CN1976629A - Medical Imaging System for Accurate Determination of Oriented Tumor Changes - Google Patents

Medical Imaging System for Accurate Determination of Oriented Tumor Changes Download PDF

Info

Publication number
CN1976629A
CN1976629A CNA2005800213223A CN200580021322A CN1976629A CN 1976629 A CN1976629 A CN 1976629A CN A2005800213223 A CNA2005800213223 A CN A2005800213223A CN 200580021322 A CN200580021322 A CN 200580021322A CN 1976629 A CN1976629 A CN 1976629A
Authority
CN
China
Prior art keywords
image
nodule
tumor
measurement
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800213223A
Other languages
Chinese (zh)
Inventor
D·F·杨克洛维茨
A·P·里夫斯
C·I·亨施克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1976629A publication Critical patent/CN1976629A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Pulmonology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

A body part (204) is scanned (20) to obtain a first set of image data (214A). A target lesion (5, 202A) in the image data is identified (30). The body part (204) is rescanned (40) at a subsequent time to obtain a second set of image data (214B). A target lesion (5A, 202B) in the second set of image data is identified, and the size of the target lesion (5, 202A) in the first and second sets of image data is measured to determine two apparent image volumes corresponding to the first and second sets of image data (60). The size change (70) is estimated by comparing the first and second apparent tumor sizes (301A, 301B). The variation in dimensional change is estimated (80) to determine the extent of the change in dimensional measurement.

Description

用于准确测定定向瘤变化的医学影像系统Medical Imaging System for Accurate Determination of Oriented Tumor Changes

技术领域technical field

本发明总体上是涉及医学影像数据分析,特别是自动化计算机方法,以准确测定经医学影像系统成像的定向瘤(target lesion)或多重定向瘤的变化。The present invention generally relates to medical image data analysis, especially an automated computer method to accurately determine changes in target lesions or multiple lesions imaged by a medical imaging system.

背景技术Background technique

医药领域开发出各种各样需要经FDA正式批准的产品,这种批准往往建立在从医学影像得出的测量结果上。药物开发花费最多和最耗时的一面涉及临床试验以使抗癌剂如抗癌药能得到批准。这一点对于肿瘤学领域尤其如此,当然也适用于其它药物领域。The pharmaceutical field develops a variety of products that require formal FDA approval, often based on measurements derived from medical imaging. The most costly and time-consuming aspect of drug development involves clinical trials to enable anticancer agents such as anticancer drugs to be approved. This is especially true for the field of oncology, but of course it also applies to other fields of medicine.

在肿瘤学领域,现在用医学影像来评估对抗癌剂治疗的反应已经是很平常的了。许多临床试验使用对异常病变或瘤(如肿瘤)在尺寸上变化的测量结果作为评定治疗效果的主要指标。尽管病人存活率的变化被认为是在评定药物效果时的主要立足点,但是作为得到FDA批准的手段,这个衡量标准(必不可少的)与肿瘤尺寸变化这一取代它的衡量标准相比较少地被给予考虑。例如,用于治疗肺癌的药物可能根据肺中肿瘤或其它瘤尺寸减少速率这一标准进行评定。In the field of oncology, it is now commonplace to use medical imaging to assess response to treatment with anticancer agents. Many clinical trials use the measurement of changes in size of abnormal lesions or tumors (eg, tumors) as the primary indicator for assessing the efficacy of treatment. Although change in patient survival is considered the primary standpoint in assessing drug efficacy, this measure is (essentially) less important than change in tumor size, the measure that replaces it, as a means of obtaining FDA approval was given consideration. For example, a drug used to treat lung cancer might be rated based on the rate at which tumor or other growths in the lung decrease in size.

RECIST(实体瘤的疗效评价标准)规范是一种正式的、已经建立的用于测量肿瘤尺寸变化的方法。RECIST包括一组公开的规则,这些规则定义了在治疗期间什么时候癌症病人状况属于得到改善(“有反应”)、什么时候属于无变化(“稳定”),或什么时候情况属于严重(“恶化”)。该标准经国际合作公开,所述合作包括欧洲癌症研究和治疗组织(EORTC)、美国国家癌症协会(NCI)和加拿大国家癌症协会临床试验组。(见Therasse,et al.,“New Guidelines to Evaluate the Responseto Treatment in Solid Tumors,”Journal of the National Cancer Institute,Vol.92,No.3,Feb.2,2000,205-216.)。目前,大多数评定实体瘤对癌症治疗的客观反应的临床试验都是使用RECIST。The RECIST (Response Evaluation Criteria in Solid Tumors) protocol is a formal, established method for measuring changes in tumor size. RECIST includes a set of published rules that define when a cancer patient's condition is considered to be improving ("responsive"), unchanged ("stable"), or severe ("deteriorating") during treatment. "). This standard was published through an international collaboration including the European Organization for Research and Treatment of Cancer (EORTC), the National Cancer Institute (NCI) and the Clinical Trials Group of the National Cancer Society of Canada. (See Therasse, et al., "New Guidelines to Evaluate the Response to Treatment in Solid Tumors," Journal of the National Cancer Institute, Vol. 92, No. 3, Feb. 2, 2000, 205-216.). Currently, most clinical trials assessing the objective response of solid tumors to cancer therapy use RECIST.

RECIST标准的要素是使用单一空间测量结果,其中选择含有肿瘤最大横截面直径的影像,并从这个影像得到一维的最大测量结果。然后将该一维测量结果与在另一特定时间同一肿瘤的相似影像相比,从而评估反应情况。根据RECIST,完全反应定义为肿瘤的消失,部分反应定义为尺寸减小30%,进展定义为肿瘤尺寸增大20%。RECIST不检测尺寸小于1cm的瘤。An element of the RECIST criteria is the use of single-space measurements in which the image containing the largest cross-sectional diameter of the tumor is selected and the one-dimensional largest measurement is derived from this image. This one-dimensional measurement is then compared to a similar image of the same tumor at another specific time to assess response. According to RECIST, a complete response was defined as disappearance of the tumor, a partial response was defined as a 30% reduction in size, and progression was defined as a 20% increase in tumor size. RECIST does not detect tumors smaller than 1 cm in size.

在进行任何测量时,准确性是一个很关键的问题。不幸的是,目前用于评定肿瘤对治疗反应的RECIST方法受到很大限制,因为其没有考虑测量的准确性。结果,该方法需要观察大量在一维测量中发生的变化以判定是否对治疗有反应。这种对如此大量的变化的需要使该方法不能可靠地测量肿瘤尺寸。Accuracy is a critical issue when making any measurement. Unfortunately, the current RECIST method for assessing tumor response to treatment is very limited because it does not take into account the accuracy of the measurements. As a result, the method requires looking at a large number of changes in one-dimensional measurements to determine response to treatment. This need for such a large amount of variation makes the method unreliable for measuring tumor size.

在以前的标准操作中,由放射线工作者进行的测径器测量也可用于测量肿瘤尺寸。测量的准确性通过熟练放射线工作者在测量模型(phantom)或实际瘤时的测量变率进行评测。与人工测量肿瘤长度相关的错误可能会相当大。类似地,由于不能可靠地在瞬间即分开的扫描上选择相似影像,因此必须依赖大量的变化,目的是肯定这种变化是真实的,而不是一种测量错误。Caliper measurements by radiologists can also be used to measure tumor size in previously standard practice. Measurement accuracy was assessed by skilled radiologists' measurement variability when measuring phantom or actual tumors. Errors associated with manual measurement of tumor length can be considerable. Similarly, since similar images cannot be reliably selected on instantaneously separated scans, large variations must be relied upon in order to be sure that the variation is real and not a measurement error.

总的来说,目前的方法都没有提供具有本发明步骤的、能准确测定的方法,本发明方法使用测定体积的方法来测定尺寸。目前的方法在一个切面上测量肿瘤的长度,并仅在一个或两个方向上进行测量,而不是测量与肿瘤相关的所有三维元素。In general, none of the current methods provide an accurate method with the steps of the present invention, which uses a volumetric method to determine size. Current methods measure tumor length in one slice and in only one or two directions, rather than measuring all three-dimensional elements associated with the tumor.

发明内容Contents of the invention

本发明提供了一种自动化方法用于确定体积变化测量的误差范围。身体某部分经扫描后得到第一组影像数据。识别影像数据中的定向瘤。该身体部位随后再次被扫描得到第二组影像数据。识别在该第二组影像数据中的定向瘤,并且在第一组和第二组影像数据中测量定向瘤的尺寸以确定对应于第一和第二组影像数据的两个表观影像体积。尺寸上的变化通过对比所述第一和第二组表观瘤的尺寸进行估测。估测尺寸变化上的差异,从而来确定尺寸测量中的变化范围。The present invention provides an automated method for determining the margin of error for volume change measurements. A certain part of the body is scanned to obtain the first set of image data. Identify orientation tumors in imaging data. The body part is then scanned again to obtain a second set of image data. A tumor in the second set of image data is identified, and a size of the tumor in the first and second sets of image data is measured to determine two apparent image volumes corresponding to the first and second sets of image data. Changes in size were estimated by comparing the size of the first and second sets of apparent tumors. Estimate the difference in dimensional variation to determine the range of variation in dimensional measurements.

一方面,本发明提供了一种缩短临床试验时间的方法,通过提供一种在更短时间间隔内得知肿瘤是否有反应的准确方法。In one aspect, the present invention provides a method of shortening the time of clinical trials by providing an accurate method of knowing whether a tumor is responding or not in a shorter time interval.

另一方面,本发明提供了一种能确切测量肿瘤较小程度变化的方法。In another aspect, the present invention provides a method that can reliably measure changes in tumors to a lesser extent.

附图说明Description of drawings

尽管本发明的新颖特征在权利要求中进行了详细阐述,但是本发明(不论对于结构还是内容)下述结合图进行的详细说明可更有助于理解和明白本发明,及本发明其它目的和特征,其中:Although the novel features of the present invention are described in detail in the claims, the following detailed description of the present invention (no matter for the structure or content) in conjunction with the drawings can be more helpful to understand and understand the present invention, and other purposes and objectives of the present invention features, among them:

图1显示了用于准确测定评估定向瘤变化的系统的简化方块图,该定向瘤经根据本发明一个实施方案构建的影像系统成像;Figure 1 shows a simplified block diagram of a system for the accurate determination and assessment of changes in tropisms imaged by an imaging system constructed in accordance with one embodiment of the present invention;

图2是根据本发明的一个实施方案构建的用于确定影像测量误差范围的自动化方法的高标准功能化方块图;Figure 2 is a high level functionalized block diagram of an automated method for determining error bounds for imagery measurements constructed in accordance with one embodiment of the present invention;

图3是根据本发明的可选择实施方案构建的用于确定影像测量误差范围的方法的另一个实施方案的高标准功能化方块图;FIG. 3 is a high level functionalized block diagram of another embodiment of a method for determining error bounds for image measurement constructed in accordance with an alternative embodiment of the present invention;

图4图解形式显示了整个肺(large pulmonary)的CT影像切片;Figure 4 schematically shows CT image slices of the entire lung (large pulmonary);

图5图解形式显示了在CT影像上的叠加成像而可视化瘤边界方法;Fig. 5 schematically shows the method of overlaying imaging on CT images to visualize tumor boundaries;

图6图解形式显示了在CT影像上的叠加成像而可视化瘤边界方法的替代方案;Figure 6 shows in schematic form an alternative method of visualizing tumor borders by superimposing imaging on CT images;

图7A和图7B图解形式显示了在不同时间获得的在CT影像上的叠加成像而可视化瘤边界方法的另一个可选择的实施方案;Figures 7A and 7B show in diagrammatic form another alternative embodiment of a method for visualizing tumor boundaries by superimposing imaging on CT images acquired at different times;

图8A和图8B图解形式显示了在不同时间获得的在CT影像上的叠加成像而可视化瘤边界方法的又一个可选择的实施方案;Figures 8A and 8B show in diagrammatic form yet another alternative embodiment of a method for visualizing tumor boundaries by overlaying images on CT images acquired at different times;

图9A和图9B图解形式显示了在不同时间获得的在CT影像上的叠加成像而可视化瘤边界方法的另一个实施方案;Figures 9A and 9B show in diagrammatic form another embodiment of a method for visualizing tumor boundaries by superimposing imaging on CT images acquired at different times;

图10图解形式显示了在CT影像上的叠加成像而可视化瘤边界方法的另一个可选择实施方案;Figure 10 shows in diagrammatic form another alternative embodiment of the method of overlaying imaging on a CT image to visualize tumor boundaries;

图11图解形式显示了在CT影像上的叠加成像而可视化瘤边界方法的又一个可选择实施方案。Figure 11 shows in diagrammatic form yet another alternative embodiment of the method of overlaying imaging on a CT image to visualize tumor boundaries.

具体实施方式Detailed ways

首先,应该引起注意的是,尽管本发明详细描述了分析医学影像数据的特定系统和方法,如放射医学数据,但是这并不是进行限定,只是用于说明,本发明也可被用于分析其它类型数据。First, it should be noted that although the present invention describes in detail specific systems and methods for analyzing medical imaging data, such as radiology data, this is by no means limiting and is for illustration only, and the present invention can also be used to analyze other type data.

本发明建立在成像技术的前沿知识基础上,这些技术现在已经能扫描肿瘤,从而可以成像整个肿瘤体积。在过去十年中,通过利用3D体积测量计算机算法从CT影像测量肿瘤尺寸的方法已经取得重大进步。此外,现在影像可以各向同性地获得,即解析度(resolution)在x、y和z方向上几乎是相同的。改进的(advanced)影像处理允许肿瘤与周围结构进一步分割,对肿瘤边界具有更好的定义,从而得到改进的测量结果。The present invention builds on the leading edge knowledge of imaging technologies that are now able to scan tumors so that the entire tumor volume can be imaged. Over the past decade, there have been major advances in methods for measuring tumor size from CT images by utilizing 3D volumetric computer algorithms. Furthermore, images are now acquired isotropically, ie the resolution is almost the same in the x, y and z directions. Advanced image processing allows for further segmentation of the tumor from surrounding structures, with better definition of tumor boundaries, resulting in improved measurements.

本发明将较高解析度成像技术与改进的成像方法结合起来,从而更准确地比较肿瘤。在该方法中,可以测量到更小程度的变化,同时对测量肿瘤尺寸变化依然有把握。此外,可以通过测量体积来测量变化,而不是简单地使用单一一维测量。通过该方法,可以对数据进行更完整的评估。The present invention combines higher resolution imaging techniques with improved imaging methods to more accurately compare tumors. In this approach, changes to a smaller degree can be measured while still being confident in measuring changes in tumor size. Additionally, changes can be measured by measuring volume rather than simply using a single 1D measurement. This approach allows for a more complete evaluation of the data.

