CN1982703B - 组合风力发电和抽水蓄能水力发电系统的系统和方法 - Google Patents

组合风力发电和抽水蓄能水力发电系统的系统和方法 Download PDF

Info

Publication number
CN1982703B
CN1982703B CN2006101719597A CN200610171959A CN1982703B CN 1982703 B CN1982703 B CN 1982703B CN 2006101719597 A CN2006101719597 A CN 2006101719597A CN 200610171959 A CN200610171959 A CN 200610171959A CN 1982703 B CN1982703 B CN 1982703B
Authority
CN
China
Prior art keywords
power
bus
wind
common bus
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006101719597A
Other languages
English (en)
Other versions
CN1982703A (zh
Inventor
L·J·加西斯
Y·刘
S·博斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1982703A publication Critical patent/CN1982703A/zh
Application granted granted Critical
Publication of CN1982703B publication Critical patent/CN1982703B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/18Air and water being simultaneously used as working fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种风力-抽水组合式水力发电系统(100,200),包括:至少一个配置成为公用总线(114)产生输出功率的风力涡轮发电机装置(102)和至少一个配置成为公用总线(114)产生输出功率的水力发电机装置(104,110)。水力发电机装置(104,110)由水流提供动力。风力涡轮发电机装置(102)和水力发电机装置(104,110)包括与之相关的相应局部控制器(124),以及一组与公用总线(114)和每个局部控制器(124)相通信的监督控制器(126)。

