的温度相关性,显示远在室温以上存在铁磁性;
图16示出铜掺杂GaN的FMR线宽,显示远在室温以上存在铁磁性。
具体实施方式
本发明基于通过掺杂铜到非铁磁或含有弱铁磁成分的半导体材料中来在掺杂稀磁半导体中发展铁磁性的概念。我们的实验显示在块或膜层中室温以上铁磁性的成功剪裁。所述膜层可以通过例如激光沉积、溅射等产生。
采用铜掺杂,本发明在掺杂以Cu2+的磷化镓中产生了远在室温以上的铁磁性,这通过铁磁共振、SQUID磁测量计和中子衍射而检测到,其清楚地显示,铁磁性与GaP晶格相关且不是来自于杂质相。结果的其他重要特征是显著高于现有发现的700K以上的高居里温度,用来合成所述材料的较简单的低温块烧结工艺,其显著减小了大规模生产的成本。
5这些合金中铁磁性的起源是当前研究的主题。已经提出,空穴或电子是引起掺杂剂自旋之间的交换相互作用的媒介。6在铁磁状态,存在价带和导带根据电荷载流子的自旋取向的分离。该模型预言,空穴掺杂的半导体将具有比电子掺杂材料更高的居里温度。
对于掺杂剂,锰不是最好的选择。在6at%Mn以上的浓度,已显示锰团簇是铁磁性的,表明掺杂半导体中观察到的铁磁性来自锰团簇。7,8还存在附加的问题,即在合成期间可能形成GaMn和MnP,其已知在高温下是铁磁的。9为了避免这些难题,我们选择铜作为掺杂剂。没有证据表明块铜或铜团簇是铁磁性的。另外,已知CuO在200K以下是反铁磁的。此外,尚不知晓铁磁合金例如CuP或GaCu。Cu具有2+电荷且将是空穴掺杂剂。GaP对于潜在的磁半导体具有多个优点。其是发光二极管和高速电子器件中使用的AlGaInP中的成分,且其晶格参数接近于硅,可能使得稀磁半导体能够与传统硅电路集成。这里,对于铜掺杂磷化镓中远高于室温的铁磁性,我们报导了SQUID磁测量计、铁磁共振(FMR)和中子衍射证据。观察结果的重要特征在于用于制造材料的较简单的烧结工艺和与以前的发现相比显著更高的居里温度。
通过以.03分子重量的CuO对从AlfaAesar获得的一分子重量的99.999%纯的磷化镓的比率完全混合,然后利用研钵和杵来研磨该混合物,以合成样品。所使用的GaP在处理之前通过电子顺磁共振(EPR)被检验从而确保没有磁杂质存在于该材料中。没有发现任何磁杂质。EPR对百亿分之一的磁物质灵敏。容纳在氧化铝皿中的压紧小丸形式的样品在炉中在空气中在500℃烧结四小时,接着快速淬火至室温。所烧结的样品采用Scintag X射线装置利用Cu K阿尔法线通过X射线衍射检验。图1示出粉末X射线衍射谱。图顶部的线是对于纯磷化镓预期的线。掺杂样品中的峰出现在与纯GaP相同的的散射角处,输出中没有出现杂质线。烧结样品还通过感应线圈等离子体质量谱(ICP-MS)被检验,其显示在十亿分之2以上水平没有磁金属。但是检测到样品中铜的存在。图2示出利用JY Horiba共焦拉曼谱仪记录的掺杂和未掺杂GaP中横向光学(TO)模式和纵向光学(LO)模式的拉曼谱。在铜掺杂样品中较高频率LO模式下移3cm-1。在其他半导体例如GaN中已经显示,LO模式耦合到等离子体模式,其频率与电子载流子浓度成比例。10 LO模式已经显示随电子载流子浓度的偏移。所观察到的Cu掺杂GaP中LO模式的频率下降表明与空穴掺杂一致的电子载流子浓度减小。
图3示出在多个温度下磁化的dc磁场相关性的SQUID MPMS2测量结果。在300K的饱和磁化为1.5×10-2emu/g。在室温下的矫顽力为125Oe。图4是在10KOe下磁化的温度相关性。穿过数据的线是到Bloch方程的拟合。
M(T)=M(0)(1-AT3/2)    (1)
对于A=4.0×10-5 K-3/2且M(0)=18.44memu/g。这些值表明远高于700K的高居里温度。图5是矫顽力的温度相关性的图。穿过数据的线是到指数衰减的拟合。
Hc=Hco+Bexp(-T/C)    (2)
对于Hco=298.38Oe,B=137.07Oe,且C=728.97K。
样品还通过铁磁共振(FMR)被检验,其是验证铁磁性存在的高度灵敏的方法。11图6示出利用在9.2GHz运行的Varian E-9谱仪记录的在300K的FMR谱。三条线在谱中是明显的,低场非共振信号(A)、铁磁共振信号(B)、以及分量(C),其可能是样品中一些未反应的CuO引起的。应注意,CuO不是铁磁性的且不能是这里观察到的铁磁性的来源。12低场非共振吸收信号的存在是材料中铁磁性存在的确定迹象。13,14因为铁磁状态中的磁导率取决于所施加的磁场,其在低场增大到最大值且然后下降,所以出现了信号。因为表面电阻取决于磁导率的平方根,所以微波吸收非线性地取决于dc磁场的强度,导致以零场为中心的非共振衍生信号。该信号在顺磁状态中不存在,且随着温度下降到Tc以下而显现。在共振实验中在我们的温度装置的上限524K高的温度下我们已经能观察到低场非共振吸收。使FMR信号区别于EPR信号的特征是场位置的强温度相关性和关于温度的共振线宽。图7示出在300K(a)和118K(b)的FMR谱,示出在低温下向较低dc磁场的大偏移。图8给出室温以上线的场位置的温度相关性,示出材料在524K仍是铁磁性的。在居里温度以上,FMR信号变为Cu+2的EPR信号,具有场位置的温度无关性,对应于图6中谱线c,其是2940G。外推图8中的数据至该值,估计Tc约为739K。