测量准确性依赖于许多因素。通过估计与这些因素相关的误差,则可以判定任何具体肿瘤测量的准确性。作为了解测量准确性的结果,可以提供关于肿瘤尺寸变化的更小范围以预测重病。因此,通过利用准确性分析可以尽早地、可靠地确诊重病,使用的是肿瘤更小,但更准确的尺寸变化,而不是使用现有的RECIST标准。Measurement accuracy depends on many factors. By estimating the errors associated with these factors, the accuracy of any particular tumor measurement can be determined. As a result of knowing the accuracy of the measurements, a smaller range for changes in tumor size may be provided to predict severe disease. Therefore, severe disease can be diagnosed early and reliably by utilizing the accuracy analysis, using smaller but more accurate size changes of tumors, rather than using existing RECIST criteria.

一个被称作ELCAP管理系统(EMS)的现有临床试验数据管理系统可以有利地用在本发明的方法中。EMS提供了试验管理系统的所有方面,包括远程放射工作者识别和影像数据的电脑分析。EMS的特点在于能更有效和及时地管理临床试验,从而使进行试验的时间更短,同时使用更准确的数据测量和较好的质量控制。由于在试验进行处缺少病人治疗监控而导致的临床试验特征遗失的数据的量也可以通过使用带有实时反馈和报告的基于网络的系统而得到改善。除了自动化方法,一种要求放射线工作者手工绘制某些描述性边界以对面积或体积测量进行限定的半自动方法将提高整体的再现性和准确性。An existing clinical trial data management system known as ELCAP Management System (EMS) can be advantageously used in the method of the present invention. EMS provided all aspects of the trial management system, including teleradiologist identification and computerized analysis of imaging data. EMS is characterized by more efficient and timely management of clinical trials, resulting in shorter trial times, more accurate data measurements and better quality control. The amount of data lost on clinical trial features due to lack of patient treatment monitoring where the trial is conducted can also be improved by using a web-based system with real-time feedback and reporting. In addition to automated methods, a semi-automated approach that requires radiologists to manually draw certain descriptive boundaries to define area or volume measurements would improve overall reproducibility and accuracy.

现在参考图1,其显示了用于准确测定定向瘤变化的自动化系统的简化方块图,定向瘤经根据本发明一个实施方案构建的影像系统成像。影像系统2在不同的时间t1和t2产生影像数据。在时间t1产生的影像数据中的定向瘤5也出现在随后的、在时间t2时产生的影像数据中,定为定向瘤5A。瘤(lesion)5和瘤5A是同一个瘤,但是这里认为出于示范性目的用抗癌药进行治疗后,定向瘤在不同时间的体积大小是不同的。该影像数据经在计算机处理器6中运行影像处理软件7进行处理。定向瘤可以包括肿瘤、结节等。所述影像也可以包括校正设备10,这将在下面进一步详细讨论。Referring now to FIG. 1, there is shown a simplified block diagram of an automated system for the accurate determination of changes in tropisms imaged by an imaging system constructed in accordance with one embodiment of the present invention. The video system 2 generates video data at different times t1 and t2 . The anomaly 5 in the image data generated at time t1 also appears in the subsequent image data generated at time t2 and is designated as anomaly 5A. Lesion 5 and lesion 5A are the same lesion, but it is considered here that lesion size is different at different times after treatment with anticancer drugs for exemplary purposes. The image data is processed by running image processing software 7 in the computer processor 6 . Target tumors can include tumors, nodules, and the like. The images may also include a correction device 10, which will be discussed in further detail below.

所述医学影像系统2可以有利地包括任何已知的医学影像系统。一些有用的已知的影像系统包括计算机断层扫描仪、磁共振成像、正电子发射影像系统、X射线成像系统血管性介入和血管镜/血管造影步骤、超声影像系统和等价医学影像系统。经扫描的定向瘤5可以有利地包括世界卫生组织(WHO)和RECIST标准明确指出的肿瘤类型,包括乳房瘤、肺瘤、黑色素瘤、结肠瘤、卵巢和肉瘤。The medical imaging system 2 may advantageously comprise any known medical imaging system. Some useful known imaging systems include computed tomography scanners, magnetic resonance imaging, positron emission imaging systems, X-ray imaging systems for vascular interventions and angioscopy/angiography procedures, ultrasound imaging systems and equivalent medical imaging systems. The scanned target tumors 5 may advantageously include tumor types specified by the World Health Organization (WHO) and RECIST criteria, including breast, lung, melanoma, colon, ovary, and sarcoma.

在本发明一个有用的实施方案中,软件7自动操作,准确测量定向瘤5的尺寸和体积。通过这个方法,如果获得定向瘤5的影像数据之间有时间上的差别的话,就可估测体积上的变化。本发明的方法测定了与每一个测量相关的误差的程度,目的是估测体积,并最终估测体积的比例性变化。在计算机控制下进行的自动化方法具有精确的重复性。校正方法估测了由伪影导致的测量误差。模型、模拟和真实的结节(nodules)用于根据不同结节和它们在影像(如CT影像)中的相应外观来表征其测量准确性。In a useful embodiment of the invention, the software 7 operates automatically to accurately measure the size and volume of the tumor 5 . By this method, if there is a time difference between the acquisition of image data of the targeted tumor 5, the change in volume can be estimated. The method of the present invention determines the degree of error associated with each measurement in order to estimate the volume and ultimately the proportional change in volume. Automated methods performed under computer control provide precise reproducibility. The correction method estimates measurement errors caused by artifacts. Phantom, simulated, and real nodules are used to characterize the measurement accuracy of different nodules and their corresponding appearance in images such as CT images.

要评估瘤的多种特征以决定在基于其表观体积上的给定体积的测量变化。测量将根据瘤对背景的信号的不同发生变化。测量误差变异可有利地包括对瘤(如具有特定边缘特征的结节)各种部位的估测。Various characteristics of tumors are evaluated to determine the measured change in a given volume based on its apparent volume. Measurements will vary based on the difference in tumor versus background signal. Measurement error variation may advantageously include estimates of various locations of a tumor (eg, a nodule with particular marginal characteristics).

因此,对于针对特定边缘给出的边界定义,可以根据测量的变异进行估测。如下所述,也可有利地估测其它因素,包括相邻结构与定向瘤连接的程度,和临近结构对体积估测可能产生的影响。测量设备的特征也可包括影响误差变异的因素。体积测量也会受到影像系统本身的内在辨析率和存在在影像中的噪音的数量的影响。Thus, a boundary definition given for a particular edge can be estimated from the measured variation. As described below, other factors may also be advantageously assessed, including the degree to which adjacent structures are connected to the tumour, and the possible impact of adjacent structures on the volume estimate. The characteristics of the measurement equipment can also include factors that affect the variation of the error. Volumetric measurements are also affected by the inherent resolution of the imaging system itself and the amount of noise present in the image.

空间校正spatial correction

标准的校正方法包括模型扫描和噪音量的测量、伪影和影像失真。模型是具有已知尺寸的人造物体。由于影像系统如CT扫描仪的物理特性,这些因素是空间依赖的。也就是说,测量误差根据测量在体内进行的位置和身体在扫描仪内的位置而变化。目前的操作还不能利用这些因素,但是可以使用制造商提供的传统的全体失真图(conservativeglobal distortion figure)。Standard correction methods include phantom scans and measurements of the amount of noise, artifacts and image distortion. Models are man-made objects with known dimensions. These factors are spatially dependent due to the physical properties of imaging systems such as CT scanners. That is, the measurement error varies depending on where in the body the measurement is taken and the position of the body within the scanner. Current operations cannot take advantage of these factors, but a traditional conservative global distortion figure provided by the manufacturer can be used.

通过对模型研究,则对于某给定的影像系统来说,可以针对人体所有相关部位有利地建立能表征影像失真程度、伪影和噪音的图。一旦建立,该图可以用于判定肿瘤测量中更准确的测量误差范围。Through the study of the model, for a given imaging system, it is possible to advantageously establish a map that can characterize the degree of image distortion, artifacts and noise for all relevant parts of the human body. Once established, this map can be used to determine more accurate measurement error margins in tumor measurements.

误差校正error correction

通过CT影像对肿瘤尺寸进行的准确的电脑测量采用了某算法以判定瘤和其它组织连接点的确切位置。该算法可以处理许多不同类型的瘤,并使用不同的策略来解决不同的情况。误差估测的建立是影像形式和针对这个影像采用的具体算法处理方法基础上的。本发明的一方面,数据库是针对每一个可辨认的影像失真而产生的,而测量误差估测是从该数据库内统计学变差得出的。Accurate computerized measurements of tumor size from CT images use an algorithm to determine the exact location of the tumor's junction with other tissue. The algorithm can handle many different types of tumors and use different strategies to solve different situations. The establishment of error estimation is based on the image form and the specific algorithm processing method adopted for this image. In one aspect of the invention, a database is generated for each identifiable image distortion, and a measurement error estimate is derived from the statistical variation within the database.

根据本发明,用于系统误差估测的方法包括(a)对经校正的模型的CT影像的测量,和(b)对病人实际瘤的多重扫描结果的测量。在一个有用的实施方案中,对缓慢生长的瘤的测量可以通过短间隔的扫描而获得。According to the present invention, the method for systematic error estimation includes (a) measurements on CT images of the calibrated phantom, and (b) measurements on multiple scans of the patient's actual tumor. In one useful embodiment, measurements of slowly growing tumors can be obtained by scanning at short intervals.

作为另一个实施例,可以以非常短的时间间隔扫描得到瘤的重复影像,而不管生长速度如何,从而得到建立在基本不变的瘤基础上的误差估计。这种重复影像可以在切片检查过程中获得,其中在几秒内就可获得瘤的多重影像。此外,当人参与该测量过程中时,由于人因素导致的变异或误差可以通过涉及模型或经重复扫描的瘤的人为观察者试验(human observer trials)而获得。As another example, repeated images of a tumor can be scanned at very short intervals, regardless of growth rate, resulting in an error estimate based on a substantially constant tumor. Such duplicate images can be obtained during a biopsy, where multiple images of a tumor are obtained within seconds. Furthermore, when a human is involved in the measurement process, variation or error due to human factors can be captured through human observer trials involving phantoms or repeatedly scanned tumors.

与特定几何位置(如,与胸壁相连的结节)相关的误差可以通过对模拟该位置的一组模型多重成像来估测。人工模型扫描结果之间的变异可以用于针对每一个具体试验的位置来表征其误差范围。Errors associated with a particular geometric location (eg, a nodule attached to the chest wall) can be estimated by multiple imaging a set of phantoms simulating that location. The variability between scans of the artificial model can be used to characterize the margin of error for each specific trial location.

通过对模型影像的多重测量,可以获得扫描仪系统变异参数的良好特征。例如,扫描仪重建特性例如,点扩散函数可以通过对模型研究和实验分析而准确判定。但是,模型数据不能模拟所有位置,因为某些结节具有在密度上很难建立模型的微妙差别。在这种情况下,对很多这样的、没有明显生长的结节进行多重扫描就可以用于创建结节数据库。做到这一点的一个方法是对比同一瘤在很短时间间隔内扫描得到的两个结果。然后,所述结节数据库就可被用来测量两个扫描结果之间的测量变异,目的是估测不同结节某给定种类的测量误差。A good characterization of the variability parameters of the scanner system can be obtained through multiple measurements on the phantom images. For example, scanner reconstruction properties such as the point spread function can be accurately determined through model studies and experimental analysis. However, the model data cannot model all locations because some nodules have subtle differences in density that are difficult to model. In this case, multiple scans of many such nodules without apparent growth can be used to create a nodule database. One way to do this is to compare two scans of the same tumor taken within a short time interval. The nodule database can then be used to measure the measurement variation between the two scans in order to estimate the measurement error of a given class of different nodules.

特定的影像问题会产生特定的伪影。例如,心脏运动会造成三维影像形状中z方向上的波动。另一个例子是在顶部的骨骼会产生过量的噪音。可以识别出上述和其它特别情形,并且误差范围可以从相似情况下的数据库中估测得到。Certain imaging problems produce certain artifacts. For example, heart motion can cause fluctuations in the z-direction in the shape of the 3D image. Another example would be bones on top that would generate excessive noise. These and other special cases can be identified, and margins of error can be estimated from a database of similar cases.

当需要人工干预时的误差估测Error Estimation When Human Intervention Is Required

在某些比较难成像的位置,放射线工作者可能会对结节分割处理进行干预。然后,通过电脑算法进行的进一步处理会使放射线工作者对两次扫描结果的判断之间的差别一致。测量变异的估计特别归功于放射线工作者通过建立这种情况下的数据库进行的干预。一旦判定了所有测量误差的来源,就可以计算出总体测量误差。In some difficult-to-image locations, radiologists may intervene in the nodule segmentation process. Further processing by computer algorithms then reconciles the differences between the radiologist's judgments between the two scans. Estimation of measurement variability owes special credit to the intervention of radiologists by building a database in this case. Once all sources of measurement error have been determined, the overall measurement error can be calculated.

现在参考图2,根据本发明的一个实施方案,该图显示了用于确定尺寸测量变化误差范围的自动化方法的高度功能化方块图。用于判定体积测量变化误差范围的自动化方法包括如下步骤:Referring now to FIG. 2, there is shown a highly functional block diagram of an automated method for determining error margins for dimensional measurement variations, according to one embodiment of the present invention. An automated method for determining a margin of error for volumetric changes includes the following steps:

在步骤20,用影像系统扫描身体部位,得到第一组影像数据;In step 20, scan the body part with an imaging system to obtain a first set of image data;

在步骤30,在影像数据中识别至少一个定向瘤;At step 30, at least one tumor is identified in the image data;

在步骤40,重新扫描身体部位以得到第二组影像数据;In step 40, re-scanning the body part to obtain a second set of image data;

在步骤50,在第二组影像数据中识别至少一个定向瘤;At step 50, at least one tumor is identified in the second set of image data;

在步骤60,测量在第一组影像数据和第二组影像数据中成像的至少一个定向瘤以判定对应于第一组影像数据的第一表观定向瘤尺寸和对应于第二组影像数据的第二表观定向瘤尺寸;At step 60, at least one tumor imaged in the first set of image data and the second set of image data is measured to determine a first apparent tumor size corresponding to the first set of image data and a size corresponding to the second set of image data. Second apparent directional tumor size;

在步骤70,通过对比第一和第二表观瘤尺寸来估计尺寸变化;和在步骤80,估测尺寸变化上的变异以判定尺寸测量中变化的范围。At step 70, the size change is estimated by comparing the first and second apparent tumor sizes; and at step 80, the variation in the size change is estimated to determine the extent of the change in the size measurement.