Description

组合风力发电和抽水蓄能水力发电系统的系统和方法
技术领域
本发明总体上涉及一种可再生发电系统,尤其是,一种组合风力发电和抽水蓄能水力发电系统的系统和方法。
背景技术
风是能最快生成的可再生能源之一。用风的动能来产生机械能的涡轮机,将机械能转换成电。风力涡轮机通常有两个或三个叶片,这些叶片朝向或背向风。随着风引起叶片的旋转,涡轮机的轴旋转。产生的机械能可以用来给某项作业提供动力,例如抽水等,或者可以将机械能转换成电。当连在一个发电机上时,轴的旋转驱动发电机,该发电机接着就发电了。
然而,风的间歇性特征以及变速性是风力发电系统的主要缺点,这会导致系统利用率低且渗透性(penetration)低。风力发电装置的间歇性问题的现有解决方法(例如通过使用蓄能系统)通常会是费用高或能量效率低。缓和间歇性并提高系统利用率的另一种方法是使用与其它发电源并行的风力发电,这些发电源是对风力的补充。已经观察到,在世界的某些地方,风力和水力呈现出一种有效性互补模式,都是依据昼夜和季节。
抽水蓄能水力发电是更经济可行的蓄能方法之一。在需电量低的时段,用多余电量把水抽到更高的水库。当有更高需求时,通过涡轮机把水放回较低水库,这样就产生水力发电。可逆式涡轮/发电机组既可以充当泵也可以充当涡轮机。一些设备,例如,使用废矿作为较低水库,而其它的则利用两个天然水库或人工水库之间的高度差。由于外露水面的蒸发损失和转换过程中的机械能损失,用来将水抽到更高水库的电能中的大约60%-85%可以从这个过程重新获得。这个相对于其它蓄能装置如几种电池和氢燃料电池来说是比较便利的。
虽然风力发电系统和蓄能水力发电系统各有优势,但是,将风力与抽水蓄能水力(也可以是与电网(grid)连接系统和单机系统中的负载)组合起来,同时又优化能源利用率并保持瞬态稳定性,这样的难题还没有充分地得到解决。此外,仍需要解决一些问题,如频率和电压基准、抽水和发电模式转换、与功率电子界面负载的相互作用、以及单机运行。
而且,目前在运行中,没有直接组合的风力-抽水水力发电系统。在文件记载的或被提议的系统中,大部分是打算在高功率级下运行而且只能作为电网连接系统运行。因此,希望实现一种风力-抽水组合式水力发电系统,该系统为间歇性问题提供一种低成本的解决方法,该系统既可以是电网连接应用也可以是单机应用。
发明内容
本发明公开了一种风力-抽水组合式水力发电系统。在一个示范性实施例中,这个系统包括至少一个配置成为公用总线产生输出功率的风力涡轮发电机装置,和至少一个配置成为公用总线产生输出功率的水力发电机装置。该水力发电机装置由水流提供动力。该风力涡轮发电机装置和该水力发电机装置包括与之相关的相应局部控制器,和一组与公用总线和每个局部控制器相通信的监督控制器。
在另一个实施例中,一个单机组合式发电系统包括至少一个配置成为公用总线产生输出功率的风力涡轮发电机装置,和至少一个配置成为公用总线产生输出功率的水力发电机装置。该水力发电机装置由水流提供动力。该风力涡轮发电机装置和该水力发电机装置包括与之相关的相应局部控制器。一组监督控制器与公用总线和每个所述局部器控制相通信,其中,监督控制器是为动态控制系统的主频率和电压基准而配置的。
在另一个实施例中,一种用于动态控制风力-抽水组合式水力发电系统的方法包括配置一组与相应局部控制器相通信的监督控制器,这些局部控制器与至少一个配置成为公用总线产生输出功率的风力涡轮发电机装置相关,并与至少一个配置成为公用总线产生输出功率的水力发电机装置相关。水力发电机装置由水流提供动力。监督控制器是为动态控制系统的主频率和电压基准而配置的。
附图说明
参照示范性附图,其中,几个图中相同的部件采用相同的标记:
图1是根据本发明的一个实施例配置成一个电网连接系统的风力-抽水组合式水力发电系统的示意框图;
图2是根据本发明的另一个实施例配置成一个单机系统的风力-抽水组合式水力发电系统的示意框图;
图3是风力-抽水组合式水力发电系统的变速泵实施例的示意框图,该系统采用一个公用AC总线;
图4是风力-抽水组合式水力发电系统的变速泵实施例的示意框图,该系统既采用一个公用AC总线也采用一个公用DC总线;
图5是示范性控制回路的框图,图示了风力-抽水组合式水力发电系统中分担的有功功率的基准频率的动态生成;
图6是示范性控制回路的框图,图示了风力-抽水组合式水力发电系统分担的无功功率的基准电压的动态生成。
具体实施方式
本发明公开了一种电网连接和/或单机应用的组合式系统,该系统综合了最经济可行的可再生能源中的两个(风和水)的优点,并且解决了限制风力发电应用的间歇性问题。而且,本发明的实施例也为直接组合风力与抽水蓄能水力发电,以及与常规水力发电(即,河流的流动)提供了一种解决方法。如即将说明的,风力-抽水组合式水力发电系统可以作为一个电网连接系统和/或一个单机系统运行。在某些实施例中,有功部件可以通过公用交流电(AC)总线或直流电(DC)总线组合在一起,其中,对后一种情况,是通过任何可用的功率变换器DC总线而组合在一起的。而且,在此公开的发明实施例提供新的电压和频率调节通过局部和/或监督控制器来适应一个单机运行。
先参照图1,示出了根据本发明的一个实施例配置成一个电网连接系统的风力-抽水组合式水力发电系统100的示意框图。系统100的特征是,一个风力涡轮发电机102(该发电机可以具体化为一个或多个风力涡轮发电机)与由来自水源(如,蓄水库106)的水流提供动力的水力发电机104并行运行。在一个实施例中,蓄水库106是一个可再装填的水库,因为,水库中水的供应通过用一个独立的水力泵108装水来进行补充。水力泵108可以是匀速的或是变速的。作为一个可选实施例,图1也描述了一个可逆式抽水涡轮发电机110,该发电机既可以充当提供电能的水力发电机也可以充当装填水库106的水力泵。
水风组合发电机产生的电力与一个公用电力总线114耦合在一起(通过变压器112),在所述实施例中该总线是一个AC总线。如下文将要说明的,然而,也可以用一个DC总线(如,风力涡轮变换器的DC传输线)作为公用总线,就减少硬件过剩而言,这可以有利于节约。还示出了与公用电力总线114相耦合的是各种局部负载116、118,这些负载可以是简单的阻抗负载、电动机负载、或有功率电子界面的负载,也可以是其它蓄能装置,如电池。因为图1的实施例表示一个电网连接系统,所以也示出了公用电力总线114与电网120的连接,包括与之相关的每个电网发生源(一般表示在122处)。
除了风力和水力发电机的局部并行组合外,系统100还可选地配置有附加发电或蓄能源123,如汽油/柴油引擎提供动力的发电机、涡轮机、光电池、燃料电池或蓄电池。