总之,我们已经从SQUID磁测量计、铁磁共振和中子衍射测量给出了清楚的证据表明通过简单烧结工艺制成的铜掺杂磷化镓在远高于任何已报导稀磁半导体的温度下是铁磁性的。
类似的测量显示铜掺杂氮化镓Cu掺杂GaN的类似属性。图14至16示出铜掺杂氮化镓的对应数据。
本发明还清楚显示磁半导体例如锰掺杂氧化锌ZnMnO的铜掺杂的改进。图9、10和11显示SQUID测量结果,示出在具有不同锰浓度的Mn掺杂ZnO中不同浓度的铜掺杂的掺杂效果。从图中我们能看到铁磁性能的明显改善。图12示出铜掺杂氮化镓的SQUID测量结果。图13示出铜掺杂氧化锌有关的数据。
当铜掺杂其他磁半导体例如Mn掺杂CdS、Mn掺杂ZnS和Mn掺杂GaP时,磁导率测量显示类似的属性。
参考文献
1.Ohno,H.Making non magnetic semiconductors ferromagnetic.Science281,951(1998)
2.Reed,M.L.et al.Room temperature ferromagnetic properties of(Ga,Mn)N.Appl.Phys.Lett.79,3473(2001)
3.Thaler,GT.et.al.Mangetic properties of n-GaMnN thin films.Appl.Phys.Lett 80,3964(2002)
4.Theodoropoulou,N.et.al.Unconventional carrier mediatedferromagnetism above room temperature in ion implanted Ga,Mn)P:C.Phys.RevLett 89,107203(2002)
5.Sharma,P.et al.Ferromagnetism above room temperature in bulk andtransparent thin films of Mn doped ZnO.Nature Materials 2,673(2003)
6.Dietl,T.et al.Model description of ferromagnetism in Zinc blendmagnetic semidonductors.Science 287,1019(2000)
7.Knickelbein,M.Experimental observation of superparamagnetism inmanganese clusters.Phys.Rev.Lett.86,5255(2001)
8.Rao,B.K.and Jena,P.Giant magnetic moments moments of nitrogendoped Mn clusters and their relevance in Mn doped GaN.Phys.Rev.Lett 89185504(2002)
9.Tanka,M et a1.Epitaxial growth of ferromagnetic MnGa films withperpendicular magnetization on GaAs.Appl.Phys.Lett.62,1565(1993)
10.Perlin,P.et al.Investigation of longitudinal-optical phonon-plasmacoupled modes in highly conducting bulk GaN.Appl.Phys.Lett 67 2524(1995)
11.Vonsovkii,S.V.in Ferromagnetic Resonance edited by Vonsovki,S.V.P188-208 Pergamon Press,N.Y.1966
12.Muraleedharan,K.et al.On the magnetic susceptibility of CuOx.SolidState Comm.76,727(1990)
13.Sastry,M.D et al.Low field microwave absorption in Gd2CuO4.Physica C170,41(1990)
14.Owens,F.J.Resonant and non resonant microwave absorption study offerromagnetic transition in RuSr2Gd0.5Eu0.5Cu2O8.Physica C353,265(2001).