在步骤80中对尺寸变化的变异进行估测这一步骤可以有利地包括对许多影响测量准确性的因素进行评估的结果。可以采用标准的统计学方法来估测或判定影像测量变异和其它在本发明中讨论的误差测量。这样的技术包括,如线性回归、随机效应模型,等等。The step of estimating the variation in dimensional change in step 80 may advantageously include the results of an assessment of a number of factors affecting the accuracy of the measurement. Standard statistical methods can be used to estimate or determine the variability of the image measurements and other error measures discussed in this invention. Such techniques include, for example, linear regression, random effects models, and the like.

影响测量准确性的因素包括误差主要来源如结节形式、扫描仪参数、病人因素、算法和操作者因素。它们中的许多是相互作用的。例如,对结节边界的定义依赖于结节组织、扫描仪的点扩散函数、病人移动和其它因素。对误差变化的估测是利用针对误差因素的影像模型并从对影像模型的测量和病人的测量获得这些模型的参数,也通过计算机模拟。对同一病人进行成对观察也可用于减少误差。Factors affecting measurement accuracy include major sources of error such as nodule form, scanner parameters, patient factors, algorithms, and operator factors. Many of them are interactive. For example, the definition of nodule boundaries depends on the nodule tissue, the scanner's point spread function, patient movement, and other factors. Estimates of the variation in error are made using image models for error factors and deriving the parameters of these models from measurements on the image models and measurements of the patient, also by computer simulation. Paired observations of the same patient can also be used to reduce errors.

结节形状因素的例子包括:Examples of nodule shape factors include:

a.密度分布特征,如a. Density distribution characteristics, such as

i.均匀或可变分布特征,和/或i. uniform or variable distribution characteristics, and/or

ii.实体组织或弥散组织特征。ii. Features of solid or diffuse tissue.

b.结节几何形状特征如b. Nodule geometry features such as

i.球形或复杂形状,其复杂度可以估计,例如作为表面积对体积的比率,标准化为球形(=1),i. Spherical or complex shapes whose complexity can be estimated, e.g., as a ratio of surface area to volume, normalized to spherical (=1),

ii.多重组分的形状,ii. the shape of the multiple components,

iii.腔,和/或iii. cavity, and/or

iv.类似(close to)重建分辨率的细小特征。iv. Small features similar to (close to) reconstruction resolution.

c.表面特征如结节是否粗糙(即,具有复杂的表面)或光滑,其中粗糙的表面意味着高平均曲率。c. Whether surface features such as nodules are rough (ie, have a complex surface) or smooth, where a rough surface implies a high mean curvature.

扫描仪参数的例子包括:Examples of scanner parameters include:

a.重建分辨率进一步包括切片厚度、重叠和/或面内像素(pixel)大小,a. Reconstruction resolution further includes slice thickness, overlap and/or in-plane pixel (pixel) size,

b.X-射线能量(剂量):kVp和mAs,b. X-ray energy (dose): kVp and mAs,

c.重建滤波器,c. Reconstruction filter,

d.龙门架(gantry)的转速,d. The speed of the gantry (gantry),

e.工作台(pitch)速度,e. Workbench (pitch) speed,

f.空间变化的点扩散函数,和/或f. a spatially varying point spread function, and/or

g.校正。g. correction.

病人因素的例子包括如下这些:Examples of patient factors include the following:

a.扫描区域在身体中的位置,a. The location of the scan area in the body,

b.身体的尺寸b. Body size

c.吸气程度,c. Inhalation degree,

d.吸气运动(特别是在肺的底部),d. Inspiratory movement (especially at the bottom of the lungs),

e.小幅度肌肉痉挛,e. Minor muscle spasms,

f.肺顶部,例如,调斑(streaking)伪影,和/或f. The top of the lung, eg, streaking artifacts, and/or

g.与结节相邻的肺组织的健康状况,注明是否存在疤痕、肺气肿或其它与健康相关的病症。g. Health status of the lung tissue adjacent to the nodule, noting the presence of scarring, emphysema, or other health-related conditions.

操作者因素来自操作者,其在结节测量过程中起辅助作用。例如,操作者可能要人工改变经估测的结节范围,给测量误差带来可测量的因素,这一点可以通过观察者研究而来表征。The operator factor comes from the operator, who plays an auxiliary role in the nodule measurement process. For example, the operator may have to manually vary the estimated nodule extent, introducing a measurable contribution to measurement error, which can be characterized by observer studies.

完全自动化的算法通常具有与内在决定点(decision points)接近的位置。例如,自动化算法可能会将瘤周围的肿块当成是相连的血管或当成是结节的一部分。算法可以被设计成用来指示它们操作离决定点多近,从而指示与落在决定点另一侧相关的误差因素。Fully automated algorithms usually have close positions to intrinsic decision points. For example, an automated algorithm might treat a mass around a tumor as a connected blood vessel or as part of a nodule. Algorithms can be designed to indicate how close they operate to a decision point, thereby indicating the error factor associated with falling on the other side of the decision point.

一旦某影像区域被确定可代表结节,则测量的变异就可以通过考虑如下列所述的影像模型因素进行估计:Once an imaging region has been determined to represent a nodule, the measured variability can be estimated by factoring in the imaging model as described below:

1.密度:低变差与均匀实体组织密度分布有关。高变差与高影像噪音和低或空间变化密度分布有关。1. Density: Low variability is associated with a uniform solid tissue density distribution. High variability is associated with high image noise and low or spatially varying density distribution.

2.形状:低变差与球形形状有关,高变差与含有许多肿块或腔的高度不规则形状有关。2. Shape: Low variability is associated with a spherical shape and high variability is associated with a highly irregular shape containing many masses or cavities.

3.表面特征:在结节的边界(边缘),低变差与高影像梯度有关,高变差与低影像梯度有关。更低变差与光滑表面有关,而高变差与具有高曲度的不规则表面有关。结节和其它相关实体结构如血管或胸壁(在这里有非常少或根本没有边界的影像梯度迹象)之间的边界区必须用不同的方式处理。对于低变差,这些边界区应当在影像分割算法的两个扫描结果间相匹配。既然这些区域不能如梯度边缘那样被准确判定,因此非梯度与梯度边缘表面积的比率直接与变异相关。参考后面的图4-图11在此讨论根据本发明进行的边界的分配和边界准确性的合并(incorporation)。3. Surface features: At the border (margin) of nodules, low variation is associated with high image gradient, and high variation is associated with low image gradient. Lower variance is associated with smooth surfaces, while high variance is associated with irregular surfaces with high curvature. Border regions between nodules and other associated solid structures such as blood vessels or the chest wall (where there is little or no evidence of bordered image gradients) must be treated differently. For low variation, these boundary regions should match between the two scans from the image segmentation algorithm. Since these regions cannot be determined as accurately as gradient edges, the ratio of non-gradient to gradient edge surface areas is directly related to the variation. The assignment of boundaries and incorporation of boundary accuracy in accordance with the present invention are discussed herein with reference to FIGS. 4-11 below.

4.尺寸:通常,结节越大,部分立体像素(voxels)的比例越小,体积估计越准确。低变差与大结节有关(或非常细微的扫描仪辨析率),而大变差通常与较小结节有关(假设相似结构复杂度(形状))。4. Size: In general, the larger the nodule, the smaller the fraction of voxels and the more accurate the volume estimation. Low variability is associated with large nodules (or very fine scanner resolution), whereas large variability is usually associated with smaller nodules (assuming similar structural complexity (shape)).

经估测的变差可能用到的情况包括:Situations where estimated variation may be used include:

A.当两个扫描结果都是可用的时,所有影像数据和参数都被认为是提供了经估测的生长速率的范围。A. When both scans are available, all imaging data and parameters are considered to provide a range of estimated growth rates.

B.当只有一个扫描结果是可用的时,经估测的变差被用于判定等候进行第二次扫描的最小时间,目的是得到具有临床重要意义的决定。其是在测量误差范围内测量恶性生长速率的时间。B. When only one scan was available, the estimated variation was used to determine the minimum time to wait for a second scan in order to arrive at a clinically important decision. It is the time at which the rate of malignant growth is measured within the margin of measurement error.

在某些情况下,要在单一影像而不是从一组影像估测得到的体积的二维(2D)面积上测量尺寸。In some cases, dimensions are measured on a single image rather than a two-dimensional (2D) area of a volume estimated from a set of images.

在本发明优选的实施方案中,每一步都是经合适的软件进行的,该软件允许医学工作人员的参与。本发明的一个实施方案进一步包括在影像数据中定义至少一个定向瘤边缘的步骤。边缘定义可以通过对至少一个定向瘤采用阈值和/或梯度函数来判定该边缘的边界。为了进一步帮助诊断,使用的软件采用了本领域已知的自动分割和分级技术来确定来自经影像系统成像的身体部位(如肺)的边界和片段特征,包括异常。In a preferred embodiment of the invention, each step is performed via suitable software that allows for the participation of medical personnel. An embodiment of the invention further comprises the step of defining at least one oriented tumor margin in the image data. Edge definition can be determined by applying a threshold and/or a gradient function to at least one anomaly to determine the boundary of the edge. To further aid in diagnosis, the software used employs automated segmentation and grading techniques known in the art to determine boundary and segmental features, including abnormalities, from body parts (eg, lungs) imaged by the imaging system.

在另一个实施方案中,本发明的方法包括自动估测某特定结构运动程度这一步骤。在另一个有用的实施方案中,本发明的方法包括针对特定结构自动估测运动程度这一步骤,包括测量表面结构和定向瘤外部结构的变化程度。在肺中,根据定向瘤的位置与心脏距离的远近,所述运动程度的变化非常明显。In another embodiment, the method of the present invention includes the step of automatically estimating the degree of motion of a particular structure. In another useful embodiment, the method of the invention includes the step of automatically estimating the degree of motion for a particular structure, including measuring the degree of change in surface structure and structure external to the tumor. In the lungs, the degree of motion varies significantly depending on the location of the target tumor and the distance from the heart.

在另一个有用的实施方案中,木发明的方法包括自动匹配在不同时间获得的至少一个定向瘤的相应影像这一步骤。例如,该软件可能选择在影像中具有最大尺寸的定向瘤,并将其与在第二个、接下来获得的影像中的可比定向瘤对比。尺寸测量可以有利地包括瘤的长度、面积和三维体积。In another useful embodiment, the method of the present invention includes the step of automatically matching corresponding images of at least one tumor obtained at different times. For example, the software might select the aneurysm having the largest size in the image and compare it to a comparable aneurysm in the second, subsequently acquired image. Dimensional measurements may advantageously include length, area and three-dimensional volume of the tumor.

在另一个有用的实施方案中,本发明的方法包括选择具有最大面积的至少一个定向瘤作为目标,并找到一个在接下来的时间获得的可比目标的步骤。In another useful embodiment, the method of the present invention comprises the step of selecting as a target at least one tumour, which has the largest area, and finding a comparable target obtained at a subsequent time.

在另一个有用的实施方案中,本发明的方法包括利用至少一个模型、噪音测量、扫描仪伪影和影像失真来空间校正影像系统的步骤。In another useful embodiment, the method of the present invention includes the step of spatially correcting the imaging system using at least one model, noise measurements, scanner artifacts, and image distortions.

现在参考图3,该图显示了用于确定影像测量误差范围的方法的高度功能化方块图。根据本发明的一个实施方案,该方法的步骤包括:Referring now to FIG. 3 , there is shown a highly functional block diagram of a method for determining the margin of error for image measurement. According to one embodiment of the invention, the steps of the method include:

在步骤120,用影像体统扫描身体部位,产生一组影像数据;In step 120, scan the body part with an image volume system to generate a set of image data;

在步骤130,测量成像在该组影像数据中的至少一个定向瘤,从而判定对应于该组影像数据的表观定向瘤尺寸;In step 130, measuring at least one directional tumor imaged in the set of image data, thereby determining the apparent directional tumor size corresponding to the set of image data;

在步骤140,估测第一个表观定向瘤尺寸的至少一个误差变化,从而对整体测量准确性的估测进行判定;At step 140, estimating at least one error change in the size of the first apparent directional tumor to determine the estimate of overall measurement accuracy;

在步骤150,利用所述整体测量准确性的估测来判定定向瘤尺寸的范围;和At step 150, using said estimate of overall measurement accuracy to determine a range for anomaly size; and

在步骤160,在整体测量准确性的估测的基础上判定时间范围以进行第二次测量,表明临床变化。At step 160, a time frame is determined based on the estimate of overall measurement accuracy for a second measurement, indicative of clinical change.

本发明这一方面涉及的方法优选通过使用安装在个人计算机上的软件完成。在本发明优选的实施方案中,预示重病的定向瘤的尺寸变化比RECIST标准规定的要小。估测至少一个误差参数的步骤有利地包括(a)计算通过电脑断层扫描仪得到的经校正的模型的影像测量误差,和(b)计算对病人瘤多重扫描结果的测量误差。The methods involved in this aspect of the invention are preferably performed using software installed on a personal computer. In a preferred embodiment of the invention, the change in size of an orientation tumor indicative of severe disease is less than that defined by RECIST criteria. The step of estimating at least one error parameter advantageously comprises (a) calculating an image measurement error of the corrected model obtained by a computed tomography scanner, and (b) calculating a measurement error of multiple scans of the tumor of the patient.

在本发明另一个有用的实施例中,所采用的软件进一步包括处理程序模块以获得由于人的参与导致的变异,使用的数据来自用模型或已知尺寸的、经反复扫描的瘤进行的人作为观察者试验。In another useful embodiment of the invention, the software employed further includes a processing program module to obtain the variation due to human intervention using data from human experiments with phantoms or repeatedly scanned tumors of known size. Experiment as an observer.

在一个实施方案中,所述那组误差因素包括至少一个选自下列的因素:In one embodiment, the set of error factors includes at least one factor selected from the group consisting of:

影像设备的点扩散函数和相关的重建滤波器;The point spread function of the imaging device and the associated reconstruction filter;

扫描仪参数;Scanner parameters;

由与结节在同一影像平面上的高密度物体造成的伪影;Artifacts caused by dense objects in the same image plane as the nodule;

病人运动;patient movement;

病人体位在两次扫描之间的变化;Changes in patient position between scans;

当扫描肺时,身体状况或吸气量的变化;Changes in physical condition or inspiratory volume when the lungs are scanned;

结节的尺寸;the size of the nodule;

与结节相连的容易造成混淆的结构;Confusing structures associated with nodules;

结节密度变化;Changes in nodule density;

扫描仪校正;Scanner calibration;

对结节边界的定义;和definition of nodule boundaries; and

当熟练工作者参与测量过程带来的操作者变异。Operator variability introduced when skilled workers are involved in the measurement process.