如图1进一步说明的,风力-抽水组合式水力发电系统100通过局部控制器124和中央监督控制器126两者进行控制,以克服与风力发电相关的间歇性问题。监督控制器126通过一个通信总线128与各个局部控制器124相通信。对一个单机配置来说,系统电压和频率基准是由有功部件(如,风力或水力)中的一者动态确定的,这样,负载分担量由局部控制器124或由(如偏差(droop)控制器)或由监督控制器126提供。监督控制器126也可以配置成提供能量管理和调整控制。最后,监督控制器可以配置成通过一个适当网络,如局域网(LAN)、广域网(WAN)、因特网、无线网等等,来接收各种类型的输入数据(如,风和水的预报信息)。
图2是根据本发明的另一个实施例配置成一个单机系统的风力-抽水组合式水力发电系统200的示意框图。为了便于说明,图2与图1的电网连接系统相同的系统部件采用相同的附图标记。因为图2的单机系统200不是电网连接的,所以,在公用电力总线114上的超额容量没能被连接负载116使用和/或水库106被装填到全容量的情况下,提供一个或多个卸载负载202。然而,可以理解的是,在超额容量的情况下,单机系统200也可以用其它类型的蓄能装置,如电池。
如上所述,在使用一个变速水力泵的地方,某些系统部件也可以使用一个公用DC总线,代替或加上一个公用AC总线。这一点通过比较图3和图4得到说明。图3的配置中,风力涡轮发电机102和变速、可逆式抽水涡轮发电机110两者都配有独立的AC/DC和DC/AC变换硬件,以在希望的电压和频率下为公用AC总线114产生功率。
也就是说,一旦风力涡轮机在可变频率下产生间歇性AC电压,这个电压就首先被第一AC/DC转换器(整流器)302转换成该处的局部DC总线304上的一个过滤DC值。局部DC总线304上的电压在期望的恒定频率(如60Hz)下又被第一DC/AC转换器(逆变器)306转换回一个AC电压。此外,可逆式水力泵/发电机110也有同样的与之相关的功率转换设备;即,第二AC/DC转换器308、局部DC总线310和第二DC/AC转换器312。而且,系统中使用的任何DC设备,如蓄电池314或其它DC供电负载316,在没有专用的DC总线的情况下,也都要求有独立的AC/DC转换器318、320。
与此相反,图4示出了一个建议的替代配置,其中,公用DC总线402接收由风力涡轮发电机102和变速、可逆式抽水涡轮发电机104产生的已整流、过滤的AC电压。因此,尽管每个并行发电源都配有它自己的AC/DC转换器(404、406),但只使用单个DC/AC转换器408来提供供给局部AC总线114的恒定频率AC电压。而且,任何也使用了一个DC总线的系统部件,如电池410和其它DC负载412,也可以直接连到公用DC总线402上,从而消除对额外的整流设备的需要。
再参照图2,现在更详细地描述单机系统200中实现的局部/监督控制框图的特殊优势。与图1的系统相反,图2的单机系统200没有连在为局部控制器124提供一个电压和频率基准的电网上。因此,对单机系统200而言,电压和频率基准是动态确定的,由此,通过监督控制器126与局部控制器124之间的适当通信来动态改变主源。
图5是示范性控制回路500的框图,图示了基准频率ωref的动态生成,以确保有功功率在多个发电单元之间分担。控制回路500可以在局部控制器或监督控制器中实现。任何一种情况下,控制回路500接收一个由监督控制器生成的规定的频率ω*。用系统测量(如,电压、电流)来确定当前主频率ωm,并且由此确定由主控制器(master)传递的有功功率Pm。在示范性实施例中,对发电源之间分担的负载的偏差控制被用来确定基准频率ωref。基准频率ωref被风力涡轮发电机局部控制器和水力发电机局部控制器两者中的内部控制回路使用。局部控制器使用基准频率信号的方式取决于局部控制器是用于风力涡轮发电机还是用于水力发电机。
类似地,图6是示范性控制回路600的框图,图示了基准电压Vref的动态生成,以确保无功功率分担。此外,控制回路600可以在局部控制器或监督控制器中实现。在任何一种情况下,控制回路600接收一个由监督控制器生成的规定电压V*。用系统测量(如,电压、电流)来确定当前主电压Vm,并由此确定由主控制器(master)传递的无功功率Qm。再次使用作为例子的用于发电源之间分担的负载的偏差控制方法学,基准电压Vref被水力发电机局部控制器中的内部控制回路使用(因为没有调节风力涡轮发电机的输出电压)。
因此将意识到,本发明实施例不但解决了与风力发电有关的间歇性问题,而且提供了一种基于完全可再生的解决方法。而且,通过组合两种最廉价的可再生技术,提出了一种经济可行的解决方法来提高可再生渗透性(没有损失系统的可靠性和稳定性)。
有了发电机(以及与其相关的更大时间常量)的附加,组合式系统在故障状态和不均衡负载状态下将提供更好的性能。可以通过局部控制,如上所讨论的偏差法,和/或监督控制来提供负载分担能力。发电机的局部控制器有利于快速调整初级频率/电压,而监督控制器有利于延缓次级频率/电压恢复和经济调度,并使用工具如气象预报和水位测量来优化部件寿命。负载控制是为了实现电网频率相关的负载卸载或减载或实时定价。这样配置的组合式系统可以处理水力发电机运行和水力泵运行之间的平稳过渡,或在可逆式抽水涡轮发电机情况下两个模式之间的过渡。而且,对有着共同界面特性和不同类型的风力涡轮机的不同类型的发电/蓄能单元而言,上述系统实施例是可升级的。
尽管已经参照了一个优选实施例对本发明进行了描述,但是,对本领域技术人员来说,可以理解的是,在不脱离本发明范围的情况下,可以做多种变化并对其元件进行等效替代。此外,可以根据本发明的教导,在不脱离其本质范围的情况下,可以作一些变型来适应特定环境或材料。因此,这意味着本发明不受作为为实施本发明而设想的最佳模式而公开的特定实施方式的限制,而意味着本发明包括所有落入附加权利要求的范围内的实施方式。
部件目录表
  100   风力-抽水组合式水力发电系统
  102   风力涡轮发电机
  104   水力发电机
  106   蓄水库
  108   水力泵
  110   可逆式抽水涡轮发电机
  112   变压器
  114   电力总线
  116   局部负载
  118   局部负载
  120   电网
  123   蓄能源
  124   局部控制器
  126   监督控制器
  128   通信总线
  200   风力-抽水组合式水力发电系统
  202   卸载负载
  302   第一AC/DC转换器(整流器)
  304   DC总线
  306   第一DC/AC转换器(逆变器)
  308   第二AC/DC转换器
  310   DC总线
  312   第二DC/AC转换器
  314   蓄电池
  316   DC功率负载
  318   AC/DC转换器
  320   AC/DC转换器
  402   公用DC总线
  404   AC/DC转换器
  406   AC/DC转换器
  408   DC/AC转换器
  410   电池
  412   DC负载
  500   控制回路
  600   控制回路