Claims (7)

1.一种半导体材料,其特征在于,其掺杂有铜Cu或铜氧化物CuO,且至少在-55℃和125℃之间的范围内的一温度下是铁磁性的。
2.根据权利要求1所述的半导体材料,其特征在于,所述掺杂半导体材料包括下列材料的任一种:铜掺杂磷化镓GaP、铜掺杂氮化镓GaN、铜掺杂砷化镓GaAs、铜掺杂硫化镉CdS、铜掺杂硒化镉CdSe、铜掺杂氧化锌ZnO、铜掺杂硫化锌ZnS、铜掺杂硒化锌ZnSe、铜掺杂的锰掺杂氧化锌ZnMnO、铜掺杂的锰掺杂硫化镉CdMnS、铜掺杂的锰掺杂硒化镉CdMnSe、铜掺杂的锰掺杂硫化锌ZnMnS、铜掺杂的锰掺杂硒化锌ZnMnSe。
3.一种半导体部件,其特征在于,所述部件包括根据权利要求1或2的所述材料。
4.根据权利要求3所述的部件,其特征在于,所述部件是下列中的任一种:磁存储器、硬盘、半导体磁存储器、MRAM、自旋阀晶体管、自旋发光二极管、非易失性存储器、逻辑器件、光学隔离器、传感器、以及超快光学开关。
5.一种计算机,其特征在于,其包括根据权利要求3或4的部件。
6.一种掺杂半导体材料的方法,其特征在于包括下列步骤:
-以选定分子重量比将所述半导体材料与铜Cu或铜氧化物CuO混合,形成混合物,
-研磨所述混合物,
-压所述混合物从而形成丸,
-在500℃烧结所述丸约四小时,
-通过冷却所述烧结的丸来淬火它们至约室温。
7.根据权利要求6的方法,其特征在于,所述混合物是铜氧化物CuO和磷化镓GaP以0.003比1的分子重量比的混合物。
CNA2005800161801A 2004-05-18 2005-05-17 铜掺杂磁半导体 Pending CN1998068A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE04013207 2004-05-18
SE0401320A SE528900C2 (sv) 2004-05-18 2004-05-18 Koppardopade magnetiska halvledare

Publications (1)

Publication Number Publication Date
CN1998068A true CN1998068A (zh) 2007-07-11

Family

ID=32589780

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800161801A Pending CN1998068A (zh) 2004-05-18 2005-05-17 铜掺杂磁半导体

Country Status (7)