所述的扫描仪点扩散函数可以通过使用校正模型得到的一组测试扫描结果进行估测。该扫描仪点扩散函数也可通过扫描利用病人的3D校正模型.因为模型尺寸是已知的,所以扫描提供了用于估测由于扫描工作者参数导致的任何偏差的信息。然后该偏差信息可被用于影像数据以缩小由于扫描工作者参数导致的误差。The scanner point spread function can be estimated from a set of test scan results obtained using a calibration model. The scanner point spread function can also be scanned using a 3D calibration model of the patient. Since the model dimensions are known, the scan provides information for estimating any bias due to the scan operator parameters. This bias information can then be used in the image data to minimize errors due to scan operator parameters.

通过使用了两个参数设置的一组模型扫描结果可以测量至少两个扫描结果之间的不同扫描工作者参数,从而估测由于参数不同而导致的体积偏差。理想的操作是使用具有相同参数的两个扫描结果。By using a set of phantom scans with two parameter settings, it is possible to measure different scan worker parameters between at least two scans, thereby estimating volumetric deviations due to the different parameters. The ideal operation is to use two scan results with the same parameters.

伪影可有利地通过计算基于在感兴趣的目标部位中的空间频率组成上的影像噪音指数来表征,为如结节或肿瘤。伪影也可通过用模型进行的一致性研究得到的数据进行表征,所述模型具有相似的噪音指数,并且其它参数提供了对变差的估测。Artifacts can advantageously be characterized by calculating an image noise index based on the spatial frequency composition in a target site of interest, such as a nodule or a tumor. Artifacts can also be characterized by data from consistency studies with models that have similar noise indices and other parameters that provide estimates of variation.

病人在扫描期间的运动会影响结果。病人运动的常见形式包括心脏运动、病人肌肉痉挛、呼吸、脉搏振动或其它形式的在定向瘤(如结节)扫描期间的病人运动。例如,经心脏跳动表征的病人运动误差是通过在成像的结节表面上z轴方向重复的变化而探测到的。除了病人运动外,病人体位也影响影像结果。在两次扫描中病人体位的变化是通过对比在不同时间进行的至少两次扫描之间的3D刚体(rigidbody)体位的相配性测量的。Patient movement during the scan can affect the results. Common forms of patient motion include cardiac motion, patient muscle spasm, respiration, pulse oscillations, or other forms of patient motion during scanning of a tumor such as a nodule. For example, patient motion errors characterized by heart beats are detected by repetitive changes in the z-axis direction on the imaged nodule surface. In addition to patient motion, patient position also affects imaging results. The change in the patient's position between scans is measured by comparing the fit of the 3D rigid body's position between at least two scans taken at different times.

病人病情的变化可以通过两次扫描结果之间的3D匹配进行测量。呼吸误差的变化可以通过利用对扫描对数据表的研究进行估测。对于呼吸上大的变化,对扫描对数据表的研究可被用来估测这种情况引起的偏差和变异。Changes in a patient's condition can be measured by 3D matching between the two scans. The variation in breathing error can be estimated by studying the scan pair data table. For large changes in respiration, a study of the scan pair data table can be used to estimate the bias and variability caused by this condition.

当定向瘤为结节时,结节尺寸误差通常可以通过使用了不同尺寸的模型研究进行表征,以判定某给定的结节尺寸的内在测量误差。相似地,由相连结构导致的误差可以通过进行多重扫描得到的模型数据和相连结构在不同条件下的测量变差进行表征。相连结构包括如器官连接物或密度相似器官的附件。由相连结构导致的误差可有利地通过来自已知大小的结节的数据进行表征,该结节具有用于对比分割一致性的多重扫描结果和附件。When the nodule is a nodule, nodule size error can often be characterized by phantom studies using different sizes to determine the inherent measurement error for a given nodule size. Similarly, errors due to connected structures can be characterized by model data from multiple scans and the measured variation of connected structures under different conditions. Connected structures include, for example, organ junctions or appendages of organs of similar density. Errors due to connected structures can advantageously be characterized by data from nodules of known size with multiple scans and attachments for comparison of segmentation consistency.

由于扫描工作者校正导致的误差也可以通过使用局部影像统计中的影像噪音的直方图调整法进行表征。由于扫描仪校正导致的误差也可以通过使用用身体部位扫描的校正模型进行表征。Errors due to scanner corrections can also be characterized by histogram adjustment using image noise in local image statistics. Errors due to scanner corrections can also be characterized by using a correction model scanned with body parts.

在一个实施方案中,由结节边界定义导致的误差可以通过对比结节边界图与点扩散函数来表征。由结节边界定义导致的误差也可以通过进行模型研究表征,以判定不同条件下体积估测中的变差。由结节密度导致的误差可以通过对比已知尺寸的慢生长瘤的多重扫描结果来表征。In one embodiment, errors due to nodule boundary definition can be characterized by comparing nodule boundary maps to point spread functions. Errors due to nodule boundary definition can also be characterized by performing modeling studies to determine variation in volume estimation under different conditions. Errors due to nodule density can be characterized by comparing multiple scans of slow-growing tumors of known size.

在另一个实施方案中,由于操作者变化导致的误差可以通过人观察者研究进行测量,该研究需要许多放射线工作者参与,并估测不同成像质量条件下这些人的变差。In another embodiment, error due to operator variation can be measured by a human observer study involving a number of radiologists and estimating these human variations under different imaging quality conditions.

如上所述,在进行测量时有多种误差来源。当进行扫描时选择某种操作模式,如保持切片厚度不变可以控制某些误差因素。其它因素为扫描仪内在因素,如扫描系统的调制传递函数(MTF)。在某些情况下,这样的内在因素如MTF可能会被扫描系统制造商详细指出来。目前,还没有针对用于癌症相关测量的成像方而的被普遍承认的标准。然而,误差因素对测量准确性的影响足以提高一个给定的、使用误差变异测量的可信度水平,并且测量准确性测量可以根据本发明讨论的进行估测或推导。获得测量准确性更高可信度的另一方法是每一次都用校正设备扫描病人。As mentioned above, there are various sources of error when making measurements. Selecting a certain mode of operation when scanning, such as keeping the slice thickness constant, can control certain error factors. Other factors are intrinsic to the scanner, such as the modulation transfer function (MTF) of the scanning system. In some cases, such intrinsic factors as MTF may be specified by the scanning system manufacturer. Currently, there are no generally accepted standards for imaging methods for cancer-related measurements. However, the effect of the error factor on measurement accuracy is sufficient to raise a given level of confidence using the error variance measure, and the measurement accuracy measure may be estimated or derived as discussed herein. Another way to gain greater confidence in the accuracy of the measurements is to scan the patient each time with a calibration device.

再次参考图1,无论病人什么时候被扫描,当要进行体积估计时,本发明任选地包括使用校正设备10。所述校正设备可以包括人造模型,该模型在病人扫描的同时也被扫描。通过该方法,人造模型将与病人经受同样的扫描参数。该校正设备可以放在扫描中心处,和/或,此外,可以将校正设备交给病人,让他们随身携带该设备。该校正设备有利地含有一组不同大小的人造模型。所述人造模型可以包括一组经高度校正的球形物体,和一组较复杂的结构。Referring again to FIG. 1 , the present invention optionally includes the use of a calibration device 10 when volume estimation is to be performed whenever a patient is scanned. The correction device may comprise a phantom which is scanned at the same time as the patient is scanned. With this approach, the artificial phantom will be subjected to the same scan parameters as the patient. The correction device can be placed at the scan center, and/or, in addition, the correction device can be given to the patient to take it with them. The calibration device advantageously contains a set of artificial phantoms of different sizes. The man-made model may include a set of highly corrected spherical objects, and a set of more complex structures.

在一个实施方案中,可以将所述校正设备放置在丙烯酸或塑料铸件中,可以相当小。例如,尺寸范围为约2cm×2cm×2cm的很容易携带相当于标准信封、普通的书或相似物品大小的设备可根据所需尺寸使用。在某些扫描情况下,较大或较小设备也是合适的。其它校正设备可以包括已知大小和/或密度的电线、珠子、杆或类似物品。该设备可以在扫描时放在病人身上经受相同的扫描参数。然后测量模型内的物体。使用不同大小和类型的多重物体(在大小和密度上经高度校正的)可以进行变异测量以用于考虑偏差和可重复性。在这个方法中,当对给定的病人进行扫描时,可以通过使用特定的仪器设置估测给定扫描仪的测量准确性。通过使用其它已知的关于该扫描设备的信息使测量准确性进一步得到提高,如上而讨论的MTF等内在因素。In one embodiment, the calibration device can be placed in an acrylic or plastic cast, which can be relatively small. For example, a device in the size range of about 2cm x 2cm x 2cm that is easily portable about the size of a standard envelope, an ordinary book or the like may be used depending on the desired size. Larger or smaller devices may also be appropriate in certain scanning situations. Other calibration devices may include wires, beads, rods, or similar items of known size and/or density. The device can be placed on the patient and subjected to the same scan parameters as it is being scanned. Objects within the model are then measured. Using multiple objects of different sizes and types (highly corrected for size and density) a measurement of variation can be performed to account for bias and repeatability. In this approach, the measurement accuracy of a given scanner can be estimated by using specific instrument settings when scanning a given patient. Measurement accuracy is further improved by using other known information about the scanning device, intrinsic factors such as MTF discussed above.

本发明方法的一个替换的实施方案可以使用体内校正设备或装置。例如,已知尺寸的电线、珠子、导管、可移植设备或相似物品可以放在病人体内用于校正或其它医疗用途。这种体内设备或元素可以用于校正扫描结果并将在不同时间得到的扫描结果和误差联系起来,将不同扫描情况之间联系起来,或两种情况都包括。An alternative embodiment of the method of the present invention may use an in vivo calibration device or device. For example, wires, beads, catheters, implantable devices, or similar items of known dimensions can be placed inside a patient for correction or other medical purposes. Such in-vivo devices or elements may be used to correct scans and correlate scans obtained at different times with errors, between different scans, or both.

现在参考图4,该图为通过大肺结节CT影像切片图。CT影像214显示肺结节202,该结节含有在肺部204的208区中基本连在一起的块。其它身体特征包括脊髓部分206和其它与肺相连的特征210和212。肺结节202典型地包括从结节发出的针状体,图6清晰地显示了这一点。Referring now to FIG. 4 , this figure is a slice through a CT image of a large pulmonary nodule. The CT image 214 shows a pulmonary nodule 202 comprising substantially coherent masses in a region 208 of the lung 204 . Other physical features include the spinal cord portion 206 and other features 210 and 212 connected to the lungs. Lung nodules 202 typically include spicules emanating from the nodules, as is clearly shown in FIG. 6 .

本领域技术人员明白典型的CT影像往往不清晰显示瘤(如结节)和周围特征的定义边界。Those skilled in the art appreciate that typical CT images often do not clearly show defined boundaries of tumors (eg, nodules) and surrounding features.

现在参考图5,结节边界可视方法被大体显示在重叠成像的CT影像上。在优选的实施方案中,不同的虚线218、220和222代表了彩色编码的边界,说明是误差来源区。在一个实施例中,虚线220可能对应于浅绿色边界,说明这里是良好定义的结节边(如,具有高度影像梯度);因此,绿色边界的预料误差就很小。虚线222对应于浅红色边界,说明这个区域的影像梯度低,或者说明这个区域具有瘤的很微小的特征(称作针状体),因此可从体积估测中忽略。低影像梯度或针装物的存在减小测量的准确性。虚线218对应于浅蓝色边界,说明这个区域具有非常少或没有边界的影像梯度证据。这种情况下,放射线工作者可以被允许使用交互软件来人工判断边界的位置。具有低影像梯度的区域会是产生最大边界定位误差的来源。采用这样的方式,结节边界的放置准确性被可视化了,从而指明误差来源和误差可能的大小。Referring now to FIG. 5 , a nodule boundary visualization method is generally shown on an overlay imaged CT image. In the preferred embodiment, the various dashed lines 218, 220, and 222 represent color-coded boundaries, illustrating regions of error origin. In one embodiment, dashed line 220 may correspond to a light green boundary, indicating a well-defined nodule edge (eg, with a height image gradient); thus, the expected error for the green boundary is small. Dashed line 222 corresponds to a light red border, indicating that this region has low image gradients, or that this region has very subtle features of a tumor (called spicules) and therefore can be ignored from volume estimation. The presence of low image gradients or needle loading reduces the accuracy of the measurement. The dashed line 218 corresponds to the light blue border, illustrating that this region has little or no evidence of image gradients for the border. In such cases, radiologists may be allowed to use interactive software to manually determine the position of the border. Regions with low image gradients are the source of the largest boundary localization errors. In this way, the placement accuracy of nodule borders is visualized, indicating the source and likely magnitude of errors.

在本发明一个实施方案中,彩色编码的边界可以通过已知的图形软件技术结合本发明公开的信息自动绘制在显示器上。例如,可以在与给定边界(由寻找边缘软件确定的)相关的误差和相关误差变差或其它参数(根据上述公开的内容确定的)的基础上选择颜色。可以给出合适的关键词或说明以帮助操作者解释显示出的结果或影像。In one embodiment of the invention, the color-coded boundaries can be automatically drawn on the display by known graphics software techniques in conjunction with the information disclosed in the present invention. For example, colors may be selected based on the error associated with a given boundary (determined by the edge-finding software) and the associated error variation or other parameters (determined in accordance with the above disclosure). Appropriate keywords or instructions can be given to help the operator interpret the displayed results or images.

现在参考图6,其为结节边界可视方法的另一个可替换实施方案,该方案以示意图形式在CT影像中重叠显示。在这个可替换的实施方案中,结节可有利地包括着色的边界线,包括例如黄色224、浅蓝色218、浅绿色220和浅红色222,这里的颜色由不同类型的虚线表示。包围区域208的双边界线可被用于说明误差的估测范围。即,真正的结节边界被认为是在双边界线内。在这个实施例中,黄色224用于勾画细微的特征,如针状物,这些细微的特征被认为是结节的组成,但是在测量处理涉及结节体积时将其忽略了,因为它们也是测量误差的很大来源。Referring now to FIG. 6 , another alternative embodiment of a nodule boundary visualization method is shown schematically overlaid on a CT image. In this alternative embodiment, nodules may advantageously include colored borderlines including, for example, yellow 224, light blue 218, light green 220, and light red 222, where the colors are represented by different types of dashed lines. The double boundary lines surrounding the region 208 can be used to illustrate the estimated range of error. That is, true nodule boundaries were considered to be within the double boundary line. In this example, yellow 224 is used to delineate subtle features, such as spicules, which are considered constituents of nodules, but are ignored when the measurement process involves nodule volume, as they are also measurements large source of error.