Claims (10)

1.一种风力-抽水组合式水力发电系统(100,200),包括:
至少一个配置成为公用总线(114)产生输出功率的风力涡轮发电机装置(102);
至少一个配置成为所述公用总线(114)产生输出功率的水力发电机装置(104,110),所述至少一个水力发电机装置(104,110)由水流提供动力;和
所述至少一个风力涡轮发电机装置(102)和所述至少一个水力发电机装置(104,110)具有与之相关的相应局部控制器(124);和
一组与所述公用总线(114)和每个所述局部控制器(124)相通信的监督控制器(126),
其中,所述监督控制器配置成动态控制所述风力-抽水组合式水力发电系统的主频率与电压基准,以及
其中,所述局部控制器配置成在所述至少一个风力涡轮发电机装置与所述至少一个水力发电机装置之间进行负载分担。
2.如权利要求1所述的系统(100,200),其中,所述水流来自可再装填的蓄水库(106)。
3.如权利要求2所述的系统(100,200),还包括一个耦合到所述公用总线(114)上的水力泵(108),所述水力泵(108)配置成在运行时再装填所述蓄水库(106)。
4.如权利要求3所述的系统(100,200),其中,所述水力泵(108)包括一个变速水力泵(108)。
5.如权利要求2所述的系统(100),其中,所述至少一个水力发电机装置(104,110)还包括一个可逆式抽水涡轮发电机,所述可逆式抽水涡轮发电机配置成在以水泵模式运行时再装填所述蓄水库(106)。
6.如权利要求1所述的系统(200),其中,所述公用总线(114)配置成一个单机系统。
7.如权利要求6所述的系统(200),还包括以下项中的一个或多个:
卸载负载(202),和
附加蓄能装置,所述蓄能装置可选择地耦合到所述公用总线(114)上。
8.如权利要求1所述的系统(100,200),其中,所述公用总线(114)配置成选择性地耦合到电网(120)上。
9.如权利要求1所述的系统(100,200),其中,所述公用总线(114)是交流电(AC)总线。
10.如权利要求1所述的系统(100,200),还包括公用直流电(DC)总线(402),所述公用直流电总线由所述至少一个风力涡轮发电机装置(102)和所述至少一个水力发电机装置(104,110)的整流输出馈送。
CN2006101719597A 2005-11-18 2006-11-17 组合风力发电和抽水蓄能水力发电系统的系统和方法 Expired - Fee Related CN1982703B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/282,378 US7239035B2 (en) 2005-11-18 2005-11-18 System and method for integrating wind and hydroelectric generation and pumped hydro energy storage systems
US11/282378 2005-11-18

Publications (2)

Publication Number Publication Date
CN1982703A CN1982703A (zh) 2007-06-20
CN1982703B true CN1982703B (zh) 2011-10-05

Family

ID=37670700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101719597A Expired - Fee Related CN1982703B (zh) 2005-11-18 2006-11-17 组合风力发电和抽水蓄能水力发电系统的系统和方法

Country Status (4)