Country Link
US (1) US20080087972A1 (zh)
EP (1) EP1782458A1 (zh)
JP (1) JP2007538399A (zh)
KR (1) KR20070038966A (zh)
CN (1) CN1998068A (zh)
SE (1) SE528900C2 (zh)
WO (1) WO2005112085A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887793A (zh) * 2010-06-29 2010-11-17 华南理工大学 一种掺杂铜的氮化铝基稀磁半导体纳米棒的制备方法
CN113555459A (zh) * 2021-07-20 2021-10-26 陕西师范大学 具有强发光特性的二硫化硒掺杂氧化铜

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0300352D0 (sv) * 2003-02-06 2003-02-06 Winto Konsult Ab Ferromagnetism in semiconductors
CN102627314B (zh) * 2010-08-20 2014-04-30 厦门大学 一维介孔晶的氧化锌基铜掺杂稀磁半导体及其制备方法
US8889534B1 (en) 2013-05-29 2014-11-18 Tokyo Electron Limited Solid state source introduction of dopants and additives for a plasma doping process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887793A (zh) * 2010-06-29 2010-11-17 华南理工大学 一种掺杂铜的氮化铝基稀磁半导体纳米棒的制备方法
CN113555459A (zh) * 2021-07-20 2021-10-26 陕西师范大学 具有强发光特性的二硫化硒掺杂氧化铜

Also Published As

Publication number Publication date
JP2007538399A (ja) 2007-12-27
WO2005112085A1 (en) 2005-11-24
SE528900C2 (sv) 2007-03-13
SE0401320D0 (sv) 2004-05-18
SE0401320L (sv) 2005-11-19
KR20070038966A (ko) 2007-04-11
EP1782458A1 (en) 2007-05-09
US20080087972A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
Munekata et al. Diluted magnetic III-V semiconductors
Elilarassi et al. Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method
Fang et al. Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba (Fe 1− x Co x) 2 As 2
Cho et al. Ferromagnetism in mn-doped ge
Dietl Functional ferromagnets
Felser et al. Spintronics: a challenge for materials science and solid‐state chemistry
US20040114283A1 (en) Compounds having giant magnetoresistance and spin-polarized tunnels, the production thereof and their use
CN1998068A (zh) 铜掺杂磁半导体
US20070190367A1 (en) Manganese Doped Magnetic Semiconductors
Ueda et al. Copper pyrites CuS 2 and CuSe 2 as anion conductors
Sawicki et al. Temperature peculiarities of magnetic anisotropy in (Ga, Mn) As: The role of the hole concentration
Panagopoulos et al. Low-frequency spins and the ground state in high-Tc cuprates
Koroleva et al. Magnetic and electrical properties of the ZnGeAs 2: Mn chalcopyrite
Shukla Magnetic and optical properties of epitaxial n-type Cu-doped ZnO thin films deposited on sapphire substrates
EP1601629B1 (en) Ferromagnetic material
Tsui et al. Magnetization-dependent rectification effect in a Ge-based magnetic heterojunction
Kane et al. Magnetic and optical properties of single crystals of transition metal doped ZnO
Gupta et al. High-temperature ferromagnetism in Cu-doped GaP by SQUID magnetometry and ferromagnetic resonance measurements
Cao et al. The predicaments and expectations in development of magnetic semiconductors
KR20020026495A (ko) 전이금속이 치환된 강자성반도체 단결정
Skipetrov et al. Electronic structure and unusual magnetic properties of diluted magnetic semiconductors Pb1-x-ySnxScyTe
Grima-Gallardo et al. COEXISTENCE OF SUPERPARAMAGNETIC AND FERROMAGNETIC COMPONENTS IN (CuGa) SOLID SOLUTIONS WITH x= 0.1, 1/3 and 1/2
Fenwick et al. Transition-metal-and rare-earth-doped ZnO: a comparison of optical, magnetic, and structural behavior of bulk and thin films
Yamazaki et al. Chemical Phase Separation of Superconductive and Ferromagnetic Domains in ZnNNi3− xCox
Norton et al. Ferromagnetism in ZnO doped with transition metal ions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1101522

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070711

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1101522

Country of ref document: HK