这样的针状物包括复合体(但是不包括医学上无关紧要的结构),根据本发明方法,这些复合体经统计学处理,作为逸出值。这样的结构通常是长且细的,但是体积很小。通常,不理会与高度误差有关的小体积结构,从而不会歪曲测量准确性结果。Such needles include complexes (but not medically insignificant structures), which are statistically processed as outliers according to the method of the invention. Such structures are usually long and thin, but small in size. Typically, small volume structures associated with height errors are ignored so as not to distort measurement accuracy results.

现在参考图7A和图7B,其为结节边界可视方法的另一个可替换实施方案,该方案以示意图形式重叠显示在在不同时间得到的CT影像中。这里,要用到与上述提到的可视方案相似的方案,其中,可获得瘤的至少两个扫描结果,并且其中扫描结果之间的差别也可被可视化。Referring now to FIGS. 7A and 7B , another alternative embodiment of the nodule boundary visualization method is shown schematically overlaid on CT images acquired at different times. Here, a solution similar to the visualization solution mentioned above is used, wherein at least two scans of the tumor are available and wherein the differences between the scans are also visualized.

图7A显示了第一次得到的结节202A的第一个CT影像214A,图7B显示了第二次得到的同一结节202B的第二个CT影像214B。将彩色编码的边界218A、220A和222A应用到第一影像214A中,然后采用上述参考图5和6描述的技术。将彩色编码的边界218B、220B和222B应用到第二影像214B中,然后采用上述参考图5和6描述的技术。FIG. 7A shows a first CT image 214A of a nodule 202A taken for the first time, and FIG. 7B shows a second CT image 214B of the same nodule 202B taken a second time. Color-coded borders 218A, 220A, and 222A are applied to first image 214A, and then the techniques described above with reference to FIGS. 5 and 6 are employed. Color-coded borders 218B, 220B, and 222B are applied to second imagery 214B, and the techniques described above with reference to FIGS. 5 and 6 are then employed.

现在参考图8A和图8B,其为结节边界可视方法的另一个可替换实施方案,该方案以示意图形式重叠显示在在不同时间得到的CT影像中,其中结节的生长或其它尺寸变化是可视的。这里,将第一影像的边界218A、220A和222A重叠在从第二影像获得的边界218B、220B和222B上。所得的覆盖图被显示出来(显示在电脑监视器或其它合适的显示器上),从而提供了结节尺寸的可视性变化,以及对对应于彩色条码边界的测量准确性的说明。Referring now to FIGS. 8A and 8B , another alternative embodiment of a nodule boundary visualization method is shown schematically overlaid on CT images acquired at different times in which the nodule grows or otherwise changes in size. is visible. Here, the boundaries 218A, 220A, and 222A of the first image are superimposed on the boundaries 218B, 220B, and 222B obtained from the second image. The resulting overlay is displayed (on a computer monitor or other suitable display) to provide a visual change in nodule size and an indication of the accuracy of the measurement against the color barcoded boundaries.

得益于本发明公开内容的本领域技术人员可以理解,本发明公开的边界技术并不限于实施例。这些可视化方法有许多可能的变化,包括:Those skilled in the art who benefit from the disclosure of the present invention can understand that the boundary technology disclosed in the present invention is not limited to the embodiments. There are many possible variations of these visualization methods, including:

1.将得自所有影像切片的结节的3维透视图加上标记,1. Label the 3D rendering of the nodule from all image slices,

2.使用透明的(如,着色的)标记,以使其下面的结构也能被观察到,2. Use of transparent (eg, colored) markers so that underlying structures can also be observed,

3.使用深色线标记,3. Mark with dark lines,

4.使用标上刻度的标记,使距离能被定量地观察到,4. Use graduated markers so that distances can be observed quantitatively,

5.加入距离标度和文本说明,从而体现出定量测量,和/或5. Incorporate distance scales and text descriptions to reflect quantitative measurements, and/or

6.上述变化的任意组合。6. Any combination of the above changes.

现在参考图9A和图9B,其为结节边界可视方法的另一个可替换实施方案,该方案以示意图形式重叠显示在在不同时间得到的CT影像中,其中结节的生长或其它尺寸变化是可视的。这里,交叉阴影线区301A和301B是结节大小在两个CT影像214A和214B之间变化的区域。例如,该交叉阴影线区可有利地例如以鲜红色显示在彩色监视器上。其它颜色也可以施用。Referring now to FIGS. 9A and 9B , another alternative embodiment of a nodule boundary visualization method is shown schematically overlaid on CT images obtained at different times in which the nodule grows or otherwise changes in size. is visible. Here, cross-hatched regions 301A and 301B are regions where nodule size varies between the two CT images 214A and 214B. For example, the cross-hatched area may advantageously be displayed on a color monitor, for example in bright red. Other colors can also be applied.

现在参考图10,其为结节边界可视方法的另一个可替换实施方案,该方案以示意图形式重叠显示在代表了另一个实施例的CT影像中,其中结节的生长或其它尺寸变化是可视的。这里,交叉阴影线区303、305、307和309可以以各种颜色显示,说明已经发生了变化,以及以什么样的可信度变化。在一个实施例中,区域303对应于黄色区,该区代表了与最初肿瘤尺寸估测相关较高程度的变化。区域307对应于绿色区,涉及与第二次测量有关的尺寸的不确定性。区域307对应于红色区,代表该区具有高度变化可能性。区域309对应于蓝区,该区表示在某些测量会发生重叠的区域。这个图也设定了一个模型,用于告知我们当要测量响应时如何操作。此外,可有利地选择中心点320,从而可以对块的各种象限(quadrants)320A、320B、320C和320D进行变化估测。在一些体积中,所述变化可能会比其它变化大得多,并且确信度也不同。Referring now to FIG. 10 , another alternative embodiment of a nodule boundary visualization method is shown schematically overlaid on a CT image representing another example in which nodule growth or other dimensional changes are visible. Here, cross-hatched areas 303, 305, 307, and 309 may be displayed in various colors, illustrating that a change has occurred, and with what degree of confidence. In one embodiment, region 303 corresponds to the yellow zone, which represents a higher degree of variation relative to the original tumor size estimate. Region 307 corresponds to the green zone, involving the uncertainty of the size associated with the second measurement. Area 307 corresponds to a red zone, representing a high probability of change in the zone. Area 309 corresponds to the blue zone, which represents the area where some measurements overlap. This diagram also sets up a model for what we do when we want to measure the response. Furthermore, the center point 320 can be advantageously chosen so that the variation estimates can be made for the various quadrants 320A, 320B, 320C and 320D of the block. In some volumes the changes may be much larger than others, and with different degrees of certainty.

现在参考图11,其为结节边界可视方法的另一个可替换实施方案,该方案以示意图形式重叠显示在CT影像中,同样也代表了另一个实施例,其中结节的生长或其它尺寸变化是可视的。图11基本与图10相同,另外还加入了边界线313,该线与其中变化不能被可靠测量(而是没用变化可被可靠地判定)的结节的那部分放在一起。这使结节其它部位能够得到分析。Reference is now made to FIG. 11 , which is an alternative embodiment of a nodule boundary visualization method shown schematically overlaid on a CT image, also representing another example in which nodule growth or other dimensions Changes are visible. Figure 11 is essentially the same as Figure 10, with the addition of a boundary line 313 which is put together with that part of the nodule where change cannot be reliably measured (instead no change can be reliably determined). This enables other parts of the nodule to be analyzed.

尽管本发明已经解释和描述了本发明的具体实施方案,但是对于本领域技术人员来说,可以对本发明进行许多修改和变化。因此,应该理解的是,随附的权利要求用于保护所有这样的修改和变化,它们落在本发明主题和保护范围内。While particular embodiments of the present invention have been illustrated and described, many modifications and changes in this invention will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to protect all such modifications and changes which fall within the subject matter and scope of the invention.

Claims (58)