Country Link
US (1) US7239035B2 (zh)
EP (1) EP1813807B1 (zh)
CN (1) CN1982703B (zh)
DK (1) DK1813807T3 (zh)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1902808B (zh) * 2004-01-09 2011-10-05 皇家飞利浦电子股份有限公司 分散型发电系统及其操作方法
US7531915B2 (en) * 2006-05-23 2009-05-12 Continental Automotive Systems Us, Inc. System and method for controlling power flow in a power system
CA2662057C (en) * 2006-09-01 2015-06-16 Vestas Wind Systems A/S System and method of controlling a wind turbine in a wind power plant
GR20060100633A (el) * 2006-11-21 2008-06-18 Συνεργικη παραγωγη ηλεκτρικης ενεργειας απο ανανεωσιμες πηγες ενεργειας.
FI121407B (fi) 2007-12-27 2010-10-29 Waertsilae Finland Oy Paikallisen sähkövoimansiirtoverkon kuormanjakosysteemin vikatilanteen käsittelyjärjestely
EA012536B1 (ru) * 2008-02-11 2009-10-30 Игорь Владимирович ПРУС Пневмогидростанция и пневмогидрокольцевой двигатель
US8731732B2 (en) 2008-02-25 2014-05-20 Stanley Klein Methods and system to manage variability in production of renewable energy
US7994658B2 (en) * 2008-02-28 2011-08-09 General Electric Company Windfarm collector system loss optimization
US7952232B2 (en) * 2008-03-13 2011-05-31 General Electric Company Wind turbine energy storage and frequency control
US7994649B2 (en) 2008-04-23 2011-08-09 Abatemarco Michael R Pelagic sustainable energy system
GB0809235D0 (en) * 2008-05-21 2008-06-25 Poweroasis Ltd Supervisory system controller for use with a renewable energy powered radio telecommunications site
ES2364206B1 (es) * 2008-05-22 2012-06-26 Endesa Generacion, S.A. Sistema y método de control y regulación de velocidad para grupos hidráulicos tipo pelton, asi como centrales eólico hidráulicas que incorporan este sistema.
US20100052328A1 (en) * 2008-08-29 2010-03-04 Thales Research, Inc. Hybrid wind turbine - combustion engine electrical power generator
US8406019B2 (en) * 2008-09-15 2013-03-26 General Electric Company Reactive power compensation in solar power system
CN101677185A (zh) * 2008-09-16 2010-03-24 上海模斯电子设备有限公司 一种风、光、油、离并网型电源分布式控制系统
US8072086B2 (en) * 2008-09-24 2011-12-06 Samuel Thomas Kelly Electrical energy storage and retrieval system
US7608937B1 (en) * 2008-09-30 2009-10-27 General Electric Company Power generation system and method for storing electrical energy
WO2010062398A1 (en) * 2008-11-26 2010-06-03 Maloney Michael A Power distribution controller and related systems and methods
EP2377224B1 (en) * 2008-12-12 2021-04-21 ABB Schweiz AG System and apparatus for power transfer to vessels
US8803346B2 (en) * 2009-03-09 2014-08-12 Natural Power Concepts, Inc. System and method for generating electricity using grid of wind and water energy capture devices
US8115332B2 (en) * 2009-04-09 2012-02-14 Kenergy Scientific, Inc. Solar-initiated wind power generation system
AU2010247851B2 (en) 2009-05-12 2014-07-24 Icr Turbine Engine Corporation Gas turbine energy storage and conversion system
US7925387B2 (en) * 2009-07-14 2011-04-12 General Electric Company Method and systems for utilizing excess energy generated by a renewable power generation system to treat organic waste material
US20120114486A1 (en) * 2009-07-17 2012-05-10 Ehrnberg Solutions Ab Offshore energy storage device
US8400007B2 (en) * 2009-07-29 2013-03-19 Charles E Campbell Hydroelectric power system
US8108081B2 (en) * 2009-08-12 2012-01-31 Sunpower Corporation System and method for associating a load demand with a variable power generation
US7953245B2 (en) * 2009-08-18 2011-05-31 General Electric Company System, method and program product for camera-based object analysis
US9593665B2 (en) 2009-10-02 2017-03-14 Jose Ramon Santana Hydro-kinetic transport wheel
US8587145B2 (en) * 2009-10-13 2013-11-19 Juan Andujar Vertical axis hydro kinetic wind turbine
US9214811B2 (en) * 2009-12-22 2015-12-15 California Institute Of Technology Devices and methods for harvesting power from arrays of wind turbines
ES2794015T3 (es) 2010-01-14 2020-11-17 Siemens Gamesa Renewable Energy Service Gmbh Componentes de pala del rotor de la turbina eólica y métodos para hacer los mismos
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
WO2011109514A1 (en) 2010-03-02 2011-09-09 Icr Turbine Engine Corporatin Dispatchable power from a renewable energy facility
US8839616B1 (en) * 2010-03-10 2014-09-23 Jose A. Perez Water tower complex
DE102010023019A1 (de) * 2010-06-08 2011-12-08 Siemens Aktiengesellschaft Wellengeneratorsystem
CN102297083B (zh) * 2010-06-24 2013-11-06 中国水电顾问集团贵阳勘测设计研究院 一种风力发电大规模稳定外送的方法
US8984895B2 (en) 2010-07-09 2015-03-24 Icr Turbine Engine Corporation Metallic ceramic spool for a gas turbine engine
AU2011295668A1 (en) 2010-09-03 2013-05-02 Icr Turbine Engine Corporation Gas turbine engine configurations
GB2483879B (en) * 2010-09-22 2013-07-10 Qingchang Zhong Robust droop controller for inverters to achieve exact proportional load sharing when connected in parallel
SI23517A (sl) 2010-10-19 2012-04-30 Mitja KOPRIVŠEK Naprava za pridobivanje in akumuliranje električne energije
DE102010054233A1 (de) * 2010-12-11 2012-06-14 Adensis Gmbh Energieversorgungsnetz mit Blindleistungsmanagement
CN102734077A (zh) * 2011-04-02 2012-10-17 高则行 蓄能系统和包括该蓄能系统的风力发电机
US9051873B2 (en) 2011-05-20 2015-06-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine shaft attachment
CN102882223B (zh) * 2011-07-11 2016-09-28 陈巍 水风光和生物质多能集成互补发电方法及装置
CN102437602B (zh) * 2011-10-21 2013-08-14 东北大学 一种风光水互补发电装置及控制方法
US8841789B2 (en) 2011-10-28 2014-09-23 Juan Andujar Hybrid electro magnetic hydro kinetic high pressure propulsion generator
KR20130098189A (ko) 2011-12-06 2013-09-04 미츠비시 쥬고교 가부시키가이샤 발전 시스템
CN102496958B (zh) * 2011-12-08 2014-06-04 东北大学 一种风水互补发电系统及其控制方法
FR2983921A1 (fr) * 2011-12-13 2013-06-14 Laurent Barthelemy Installation de production d'energie
EP2610487A1 (en) * 2011-12-28 2013-07-03 Siemens Aktiengesellschaft Wind turbine controller and method for controlling a wind turbine to provide redundancy
CN102545263B (zh) * 2012-01-19 2013-10-23 浙江大学 一种基于显式数值积分的电力系统暂态稳定仿真方法
EP2823543B1 (de) * 2012-03-09 2016-10-05 ABB Schweiz AG Verfahren zur verwendung einer elektrischen einheit
US8823195B2 (en) 2012-04-03 2014-09-02 Mark Robert John LEGACY Hydro electric energy generation and storage structure
US10094288B2 (en) 2012-07-24 2018-10-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine volute attachment for a gas turbine engine
US20140152009A1 (en) * 2012-11-30 2014-06-05 United Technologies Corporation Complementary power and frequency control for power generating equipment
CN103036377A (zh) * 2012-12-05 2013-04-10 镇江市博林光电科技有限公司 双转子电磁滑差风电装置
CN103078326B (zh) * 2012-12-28 2014-09-10 中国电力科学研究院 一种提高电网频率安全稳定性的优化方法
GB201306931D0 (en) * 2013-04-15 2013-05-29 Davison Hugh P Re-cycling generating system
DE102013112896A1 (de) * 2013-11-22 2015-05-28 Mitsubishi Hitachi Power Systems Europe Gmbh Verfahren, System und Computerprogramm-Produkt zur Analyse von produktionstechnischen und/oder verfahrenstechnischen Prozessen und/oder Prozessschritten in einer Anlage
US10364789B2 (en) * 2014-05-15 2019-07-30 Illinois Tool Works Inc. Pumped hydro tower
US20160273511A1 (en) * 2014-09-23 2016-09-22 Robert L. Huebner Waterwheel for a Waterwheel Energy System
US20170082085A1 (en) * 2015-09-22 2017-03-23 Robert L. Huebner Waterwheel for a Waterwheel Energy System
US20160084217A1 (en) * 2014-09-23 2016-03-24 Robert L. Huebner Waterwheel Energy System
CN104392142B (zh) * 2014-12-05 2017-04-12 武汉大学 防止水电站群持续性破坏的发电方案生成方法
CN105986957A (zh) * 2015-02-05 2016-10-05 福建省泉州海丝船舶评估咨询有限公司 一种潮汐能海水循环输送系统
IL237204A0 (en) 2015-02-12 2015-06-30 Univ Malta Hydro-pneumatic energy storage system
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
KR101809787B1 (ko) * 2015-03-10 2017-12-15 엘에스산전 주식회사 배터리 전력 공급 시스템을 포함하는 전력 공급 시스템
US9742411B1 (en) * 2015-08-24 2017-08-22 University Of South Florida Simultaneous economic dispatch and frequency regulation of power systems
US20170298895A1 (en) * 2016-04-17 2017-10-19 True Ten Industrial Co., Ltd. Green power generation system and method
US10844828B2 (en) 2016-06-01 2020-11-24 Robert L. Huebner Water powered motor for producing useful work
NL2017316B1 (en) * 2016-08-15 2018-02-21 Danvest Energy As Renewable energy supply system, island operation powerline and method
CN106357006A (zh) * 2016-08-31 2017-01-25 安徽远东船舶有限公司 一种大功率直流储电站
CN109075717B (zh) * 2016-09-14 2021-06-08 法拉达伊格里德有限公司 配电网络和过程
US10651656B2 (en) * 2016-09-14 2020-05-12 Texas Tech University System UDE-based robust droop control for parallel inverter operation
WO2018063529A1 (en) * 2016-09-30 2018-04-05 General Electric Company Electronic sub-system and dfig based power generation system for powering variable frequency electrical devices
CN108110780B (zh) * 2018-01-29 2020-12-08 广东电网有限责任公司电力科学研究院 一种孤立微电网储能容量优化配置方法及装置
CN108321934B (zh) * 2018-02-01 2021-07-30 赵明星 一种调配新能源发电系统的抽水蓄能控制系统
CN108767898B (zh) * 2018-06-13 2021-07-06 四川大学 一种考虑风电与直流综合作用的电力系统暂态稳定分析方法
CN109449980A (zh) * 2018-11-28 2019-03-08 武汉大学 一种含海水抽蓄电站的主动配电网优化调度方法
CN110224418B (zh) * 2019-06-19 2024-04-16 浙江中新电力工程建设有限公司自动化分公司 分布式储能电站监控系统
CN110277803B (zh) * 2019-07-30 2021-02-12 西安西电电气研究院有限责任公司 一种储能变流器的虚拟同步发电机控制方法及控制装置
CN110556868B (zh) * 2019-09-25 2021-06-22 国网福建省电力有限公司 一种考虑电压稳定性的风电接入系统储能充放电控制方法
CN110912119B (zh) * 2019-10-28 2023-09-26 四川大学 一种基于暂态频率指标的互补系统控制策略组合优化方法
CN114046225A (zh) * 2021-11-29 2022-02-15 上海电气风电集团股份有限公司 浮式风力发电基础结构及风力发电机系统
US12025061B2 (en) 2022-04-04 2024-07-02 General Electric Company Gas turbine engine with fuel cell assembly
US12043406B2 (en) 2022-05-27 2024-07-23 General Electric Company Method of operating a fuel cell assembly for an aircraft
US11817700B1 (en) 2022-07-20 2023-11-14 General Electric Company Decentralized electrical power allocation system
CN115333173B (zh) * 2022-10-12 2023-02-03 武汉大学 基于水电与电池储能的多能互补系统有功功率控制方法
NO347835B1 (no) * 2023-05-12 2024-04-15 Mf Eng Drift As Et kombinasjonskraftanlegg for produksjon av elektrisk energi, omfattende et eksisterende vannkraftverk og et vindkraftverk