1.一种用于确定尺寸变化测量误差范围的自动化方法,该方法包括的步骤为:1. An automated method for determining the error range of a dimensional change measurement, the method comprising the steps of: 用影像系统(2)扫描(20)身体部位,得到第一组影像数据;Use the imaging system (2) to scan (20) body parts to obtain the first set of image data; 在影像数据中识别(30)至少一个定向瘤(5);identifying (30) at least one orientation tumor (5) in the imaging data; 重新扫描(40)身体部位以得到第二组影像数据;Rescanning (40) the body part to obtain a second set of image data; 在第二组影像数据中识别(50)至少一个定向瘤;identifying (50) at least one tumor in the second set of image data; 测量(60)在第一组影像数据和第二组影像数据中成像的至少一个定向瘤(5)以判定对应于第一组影像数据的第一表观定向瘤尺寸和对应于第二组影像数据的第二表观定向瘤尺寸;measuring (60) at least one tumor (5) imaged in the first set of image data and the second set of image data to determine a first apparent tumor size corresponding to the first set of image data and a size corresponding to the second set of image data the second apparent directional tumor size of the data; 通过对比第一和第二表观瘤尺寸来估计尺寸变化(70);和estimating the change in size by comparing the first and second apparent tumor sizes (70); and 估测尺寸变化上的变异(80)以判定尺寸测量中变化的范围。Variation in the dimensional change is estimated (80) to determine a range of variation in the dimensional measurement. 2.根据权利要求1所述的方法,其中该尺寸测量包括选自下列的至少一个尺寸测量:瘤的长度、面积或三维体积。2. The method of claim 1, wherein the dimensional measurement comprises at least one dimensional measurement selected from the group consisting of length, area or three-dimensional volume of the tumor. 3.根据权利要求1所述的方法,该方法进一步包括通过根据影像测量变异调整至少一个定向瘤的表观影像体积来定义至少一个定向瘤(5)的边缘的步骤,以产生至少两个经调整的影像体积。3. The method according to claim 1, further comprising the step of defining the margin of at least one tropism (5) by adjusting the apparent image volume of the at least one tropism (5) according to the image measurement variation, so as to generate at least two Adjusted image volume. 4.根据权利要求3所述的方法,其中定义至少一个定向瘤(5)的边缘的步骤进一步包括将阈值和/或梯度函数应用到该至少一个定向瘤的步骤,以确定边缘的边界。4. The method according to claim 3, wherein the step of defining the edge of at least one burr (5) further comprises the step of applying a threshold and/or a gradient function to the at least one burr to determine the boundaries of the edge. 5.根据权利要求1所述的方法,其中估测影像测量变异(80)的步骤进一步包括测量至少一个定向瘤(5)的大量特征、测量相邻结构的特征、影像系统特征的步骤,所述影像系统特征包括其内在辨析率和影像中存在的噪音的量。5. The method according to claim 1, wherein the step of estimating the imaging measurement variation (80) further comprises the step of measuring a number of features of at least one anomaly (5), measuring features of adjacent structures, imaging system features, so The imaging system characteristics described include its intrinsic resolution and the amount of noise present in the image. 6.根据权利要求1所述的方法,其中每一个步骤都是通过使用允许医学工作者参与的合适软件(7)进行的。6. The method according to claim 1, wherein each step is carried out by using suitable software (7) allowing the participation of medical practitioners. 7.根据权利要求1所述的方法,该方法进一步包括针对特定结构自动估测运动程度的步骤。7. The method of claim 1, further comprising the step of automatically estimating the degree of motion for a particular structure. 8.根据权利要求6所述的方法,其中针对特定结构自动估测运动程度的步骤包括测量表面结构和定向瘤外的结构的变化程度。8. The method of claim 6, wherein the step of automatically estimating the degree of motion for a particular structure comprises measuring the degree of change in surface structures and structures oriented extratumorally. 9.根据权利要求1所述的方法,该方法进一步包括自动匹配至少一个定向瘤在不同时间获得的相应影像的步骤。9. The method of claim 1, further comprising the step of automatically matching corresponding images of the at least one tumor obtained at different times. 10.根据权利要求9所述的方法,该方法进一步包括选择具有最大面积、最大长度或最大体积的至少一个定向瘤作为目标,并找到在接下来的时间获得的可比目标的步骤。10. The method of claim 9, further comprising the step of selecting as a target at least one tumour, having the largest area, length or volume, and finding comparable targets obtained at subsequent times. 11.根据权利要求1所述的方法,该方法进一步包括用至少一个模型(10)空间校正影像系统和测量噪音量、伪影和影像失真的步骤。11. The method according to claim 1, further comprising the step of spatially correcting the imaging system with at least one model (10) and measuring the amount of noise, artifacts and image distortions. 12.根据权利要求11所述的方法,其中空间校正这一步骤进一步包括对于给定扫描仪针对人体相关区域进行模型研究这一步骤以建立表征噪音、伪影和影像失真程度的图;并利用该图确定定向瘤(5)的测量的测量误差范围。12. The method of claim 11 , wherein the step of spatially correcting further comprises the step of performing a model study of relevant regions of the body for a given scanner to create a map characterizing the degree of noise, artifacts, and image distortion; and utilizing The graph determines the measurement error range for the measurement of the orientation tumor (5). 13.根据权利要求1的所述方法,其中身体部位是肺(204),该方法进一步包括将肺其它特征与至少一个定向瘤自动分割的步骤。13. The method according to claim 1, wherein the body part is a lung (204), the method further comprising the step of automatically segmenting other features of the lung from at least one tumour. 14.根据权利要求1所述的方法,其中所述影像系统选自计算机断层扫描仪、磁共振成像、正电子发射影像系统、X射线成像系统、血管性介入和血管镜/血管造影步骤或超声影像系统。14. The method of claim 1, wherein the imaging system is selected from the group consisting of computed tomography scanners, magnetic resonance imaging, positron emission imaging systems, x-ray imaging systems, vascular interventions and angioscopy/angiography procedures or ultrasound imaging system. 15.一种测定影像测量误差范围的方法,该方法包括下述步骤:15. A method for determining the error range of image measurement, the method comprising the following steps: 用影像系统扫描身体部位产生一组影像数据(120);Scan the body part with an imaging system to generate a set of image data (120); 测量在这组影像数据中成像的至少一个定向瘤以确定对应于这组影像数据的表观定向瘤尺寸(130);measuring at least one tumor imaged in the set of image data to determine an apparent tumor size corresponding to the set of image data (130); 估测该表观定向瘤尺寸的至少一个误差变差以确定对总体测量准确性的估测(140);estimating at least one error variation in the apparent directional tumor size to determine an estimate of overall measurement accuracy (140); 使用该对总体测量准确性的估测来确定靶向瘤的范围(150);和Using this estimate of overall measurement accuracy to determine a range of targeted tumors (150); and 确定基于该对总体测量准确性估测上的时间框架用于进行指示临床变化的接下来的测量(160)。A time frame based on the estimate of the overall measurement accuracy for taking subsequent measurements indicative of clinical changes is determined ( 160 ). 16.根据权利要求15所述的方法,其中说明重要事件(significant event)的至少一个定向瘤的尺寸变化比RECIST标准规定的小。16. The method of claim 15, wherein the change in size of at least one tumour, indicative of a significant event, is smaller than specified by RECIST criteria. 17.根据权利要求15所述的方法,其中估测至少一个误差变差的步骤包括(140)下述步骤:(a)从经校正的模型的计算机断层扫描仪影像计算测量误差,和(b)从病人瘤的多重扫描结果计算测量误差。17. The method of claim 15, wherein the step of estimating at least one error variation comprises (140) the steps of: (a) calculating a measurement error from a computed tomography image of the corrected phantom, and (b ) to calculate the measurement error from multiple scans of the patient's tumor. 18.根据权利要求15所述的方法,该方法进一步包括由于通过利用模型或经反复扫描的瘤的人观察者实验的人参与获得的误差变差步骤。18. The method of claim 15, further comprising the step of error variation due to human participation through human observer experiments using phantoms or repeatedly scanned tumors. 19.根据权利要求15所述的方法,其中估测至少一个误差变差(140)的步骤包括估测由于选自以下至少一个因素带来的误差影响:19. The method of claim 15, wherein the step of estimating at least one error variation (140) comprises estimating an error impact due to at least one factor selected from: 影像设备的点扩散函数和相关的重建滤波器;The point spread function of the imaging device and the associated reconstruction filter; 扫描仪参数;Scanner parameters; 由与结节在同一影像平面上的高密度物体造成的伪影;Artifacts caused by dense objects in the same image plane as the nodule; 病人运动;patient movement; 病人体位在两次扫描之间的变化;Changes in patient position between scans; 当扫描肺时,身体状况的变化或吸气量;Changes in physical condition or inhalation when the lungs are scanned; 结节的尺寸;the size of the nodule; 与结节相连的容易造成混淆的结构;Confusing structures associated with nodules; 结节密度变化;Changes in nodule density; 扫描仪校正;Scanner calibration; 对结节边界的定义;和definition of nodule boundaries; and 当熟练工作者参与测量过程带来的操作者变异。Operator variability introduced when skilled workers are involved in the measurement process. 20.根据权利要求19所述的方法,其中扫描仪的点扩散函数是通过用校正模型得到的一组测试扫描结果估测的。20. The method of claim 19, wherein the point spread function of the scanner is estimated from a set of test scans obtained using the calibration model. 21.根据权利要求19所述的方法,其中所述扫描仪点扩散函数是通过扫描利用病人的3D校正模型(10)估测的。21. The method according to claim 19, wherein the scanner point spread function is estimated from a scan using a 3D corrected model (10) of the patient. 22.根据权利要求19所述的方法,其中至少两个扫描结果之间的不同扫描工作者参数是使用了两个参数设置的一组模型扫描结果测量的,从而估测由于参数不同而导致的体积偏差。22. The method of claim 19, wherein the different scan worker parameters between at least two scan results are measured using a set of model scan results using the two parameter settings, thereby estimating the Volume deviation. 23.根据权利要求19所述的方法,其中用病人进行的三维模型扫描提供了估测偏差的信息,从而减少由于扫描者参数导致的误差。23. The method of claim 19, wherein a scan of the three-dimensional model of the patient provides information to estimate bias, thereby reducing errors due to scanner parameters. 23.根据权利要求19所述的方法,其中伪影通过计算基于结节区空间频率组成上的影像噪音指数来表征。23. The method of claim 19, wherein the artifact is characterized by computing an image noise index based on the spatial frequency content of the nodule region. 24.根据权利要求19所述的方法,其中所述伪影通过使用具有相似噪音指数的模型(10)的一致性研究进行表征,并且其它参数提供了对变差的估测。24. The method of claim 19, wherein the artifacts are characterized by a consistency study using a model (10) with a similar noise index, and other parameters provide an estimate of the variation. 25.根据权利要求19所述的方法,其中病人运动误差是由心脏运动或脉搏振动表征的,该心脏运动或脉搏振动是通过在成像结节表面上z轴方向重复的变化探测的。25. The method of claim 19, wherein patient motion errors are characterized by cardiac motion or pulse vibrations detected by repetitive changes in the z-axis direction on the surface of the imaged nodule. 26.根据权利要求19所述的方法,其中病人运动选自结节扫描期间心脏运动或病人肌肉痉挛。26. The method of claim 19, wherein the patient motion is selected from heart motion or patient muscle spasm during nodule scanning. 27.根据权利要求19所述的方法,其中两次扫描中病人体位的变化是通过对比该至少两次扫描之间的3D刚体体位的匹配性测量的。27. The method of claim 19, wherein the change in patient position between the two scans is measured by comparing the matching of the 3D rigid body position between the at least two scans. 28.根据权利要求19所述的方法,其中呼吸误差的变化是通过利用对扫描对数据表的研究估测的。28. The method of claim 19, wherein changes in breathing error are estimated by using a study of a scan pair data table. 29.根据权利要求19所述的方法,其中结节尺寸误差是通过使用不同尺寸的模型研究进行表征的,以判定某给定的结节尺寸的内在测量变化。29. The method of claim 19, wherein nodule size errors are characterized by phantom studies using different sizes to determine intrinsic measurement variation for a given nodule size. 30.根据权利要求19所述的方法,其中由于相连结构导致的误差通过使用在不同条件下进行多重扫描和测量变差的相连结构的模型数据进行表征。30. The method of claim 19, wherein errors due to connected structures are characterized by using model data of connected structures with multiple scans and measurement variations under different conditions. 31.根据权利要求19所述的方法,其中由于相连结构导致的误差是通过具有附件的结节的真实数据和用于对比分割一致性的多重扫描结果进行表征的。31. The method of claim 19, wherein errors due to connected structures are characterized by real data of nodules with attachments and multiple scans for comparison of segmentation consistency. 32.根据权利要求19所述的方法,其中结节密度导致的误差是通过对比多重扫描结果来表征的。32. The method of claim 19, wherein error due to nodule density is characterized by comparing multiple scans. 33.根据权利要求19所述的方法,其中由扫描仪校正导致的误差是通过使用两次研究柱状图匹配进行表征的。33. The method of claim 19, wherein errors due to scanner calibration are characterized by using two-study histogram matching. 34.根据权利要求19所述的方法,其中扫描仪校正导致的误差是通过使用扫描时的校正模型进行表征的。34. The method of claim 19, wherein errors due to scanner calibration are characterized by using a calibration model at the time of scanning. 35.根据权利要求19所述的方法,其中由结节边界导致的误差是通过对比结节边界图与点扩散函数来表征的。35. The method of claim 19, wherein errors due to nodule boundaries are characterized by comparing a nodule boundary map to a point spread function. 36.根据权利要求19所述的方法,其中由结节边界定义导致的误差是通过用模型进行模型研究进行表征的,以判定不同条件下体积估测中的变差。36. The method of claim 19, wherein error due to nodule boundary definition is characterized by performing a modeling study with the model to determine variation in volume estimation under different conditions. 37.根据权利要求1所述的方法,其中扫描身体部位的步骤进一步包括扫描校正设备(10)。37. The method of claim 1, wherein the step of scanning the body part further comprises scanning a correction device (10). 38.根据权利要求19所述的方法,其中扫描身体部位的步骤进一步包括扫描校正设备(10)。38. The method of claim 19, wherein the step of scanning the body part further comprises scanning a correction device (10). 39.一种用于确定尺寸变化测量误差范围的自动化方法,该方法包括的步骤为:39. An automated method for determining a margin of error in a dimensional change measurement, the method comprising the steps of: 用影像系统(2)扫描身体部位(204),得到第一组影像数据(214A);Scan the body part (204) with the imaging system (2) to obtain the first set of image data (214A); 识别在影像数据中(214A)的大多数定向瘤(5);Identifying a majority of orientation tumors (5) in the imaging data (214A); 重新扫描身体部位(204)以得到第二组影像数据(214B);re-scanning the body part (204) to obtain a second set of image data (214B); 识别在第二组影像数据C中的大多数定向瘤;identifying a majority of orientation tumors in the second set of image data C; 测量在第一组影像数据(214A)和第二组影像数据(214B)中成像的大多数定向瘤(5)以判定对应于第一组影像数据的第一表观定向瘤分值和对应于第二组影像数据的第二表观定向瘤分值;Measuring a majority of the orientation tumors (5) imaged in the first set of image data (214A) and the second set of image data (214B) to determine a first apparent orientation tumor score corresponding to the first set of image data and corresponding to a second apparent orientation tumor score of the second set of imaging data; 通过对比第一和第二表观瘤分值来估测定向瘤分值的变化(70);和Estimate the change in directional tumor score by comparing the first and second apparent tumor scores (70); and 估测定向瘤分值变化上的变异以判定分值测量变化的范围(80)。The variation in the change in the directional tumor score is estimated to determine the range of change in the score measure (80). 40.根据权利要求15所述的方法,其中该至少一个定向瘤(5)小于1cm。40. The method according to claim 15, wherein the at least one tumor (5) is smaller than 1 cm. 41.一种重叠成像在CT影像上的结节边界可视化方法,该方法包括的步骤为:41. A method for visualizing nodule boundaries on a CT image with overlapping imaging, the method comprising the steps of: 获得结节(208A)的第一影像(214A);obtaining a first image (214A) of the nodule (208A); 确定对应于影像梯度水平的结节的第一组边界(218A、220A、222A);determining a first set of boundaries (218A, 220A, 222A) of nodules corresponding to image gradient levels; 和显示第一影像,同时将边界(218A、220A、222A)重叠覆盖在第一影像(214A)上。and displaying the first image while overlaying the boundaries (218A, 220A, 222A) on the first image (214A). 42.根据权利要求41所述的方法,该方法进一步包括针对边界(218、220、222,224)使用不同颜色的步骤以指明边界误差值范围。42. The method of claim 41, further comprising the step of using different colors for the boundaries (218, 220, 222, 224) to indicate boundary error value ranges. 43.根据权利要求41所述的方法,该方法进一步包括将针状物信息(224)从测量准确性计算中排除出去的步骤。43. The method of claim 41, further comprising the step of excluding needle information (224) from measurement accuracy calculations. 44.根据权利要求41所述的方法,该方法进一步包括使用交互软件来人工判断所选边界的位置的步骤。44. The method of claim 41, further comprising the step of using interactive software to manually determine the location of the selected boundary. 45.根据权利要求41所述的方法,该方法进一步包括如下步骤:45. The method of claim 41, further comprising the steps of: 获得结节(208B)的第二影像(214B);obtaining a second image (214B) of the nodule (208B); 将第二组边界(218B、220B、222B)适用在第二影像(214B)上;和applying the second set of boundaries (218B, 220B, 222B) to the second image (214B); and 在显示器上将第一组边界(218A、220A、222A)和第二组边界(218B、220B、222B)覆盖以显示结节尺寸上的任何变化。The first set of boundaries (218A, 220A, 222A) and the second set of boundaries (218B, 220B, 222B) are overlaid on the display to show any changes in nodule size. 46.根据权利要求45所述的方法,其中显示结节尺寸变化的区域是可视性地显示出来。46. The method of claim 45, wherein regions showing changes in nodule size are visually displayed. 47.根据权利要求41所述的方法,其中所述第一组边界是利用选自下列的可视化方法显示的:47. The method of claim 41, wherein the first set of boundaries is displayed using a visualization method selected from the group consisting of: 将得自所有影像切片的结节的3维透视图加上标记,Label the 3D rendering of nodules from all image slices, 使用透明的标记,以使其下面的结构也能被观察到,Use transparent markers so that the underlying structure can also be seen, 使用深色线标记,Mark with a dark line, 使用标上刻度的标记,以使距离能被定量地观察到,Use graduated markers so that distances can be observed quantitatively, 加入距离标度和文本说明,从而显现出定量测量,Incorporate distance scales and text descriptions to visualize quantitative measurements, 和上述方法的任意组合。and any combination of the above methods. 48.根据权利要求41所述的方法,其中在影像上的区域用标记覆盖以说明所选择的影像因素(303、305、307和309)。48. The method of claim 41, wherein areas on the image are overlaid with markers to illustrate selected image factors (303, 305, 307 and 309). 49.根据权利要求48所述的方法,其中所选择的影像因素(303、305、307和309)选自与最初肿瘤尺寸估测相关的较高程度变化的区域、与第二次测量有关的尺寸的不确定性相关区域、具有高度变化可能性的区域和在某些测量中会发生重叠的区域。49. The method according to claim 48, wherein the selected imaging factors (303, 305, 307 and 309) are selected from regions of higher degree of variation associated with the initial tumor size estimate, Areas of uncertainty in size, areas of high potential for variation, and areas where overlap occurs in some measurements. 50.根据权利要求48所述的方法,该方法进一步包括选择中心点320步骤,从而允许对结节的各种象限(320A、320B、320C和320D)进行变化估测。50. The method according to claim 48, the method further comprising the step of selecting a center point 320, thereby allowing estimation of changes in various quadrants (320A, 320B, 320C and 320D) of the nodule. 51.根据权利要求48所述的方法,该方法进一步包括将边界(313)与其中变化不能被可靠测量,而不是没用变化可被可靠地判定的结节一部分放在一起的步骤。51. The method of claim 48, further comprising the step of placing boundaries (313) with the portion of the nodule where changes cannot be reliably measured, other than no changes can be reliably determined. 52.根据权利要求1所述的方法,该方法进一步包括在扫描期间使用校正设备(10)的步骤。52. The method according to claim 1, further comprising the step of using a calibration device (10) during scanning. 53.根据权利要求52所述的方法,其中该所述校正设备包括人造模型。53. The method of claim 52, wherein the calibration device comprises a man-made phantom. 54.根据权利要求52所述的方法,其中该校正设备(10)包括一组各种尺寸的人造模型。54. The method according to claim 52, wherein the calibration device (10) comprises a set of man-made models of various sizes. 55.根据权利要求52所述的方法,其中该校正设备(10)选自电线、珠子、杆或几何形状的物品。55. The method according to claim 52, wherein the correction device (10) is selected from wires, beads, rods or geometrically shaped objects. 56.根据权利要求52所述的方法,其中所述校正设备(10)是体内设备。56. The method according to claim 52, wherein the calibration device (10) is an in vivo device. 57.根据权利要求56所述的方法,其中所述体内设备选自电线、珠子、导管、可移植设备或已知尺寸的在病人体内的物品。57. The method of claim 56, wherein the internal device is selected from wires, beads, catheters, implantable devices, or items within the patient's body of known size.
CNA2005800213223A 2004-04-26 2005-04-25 Medical Imaging System for Accurate Determination of Oriented Tumor Changes Pending CN1976629A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56532704P 2004-04-26 2004-04-26
US60/565,327 2004-04-26

Publications (1)

Publication Number Publication Date
CN1976629A true CN1976629A (en) 2007-06-06

Family

ID=35242207

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800213223A Pending CN1976629A (en) 2004-04-26 2005-04-25 Medical Imaging System for Accurate Determination of Oriented Tumor Changes