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299008A (zh) * 2000-12-28 2001-06-13 陈永兵 风能稳压发电方法
US6861766B2 (en) * 2001-12-03 2005-03-01 Peter Rembert Hydro-electric generating system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR992902A (fr) * 1944-09-25 1951-10-24 Perfectionnements apportés aux ensembles constitués par une centrale hydroélectrique alimentée par un lac en charge
FR2326595A1 (fr) * 1975-02-10 1977-04-29 Germain Fernand Installation perfectionnee pour la production d'energie electrique
US4055950A (en) * 1975-12-29 1977-11-01 Grossman William C Energy conversion system using windmill
US4031702A (en) * 1976-04-14 1977-06-28 Burnett James T Means for activating hydraulic motors
US4166222A (en) * 1977-11-09 1979-08-28 John Hanley Wind wheel apparatus for use with a hydro-electric dam
US4426846A (en) * 1978-04-24 1984-01-24 Wayne Bailey Hydraulic power plant
US4206608A (en) * 1978-06-21 1980-06-10 Bell Thomas J Natural energy conversion, storage and electricity generation system
GB2032009B (en) * 1978-10-06 1983-03-02 Grueb R Apparatus for generating power from hydrostatic pressure
US4380419A (en) * 1981-04-15 1983-04-19 Morton Paul H Energy collection and storage system
DE4132274A1 (de) * 1991-09-30 1993-05-06 Stn Systemtechnik Nord Gmbh, 2800 Bremen, De Verfahren zum wirtschaftlichen betrieb eines inselnetzes mit erneuerbaren energiequellen und schaltungsanordnung zur durchfuehrung des verfahrens
DE4232516C2 (de) * 1992-09-22 2001-09-27 Hans Peter Beck Autonomes modulares Energieversorgungssystem für Inselnetze
CA2202079C (en) * 1994-10-17 2000-01-04 Wai Cheung Lee Fluid power storage device
US6023105A (en) * 1997-03-24 2000-02-08 Youssef; Wasfi Hybrid wind-hydro power plant
DE19714512C2 (de) * 1997-04-08 1999-06-10 Tassilo Dipl Ing Pflanz Maritime Kraftwerksanlage mit Herstellungsprozeß zur Gewinnung, Speicherung und zum Verbrauch von regenerativer Energie
US6051892A (en) * 1998-07-13 2000-04-18 Toal, Sr.; Timothy Michael Hydroelectric power system
DE10044096A1 (de) * 2000-09-07 2002-04-04 Aloys Wobben Inselnetz und Verfahren zum Betrieb eines Inselnetzes
US6718761B2 (en) * 2001-04-10 2004-04-13 New World Generation Inc. Wind powered hydroelectric power plant and method of operation thereof
US6860068B2 (en) * 2001-06-26 2005-03-01 John J. Halloran Potential energy storage system
US20030090233A1 (en) 2001-11-13 2003-05-15 Browe David S. Renewable stored energy power generating apparatus
JP3753113B2 (ja) * 2002-08-23 2006-03-08 三菱電機株式会社 発電機制御装置
US7453164B2 (en) 2003-06-16 2008-11-18 Polestar, Ltd. Wind power system
US7003955B2 (en) 2003-08-15 2006-02-28 Lester Davis Enhanced pumped storage power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299008A (zh) * 2000-12-28 2001-06-13 陈永兵 风能稳压发电方法
US6861766B2 (en) * 2001-12-03 2005-03-01 Peter Rembert Hydro-electric generating system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2004-19626A 2004.01.22

Also Published As

Publication number Publication date
CN1982703A (zh) 2007-06-20
EP1813807A2 (en) 2007-08-01
US20070114796A1 (en) 2007-05-24
EP1813807B1 (en) 2017-01-11
EP1813807A3 (en) 2012-11-21
DK1813807T3 (en) 2017-03-27
US7239035B2 (en) 2007-07-03

Similar Documents

Publication Publication Date Title
CN1982703B (zh) 组合风力发电和抽水蓄能水力发电系统的系统和方法
CN1470092B (zh) 孤立电网以及运行孤立电网的方法
CN101013819B (zh) 将能量储存系统耦合到可变能量供应系统的方法和装置
CN102116244B (zh) 风光互补发电储能装置
CN201972859U (zh) 风光互补发电储能装置
CN103825307A (zh) 控制发电厂的方法
Gb et al. Design and control of grid-connected solar-wind integrated conversion system with DFIG supplying three-phase four-wire loads
CN102244498B (zh) 一种电网中的发电单元驱动器、发电单元以及能量输出设备
CN103066677A (zh) 一种自适应性混合供电系统
CN112260260A (zh) 一种新能源发电直流并网系统及其控制方法
KR101644522B1 (ko) Ac 마이크로그리드 3상부하에서의 전력 공급 시스템
CN116826736A (zh) 高比例新能源系统惯量约束的灵活性资源配置方法及系统
Hamsic et al. Stabilising the grid voltage and frequency in isolated power systems using a flywheel energy storage system
CN202019336U (zh) 一种电网中的发电单元和能量输出设备
CN203942288U (zh) 一种双馈发电机组交、直流并网系统
CN106058935A (zh) 一种分布式风光储充一体化微电网系统
CN104682427A (zh) 一种交直流混合的清洁能源系统及方法
CN211403476U (zh) 一种热能和电能集成化微网系统
CN204441903U (zh) 一种交直流混合的清洁能源系统
CN202167849U (zh) 直流多级浮充电供配电系统
CN207732446U (zh) 一种基于抽水蓄能电站和水电站的多元储能调峰调频系统
CN105978129A (zh) 一种分布式风光储充一体化充电方法
CN213817250U (zh) 一种海上风电复合布置方式储能系统
CN216894709U (zh) 一种用于水力发电系统的联储装置
CN106208132A (zh) 一种水电光伏一体供电式微电网系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111005

Termination date: 20181117