Country Status (7)

Country Link
US (3) US7876939B2 (en)
EP (1) EP1744671B1 (en)
JP (1) JP5036534B2 (en)
CN (1) CN1976629A (en)
AU (1) AU2005237517B2 (en)
CA (1) CA2564240C (en)
WO (1) WO2005104943A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236797A (en) * 2010-04-27 2011-11-09 西门子公司 Method for establishing change in a tubular tissue structure in a living being, calculation unit and data storage medium
CN102300503B (en) * 2009-01-30 2014-06-18 皇家飞利浦电子股份有限公司 System for providing lung ventilation information
CN105074778A (en) * 2013-03-28 2015-11-18 皇家飞利浦有限公司 Interactive follow-up visualization
CN106447684A (en) * 2016-08-10 2017-02-22 中国兵器科学研究院宁波分院 Industrial CT image weak edge dimension measuring method
CN112401915A (en) * 2020-11-19 2021-02-26 华中科技大学同济医学院附属协和医院 Image fusion comparison method for CT (computed tomography) reexamination of new coronary pneumonia
CN112819003A (en) * 2021-04-19 2021-05-18 北京妙医佳健康科技集团有限公司 Method and device for improving OCR recognition accuracy of physical examination report
CN112807005A (en) * 2019-11-15 2021-05-18 上海西门子医疗器械有限公司 Computed tomography method, device and system
CN117788474A (en) * 2024-02-27 2024-03-29 陕西省人民医院(陕西省临床医学研究院) Urinary calculus image recognition method based on machine vision
CN118898619A (en) * 2024-10-09 2024-11-05 吉林大学第一医院 Breast cancer residual lesion detection method and system based on CT images

Families Citing this family (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256430B2 (en) 2001-06-15 2012-09-04 Monteris Medical, Inc. Hyperthermia treatment and probe therefor
RU2007144703A (en) * 2005-05-03 2009-06-10 Конинклейке Филипс Электроникс Н.В. (Nl) VIRTUAL QUANTITATIVE EVALUATION OF THE SURVIVAL POSITION
US20070027408A1 (en) * 2005-07-07 2007-02-01 Siemens Medical Solutions Health Services Corporation Anatomical Feature Tracking and Monitoring System
JP4854314B2 (en) * 2006-01-27 2012-01-18 キヤノン株式会社 Information processing apparatus, control method therefor, and program
WO2007126932A1 (en) * 2006-03-28 2007-11-08 Xoran Technologies, Inc. Ct scanner with automatic determination of volume of interest
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
DE102006035617A1 (en) * 2006-07-31 2008-02-21 Siemens Ag Automatic determination of tumor burden
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
DE602007007340D1 (en) * 2006-08-21 2010-08-05 Sti Medical Systems Llc COMPUTER-ASSISTED ANALYSIS USING VIDEO DATA FROM ENDOSCOPES
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
EP2148619A4 (en) * 2007-05-22 2010-06-09 Antonio Talluri Method and system to measure body volume/surface area, estimate density and body composition based upon digital image assessment
US8131076B2 (en) * 2007-06-14 2012-03-06 Siemens Aktiengesellschaft Editing of pre-segmented images using seeds derived from contours
US9596993B2 (en) * 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
EP2178442B1 (en) 2007-07-12 2017-09-06 Volcano Corporation Catheter for in vivo imaging
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
EP2193500B1 (en) * 2007-09-17 2019-03-27 Koninklijke Philips N.V. A caliper for measuring objects in an image
JP4616872B2 (en) * 2007-09-21 2011-01-19 富士フイルム株式会社 Image display device and image display program
CN101401725B (en) * 2007-09-27 2013-08-21 西门子公司 Patient treatment using a hybrid imaging system
JP5159242B2 (en) * 2007-10-18 2013-03-06 キヤノン株式会社 Diagnosis support device, diagnosis support device control method, and program thereof
US8295564B2 (en) * 2007-11-26 2012-10-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Marking a location in a medical image
US8320711B2 (en) * 2007-12-05 2012-11-27 Biosense Webster, Inc. Anatomical modeling from a 3-D image and a surface mapping
RU2010130534A (en) * 2007-12-21 2012-01-27 Конинклейке Филипс Электроникс Н.В. (Nl) MATERIAL TUMOR PHANTOM FOR ADVANCED COMPUTER DIAGNOSTICS
AU2009217348B2 (en) * 2008-02-22 2014-10-09 Loma Linda University Medical Center Systems and methods for characterizing spatial distortion in 3D imaging systems
WO2009120635A2 (en) * 2008-03-23 2009-10-01 Scott Rosa Diagnostic imaging method
US9002076B2 (en) * 2008-04-15 2015-04-07 Medtronic, Inc. Method and apparatus for optimal trajectory planning
KR100995293B1 (en) * 2008-05-28 2010-11-19 주식회사 메디슨 Ultrasound system and method for detecting extravascular leakage
US8965071B2 (en) * 2008-05-30 2015-02-24 Emory University Assessing tumor response to therapy
JP2010035634A (en) * 2008-07-31 2010-02-18 Bio-Visiq Japan Inc Method, device, and program for computing recist determination result
JP2010082428A (en) * 2008-09-04 2010-04-15 Toshiba Corp X-ray computer tomography apparatus
US8401260B2 (en) * 2008-09-22 2013-03-19 General Electric Company Systems and methods for analyzing growth of computer detected patterns on digital medical images
JP2012513279A (en) * 2008-12-23 2012-06-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Medical abnormality monitoring system and operation method thereof
US8335552B2 (en) * 2009-03-20 2012-12-18 Medtronic, Inc. Method and apparatus for instrument placement
US8885977B2 (en) * 2009-04-30 2014-11-11 Apple Inc. Automatically extending a boundary for an image to fully divide the image
FR2946171B1 (en) * 2009-05-29 2011-07-15 Groupe Des Ecoles De Telecommunications Get Ecole Nationale Superieure Des Telecommunications Enst METHOD OF QUANTIFYING THE EVOLUTION OF PATHOLOGIES INVOLVING CHANGES IN BODY VOLUMES, IN PARTICULAR TUMORS
JP5619448B2 (en) * 2009-08-20 2014-11-05 株式会社東芝 Magnetic resonance imaging system
JP5523891B2 (en) * 2009-09-30 2014-06-18 富士フイルム株式会社 Lesion region extraction device, its operating method and program
GB2475722B (en) * 2009-11-30 2011-11-02 Mirada Medical Measurement system for medical images
WO2011095898A1 (en) * 2010-02-02 2011-08-11 Koninklijke Philips Electronics N.V. Functional imaging
JP4931027B2 (en) * 2010-03-29 2012-05-16 富士フイルム株式会社 Medical image diagnosis support apparatus and method, and program
CN102859552B (en) * 2010-04-16 2017-04-05 皇家飞利浦电子股份有限公司 View data is split
JP5570866B2 (en) * 2010-04-30 2014-08-13 オリンパス株式会社 Image processing apparatus, method of operating image processing apparatus, and image processing program
US10456209B2 (en) * 2010-10-13 2019-10-29 Gholam A. Peyman Remote laser treatment system with dynamic imaging
US11309081B2 (en) 2010-10-13 2022-04-19 Gholam A. Peyman Telemedicine system with dynamic imaging
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US8570040B2 (en) * 2010-12-30 2013-10-29 Cochlear Limited MRI image distortion reduction for MRI images of a recipient having an implantable medical device
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US9710730B2 (en) * 2011-02-11 2017-07-18 Microsoft Technology Licensing, Llc Image registration
US9295406B2 (en) * 2011-05-05 2016-03-29 Siemens Medical Solutions Usa, Inc. Automatic or semi-automatic whole body MR scanning system
WO2012167277A1 (en) * 2011-06-02 2012-12-06 The Research Foundation Of State University Of New York Method and device for imaging a region of interest
CN102222336B (en) * 2011-06-10 2013-04-10 复旦大学 Three-dimensional reconstruction technology-based diaphragm surface area calculation method and system
WO2013033592A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US10140420B2 (en) * 2011-10-12 2018-11-27 Merge Healthcare Incorporation Systems and methods for independent assessment of image data
KR101899866B1 (en) * 2011-11-03 2018-09-19 삼성전자주식회사 Apparatus and method for detecting error of lesion contour, apparatus and method for correcting error of lesion contour and, apparatus for insecting error of lesion contour
US11109835B2 (en) * 2011-12-18 2021-09-07 Metritrack Llc Three dimensional mapping display system for diagnostic ultrasound machines
JP6039903B2 (en) * 2012-01-27 2016-12-07 キヤノン株式会社 Image processing apparatus and operation method thereof
JP6106259B2 (en) * 2012-03-21 2017-03-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Clinical workstation integrating medical imaging and biopsy data and method of using the same
US20150065868A1 (en) * 2012-04-02 2015-03-05 The Research Foundation for the State University New York System, method, and computer accessible medium for volumetric texture analysis for computer aided detection and diagnosis of polyps
KR101190795B1 (en) * 2012-04-27 2012-10-12 경북대학교 산학협력단 Method and apparatus of detecting real size of ordan or lesion in medical image
US8750568B2 (en) 2012-05-22 2014-06-10 Covidien Lp System and method for conformal ablation planning
US9439622B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical navigation system
US9498182B2 (en) 2012-05-22 2016-11-22 Covidien Lp Systems and methods for planning and navigation
US9439627B2 (en) 2012-05-22 2016-09-13 Covidien Lp Planning system and navigation system for an ablation procedure
US9439623B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical planning system and navigation system
CN108113762B (en) 2012-06-27 2024-08-27 曼特瑞斯医药有限责任公司 Image guided treatment of tissue
US9361540B2 (en) * 2012-08-15 2016-06-07 Augmented Reality Lab LLC Fast image processing for recognition objectives system
CN103678837A (en) * 2012-08-31 2014-03-26 西门子公司 Method and device for determining processing remains of target area
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US20140100454A1 (en) 2012-10-05 2014-04-10 Volcano Corporation Methods and systems for establishing parameters for three-dimensional imaging
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
CN103034996B (en) * 2012-11-30 2016-04-27 东软集团股份有限公司 A kind of method that CT image pulmo adhering layer detects, adhesion detects and device
CA2894403A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
CA2895770A1 (en) 2012-12-20 2014-07-24 Jeremy Stigall Locating intravascular images
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
EP2934310A4 (en) 2012-12-20 2016-10-12 Nathaniel J Kemp Optical coherence tomography system that is reconfigurable between different imaging modes
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
JP2016508757A (en) 2012-12-21 2016-03-24 ジェイソン スペンサー, System and method for graphical processing of medical data
WO2014100530A1 (en) 2012-12-21 2014-06-26 Whiseant Chester System and method for catheter steering and operation
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
CA2895769A1 (en) 2012-12-21 2014-06-26 Douglas Meyer Rotational ultrasound imaging catheter with extended catheter body telescope
JP2016501623A (en) 2012-12-21 2016-01-21 アンドリュー ハンコック, System and method for multipath processing of image signals
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
CN104885126B (en) * 2012-12-27 2018-01-05 皇家飞利浦有限公司 The Computer assisted identification of tissue of interest
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US20140276923A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Vibrating catheter and methods of use
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
WO2014159819A1 (en) 2013-03-13 2014-10-02 Jinhyoung Park System and methods for producing an image from a rotational intravascular ultrasound device
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US12343198B2 (en) 2013-03-14 2025-07-01 Philips Image Guided Therapy Corporation Delivery catheter having imaging capabilities
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
WO2014205423A1 (en) 2013-06-21 2014-12-24 O.N.Diagnostics, LLC Quantitative phantomless calibration of computed tomography scans
TWI514328B (en) * 2013-09-12 2015-12-21 Univ Nat Taiwan Image processing method and image processing system
US9911203B2 (en) * 2013-10-02 2018-03-06 Given Imaging Ltd. System and method for size estimation of in-vivo objects
JP6430500B2 (en) * 2013-10-23 2018-11-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Methods for supporting measurement of tumor response
JP6044522B2 (en) * 2013-11-19 2016-12-14 横河電機株式会社 Slow change detection system
JP6691734B2 (en) * 2013-12-25 2020-05-13 キヤノンメディカルシステムズ株式会社 Medical image processing apparatus, X-ray diagnostic apparatus, and medical image processing program
US9504484B2 (en) 2014-03-18 2016-11-29 Monteris Medical Corporation Image-guided therapy of a tissue
WO2015143025A1 (en) 2014-03-18 2015-09-24 Monteris Medical Corporation Image-guided therapy of a tissue
US10675113B2 (en) 2014-03-18 2020-06-09 Monteris Medical Corporation Automated therapy of a three-dimensional tissue region
KR20160012837A (en) * 2014-07-25 2016-02-03 삼성전자주식회사 Image processing apparatus and image processing method
US10417763B2 (en) 2014-07-25 2019-09-17 Samsung Electronics Co., Ltd. Image processing apparatus, image processing method, x-ray imaging apparatus and control method thereof
EP2989988B1 (en) * 2014-08-29 2017-10-04 Samsung Medison Co., Ltd. Ultrasound image display apparatus and method of displaying ultrasound image
KR102379067B1 (en) * 2014-12-01 2022-03-25 삼성전자주식회사 Medical image apparatus and method for processing medical image
US10026174B2 (en) * 2015-01-07 2018-07-17 Synaptive Medical (Barbados) Inc. Method, system and apparatus for automatically evaluating resection accuracy
JP6653706B2 (en) * 2015-01-16 2020-02-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Vascular lumen sub-resolution segmentation
US10327830B2 (en) 2015-04-01 2019-06-25 Monteris Medical Corporation Cryotherapy, thermal therapy, temperature modulation therapy, and probe apparatus therefor
KR101783964B1 (en) 2015-04-09 2017-10-10 삼성전자주식회사 Tomography apparatus and method for reconstructing a tomography image thereof
WO2016179310A1 (en) * 2015-05-04 2016-11-10 Smith Andrew Dennis Computer-assisted tumor response assessment and evaluation of the vascular tumor burden
JP6408436B2 (en) * 2015-07-29 2018-10-17 富士フイルム株式会社 Medical support device, its operating method and operating program, and medical support system
US20170039735A1 (en) * 2015-08-06 2017-02-09 General Electric Company Computed tomography self-calibration without calibration targets
US10166408B2 (en) * 2016-05-27 2019-01-01 Susan L. Michaud Cancer therapy system treatment beam progression and method of use thereof
CN109475343B (en) * 2016-08-01 2024-04-02 深圳迈瑞生物医疗电子股份有限公司 Shear wave elastography measurement display method and system
US10282843B2 (en) * 2016-10-27 2019-05-07 International Business Machines Corporation System and method for lesion analysis and recommendation of screening checkpoints for reduced risk of skin cancer
US10283221B2 (en) 2016-10-27 2019-05-07 International Business Machines Corporation Risk assessment based on patient similarity determined using image analysis
US10242442B2 (en) * 2016-10-27 2019-03-26 International Business Machines Corporation Detection of outlier lesions based on extracted features from skin images
IT201700014692A1 (en) * 2017-02-10 2018-08-10 R A W Srl System and Data Processing Method of Computerized Tomographies
US10219768B2 (en) * 2017-06-08 2019-03-05 Emass Llc Method for standardizing target lesion selection and tracking on medical images
KR101929953B1 (en) * 2017-06-27 2018-12-19 고려대학교 산학협력단 System, apparatus and method for providing patient-specific diagnostic assistant information
CN107684669B (en) 2017-08-21 2020-04-17 上海联影医疗科技有限公司 System and method for correcting alignment apparatus
GB201716890D0 (en) * 2017-10-13 2017-11-29 Optellum Ltd System, method and apparatus for assisting a determination of medical images
US10896503B2 (en) 2018-03-23 2021-01-19 International Business Machines Corporation Identification of areas of interest in imaging applications
US10872449B2 (en) * 2018-05-02 2020-12-22 Covidien Lp System and method for constructing virtual radial ultrasound images from CT data and performing a surgical navigation procedure using virtual ultrasound images
US11707329B2 (en) 2018-08-10 2023-07-25 Covidien Lp Systems and methods for ablation visualization
WO2020172435A1 (en) * 2019-02-20 2020-08-27 The Regents Of The University Of California System and method for tissue classification using quantitative image analysis of serial scans
US11995839B2 (en) * 2019-09-04 2024-05-28 Align Technology, Inc. Automated detection, generation and/or correction of dental features in digital models
EP3839964A1 (en) * 2019-12-19 2021-06-23 Koninklijke Philips N.V. Making measurements in images
US11969280B2 (en) 2020-01-07 2024-04-30 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
EP4087486A4 (en) 2020-01-07 2024-02-14 Cleerly, Inc. SYSTEMS, METHODS AND DEVICES FOR MEDICAL IMAGE ANALYSIS, DIAGNOSIS, RISK STRATIFICATION, DECISION MAKING AND/OR DISEASE TRACKING
US20220392065A1 (en) 2020-01-07 2022-12-08 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
US11963846B2 (en) 2020-01-24 2024-04-23 Overjet, Inc. Systems and methods for integrity analysis of clinical data
US12106848B2 (en) 2020-01-24 2024-10-01 Overjet, Inc. Systems and methods for integrity analysis of clinical data
US11158046B2 (en) 2020-01-24 2021-10-26 Overjet, Inc. Estimating measurements of craniofacial structures in dental radiographs
EP3866107A1 (en) * 2020-02-14 2021-08-18 Koninklijke Philips N.V. Model-based image segmentation
CN111544021B (en) * 2020-05-11 2022-06-17 徐州医科大学 COVID-19 disease progression evaluation method and device based on chest CT
CN113515981A (en) * 2020-05-22 2021-10-19 阿里巴巴集团控股有限公司 Identification method, device, equipment and storage medium
WO2021252751A1 (en) * 2020-06-10 2021-12-16 GE Precision Healthcare LLC Systems and methods for generating synthetic baseline x-ray images from computed tomography for longitudinal analysis
KR102577161B1 (en) * 2021-04-12 2023-09-11 주식회사 루닛 Method and system for measuring size change of target lesion in x-ray image
US11308615B1 (en) 2021-07-01 2022-04-19 Maurice Nessim Systems and processes for improving medical diagnoses
US20250143657A1 (en) 2022-03-10 2025-05-08 Cleerly, Inc. Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination
US20230289963A1 (en) 2022-03-10 2023-09-14 Cleerly, Inc. Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination
CN114587533B (en) * 2022-03-25 2023-04-28 深圳市华屹医疗科技有限公司 Puncture location guidance method, puncture location guidance device, puncture location guidance apparatus, puncture location guidance program, and puncture location guidance program
JP2025521143A (en) * 2022-05-31 2025-07-08 ノア メディカル コーポレーション Systems and methods for robotic endoscopy with integrated intralesional tool tomosynthesis

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856528A (en) * 1987-06-26 1989-08-15 John Hopkins University Tumor volume determination
US6075879A (en) * 1993-09-29 2000-06-13 R2 Technology, Inc. Method and system for computer-aided lesion detection using information from multiple images
JP3540914B2 (en) * 1997-05-19 2004-07-07 株式会社日立メディコ X-ray equipment
US6909797B2 (en) * 1996-07-10 2005-06-21 R2 Technology, Inc. Density nodule detection in 3-D digital images
US6198838B1 (en) * 1996-07-10 2001-03-06 R2 Technology, Inc. Method and system for detection of suspicious lesions in digital mammograms using a combination of spiculation and density signals
US6263092B1 (en) * 1996-07-10 2001-07-17 R2 Technology, Inc. Method and apparatus for fast detection of spiculated lesions in digital mammograms
US5917929A (en) * 1996-07-23 1999-06-29 R2 Technology, Inc. User interface for computer aided diagnosis system
US6078688A (en) * 1996-08-23 2000-06-20 Nec Research Institute, Inc. Method for image segmentation by minimizing the ratio between the exterior boundary cost and the cost of the enclosed region
US6035056A (en) * 1997-03-27 2000-03-07 R2 Technology, Inc. Method and apparatus for automatic muscle segmentation in digital mammograms
US6301378B1 (en) * 1997-06-03 2001-10-09 R2 Technology, Inc. Method and apparatus for automated detection of masses in digital mammograms
US6014452A (en) * 1997-07-28 2000-01-11 R2 Technology, Inc. Method and system for using local attention in the detection of abnormalities in digitized medical images
US5827942A (en) * 1997-10-16 1998-10-27 Wisconsin Alumni Research Foundation System and method for testing imaging performance of ultrasound scanners and other medical imagers
US6347241B2 (en) 1999-02-02 2002-02-12 Senorx, Inc. Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it
US6404908B1 (en) * 1998-05-28 2002-06-11 R2 Technology, Inc. Method and system for fast detection of lines in medical images
JP4702971B2 (en) * 1999-11-10 2011-06-15 株式会社東芝 Computer-aided diagnosis system
AU2001251539A1 (en) * 2000-04-11 2001-10-23 Cornell Research Foundation Inc. System and method for three-dimensional image rendering and analysis
US6909794B2 (en) * 2000-11-22 2005-06-21 R2 Technology, Inc. Automated registration of 3-D medical scans of similar anatomical structures
US6925200B2 (en) * 2000-11-22 2005-08-02 R2 Technology, Inc. Graphical user interface for display of anatomical information
JP2002279404A (en) * 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd Image measurement method and device
FR2823968B1 (en) * 2001-04-27 2005-01-14 Ge Med Sys Global Tech Co Llc CALIBRATION METHOD OF IMAGING SYSTEM, MEMORY MEDIUM AND ASSOCIATED DEVICE
US7130457B2 (en) * 2001-07-17 2006-10-31 Accuimage Diagnostics Corp. Systems and graphical user interface for analyzing body images
DE10140867B4 (en) * 2001-08-21 2005-08-18 Siemens Ag Calibration phantom for projective X-ray systems
US20030095696A1 (en) * 2001-09-14 2003-05-22 Reeves Anthony P. System, method and apparatus for small pulmonary nodule computer aided diagnosis from computed tomography scans
CA2459557A1 (en) * 2001-09-17 2003-03-27 Virtualscopics, Llc System and method for quantitative assessment of cancers and their change over time
ATE514144T1 (en) * 2001-10-16 2011-07-15 Univ Chicago COMPUTER-ASSISTED DETECTION OF THREE-DIMENSIONAL LESIONS
US6990222B2 (en) * 2001-11-21 2006-01-24 Arnold Ben A Calibration of tissue densities in computerized tomography
US7054473B1 (en) * 2001-11-21 2006-05-30 R2 Technology, Inc. Method and apparatus for an improved computer aided diagnosis system
US6766043B2 (en) * 2001-11-23 2004-07-20 R2 Technology, Inc. Pleural nodule detection from CT thoracic images
US20050207630A1 (en) * 2002-02-15 2005-09-22 The Regents Of The University Of Michigan Technology Management Office Lung nodule detection and classification
JP3908993B2 (en) * 2002-08-14 2007-04-25 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray CT system
US7499578B2 (en) * 2002-10-18 2009-03-03 Cornell Research Foundation, Inc. System, method and apparatus for small pulmonary nodule computer aided diagnosis from computed tomography scans
US6891922B2 (en) * 2002-11-22 2005-05-10 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for the classification of nodules
GB0305315D0 (en) * 2003-03-07 2003-04-09 Weber Martin Image processing system
US7664298B2 (en) * 2003-03-25 2010-02-16 Imaging Therapeutics, Inc. Methods for the compensation of imaging technique in the processing of radiographic images
US6909795B2 (en) * 2003-06-16 2005-06-21 R2 Technology, Inc. Communicating computer-aided detection results in a standards-based medical imaging environment
US7668358B2 (en) * 2003-07-18 2010-02-23 Hologic, Inc. Model-based grayscale registration of medical images
US7664302B2 (en) * 2003-07-18 2010-02-16 Hologic, Inc. Simultaneous grayscale and geometric registration of images
US8442280B2 (en) * 2004-01-21 2013-05-14 Edda Technology, Inc. Method and system for intelligent qualitative and quantitative analysis of digital radiography softcopy reading
GB2414357A (en) * 2004-05-18 2005-11-23 Medicsight Plc Nodule boundary detection
US7616793B2 (en) * 2004-12-30 2009-11-10 Hologic, Inc. Medical image review workstation with integrated content-based resource retrieval
EP1858408A2 (en) * 2005-03-16 2007-11-28 Cornell Research Foundation Inc. Method for expanding the domain of imaging software in a diagnostic work-up

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300503B (en) * 2009-01-30 2014-06-18 皇家飞利浦电子股份有限公司 System for providing lung ventilation information
CN102236797A (en) * 2010-04-27 2011-11-09 西门子公司 Method for establishing change in a tubular tissue structure in a living being, calculation unit and data storage medium
CN105074778A (en) * 2013-03-28 2015-11-18 皇家飞利浦有限公司 Interactive follow-up visualization
CN106447684A (en) * 2016-08-10 2017-02-22 中国兵器科学研究院宁波分院 Industrial CT image weak edge dimension measuring method
CN106447684B (en) * 2016-08-10 2019-04-16 中国兵器科学研究院宁波分院 Weak marginal dimension measurement method in INDUSTRIAL CT IMAGE
CN112807005B (en) * 2019-11-15 2024-05-14 上海西门子医疗器械有限公司 Computer tomography method, apparatus and system
CN112807005A (en) * 2019-11-15 2021-05-18 上海西门子医疗器械有限公司 Computed tomography method, device and system
CN112401915A (en) * 2020-11-19 2021-02-26 华中科技大学同济医学院附属协和医院 Image fusion comparison method for CT (computed tomography) reexamination of new coronary pneumonia
CN112819003A (en) * 2021-04-19 2021-05-18 北京妙医佳健康科技集团有限公司 Method and device for improving OCR recognition accuracy of physical examination report
CN112819003B (en) * 2021-04-19 2021-08-27 北京妙医佳健康科技集团有限公司 Method and device for improving OCR recognition accuracy of physical examination report
CN117788474A (en) * 2024-02-27 2024-03-29 陕西省人民医院(陕西省临床医学研究院) Urinary calculus image recognition method based on machine vision
CN117788474B (en) * 2024-02-27 2024-05-03 陕西省人民医院(陕西省临床医学研究院) Urinary calculus image recognition method based on machine vision
CN118898619A (en) * 2024-10-09 2024-11-05 吉林大学第一医院 Breast cancer residual lesion detection method and system based on CT images
CN118898619B (en) * 2024-10-09 2025-01-07 吉林大学第一医院 Breast cancer residual lesion detection method and system based on CT images

Also Published As

Publication number Publication date
WO2005104943A2 (en) 2005-11-10
EP1744671B1 (en) 2013-10-23
AU2005237517A1 (en) 2005-11-10
WO2005104943A3 (en) 2006-03-02
US20110116606A1 (en) 2011-05-19
US7876939B2 (en) 2011-01-25
JP5036534B2 (en) 2012-09-26
CA2564240C (en) 2014-10-07
CA2564240A1 (en) 2005-11-10
AU2005237517B2 (en) 2011-01-20
US20070100226A1 (en) 2007-05-03
JP2007534447A (en) 2007-11-29
US9033576B2 (en) 2015-05-19
US20160015355A1 (en) 2016-01-21
HK1103001A1 (en) 2007-12-14
EP1744671A4 (en) 2009-05-27
EP1744671A2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
CN1976629A (en) Medical Imaging System for Accurate Determination of Oriented Tumor Changes
Xi et al. Validation of a novel semi-automated method for three-dimensional surface rendering of condyles using cone beam computed tomography data
US10413253B2 (en) Method and apparatus for processing medical image
US7596401B2 (en) Method for expanding the domain of imaging software in a diagnostic work-up
US8831319B2 (en) Method and system for calibrating CT images
US8649577B1 (en) Automatic method and system for measurements of bone density and structure of the hip from 3-D X-ray imaging devices
US8238630B2 (en) Image processing apparatus and program for the same
JP6175071B2 (en) Chest image processing and display
US10719930B2 (en) Automated scan quality monitoring system
JPWO2006137294A1 (en) X-ray diagnosis support apparatus, program, and recording medium
WO2009081317A1 (en) Hardware tumor phantom for improved computer-aided diagnosis
JP2002078706A (en) Computer-aided diagnosis method for supporting diagnosis of three-dimensional digital image data and program storage device
CN111445436B (en) Pulmonary analysis and reporting system
JP2010512908A (en) Apparatus and method for indicating possible computer detected false positives in medical imaging data
Tsukiboshi et al. Surface-based 3-dimensional cephalometry: An objective analysis of cranio-mandibular morphology
US20220130128A1 (en) System and method for normalizing volumetric imaging data of a patient
JP2013081713A (en) Medical image processing apparatus
JP5124852B2 (en) Medical diagnostic imaging support device and diagnostic imaging support program for mesothelioma and asbestos lung
HK1103001B (en) Medical imaging system for accurate measurement evaluation of changes in a target lesion
Zhang et al. A comprehensive liver CT landmark pair dataset for evaluating deformable image registration algorithms
CN118451454A (en) System and method for determining a customized viewing window for medical images
CN118901082A (en) Provide normalized medical images
O'Sullivan Visualization and quantification of HIV associated lipodystrophy from magnetic resonance images

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20070606