CN1938228A - 包含锂提取的循环真空氯化法 - Google Patents

包含锂提取的循环真空氯化法 Download PDF

Info

Publication number
CN1938228A
CN1938228A CN 200580010825 CN200580010825A CN1938228A CN 1938228 A CN1938228 A CN 1938228A CN 200580010825 CN200580010825 CN 200580010825 CN 200580010825 A CN200580010825 A CN 200580010825A CN 1938228 A CN1938228 A CN 1938228A
Authority
CN
China
Prior art keywords
reactor
triphane
bed
lithium
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200580010825
Other languages
English (en)
Inventor
W·E·小顿恩
J·范贾恩科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomas and Wendell Dunn Inc
Original Assignee
Thomas and Wendell Dunn Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas and Wendell Dunn Inc filed Critical Thomas and Wendell Dunn Inc
Publication of CN1938228A publication Critical patent/CN1938228A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

在固定床(12、42、62、82)中用于卤化如氯化矿物的循环间歇法,其使用多次循环,包括以下步骤:至少部分地排空床,用反应气体填装床(12、42、62、82),保持床(12、42、62、82)中的反应气体达预定时间和在真空下抽出反应产物。还公开了使通过锻烧以α晶形天然存在的锂辉石而生成的β晶形的锂辉石氯化而优先提取氯化锂形式的锂。

Description

包含锂提取的循环真空氯化法
技术领域
本发明涉及矿物的高温卤化以例如除去杂质而选矿和从锂矿石中回收有价值的物质例如氯化锂(LiCl)形式的锂和其他氯化物副产物。
背景技术
矿物的高温氯化领域,或更通常地,矿物的高温卤化领域,一般包括流化反应器、轴向流动反应器(shaft flow reactor)和输送反应器(conveying reactor),其中当固体和反应气体通过反应容器时而运送它们。
氯化特别地被用来从矿物中提取氯化物形式的金属元素,或者来回收有价值的物质,或者来除去杂质而选矿。
对于生产钛,高温氯化是一种重要的方法,其中,例如四氯化钛(TiCl4)是通过钛矿石如钛铁矿(FeTiO3)或金红石(不纯的TiO2)与碳和氯气在熔炉中反应而生产的。然后通过用镁还原四氯化钛而生产金属钛。钛白粉(TiO2),另一种重要的工业品,是通过氧化四氯化钛而生产的。
目前用于高温卤化的反应器包括流化床反应器、轴向流动反应器和输送反应器,其中固体和反应气体通过反应容器而被运送。多种这样的反应器在大气压或高压下以稳态或间歇方式运转。目前运转的氯化反应器的产物通常通过利用排气的压差而从反应器中排出;从反应器中倾倒床固体或通过重力使其流动。
发明内容
在一个方面,提供了一种卤化矿物的方法。用由矿物产生的颗粒填装反应器而形成床。对于多次循环,反复进行以下步骤:在至少部分真空下排空反应器,将含卤素的反应气体引入到反应器中,保持反应器内的反应气体并且使其与颗粒接触达预定的反应时间,和在至少部分真空下从反应器中排出气态反应产物。
在另一个方面,提供了一种从锂矿石中提取氯化锂形式的锂的方法。用由矿石产生的颗粒填装反应器而形成床,并且加热反应器和床。对于多次循环,反复进行以下步骤:在至少部分真空下排空反应器;将氯气引入到反应器中;保持反应器内的反应气体并且使其与颗粒接触达预定的反应时间;和在至少部分真空下从反应器中排出气体形式的含氯化锂的反应产物。
在又一个方面,提供了一种从锂辉石形式的锂矿石中提取氯化锂形式的锂的方法。锻烧锂辉石而生成β锂辉石,其然后在反应器中进行氯化。从反应器中排出含氯化锂的反应产物。
在再一个方面,通过以下步骤生成具有β锂辉石晶体结构但除去了至少90%的锂的硅铝酸盐物质:提供α锂辉石;煅烧该α锂辉石而生成β锂辉石;形成β锂辉石颗粒的床;和使该床氯化而除去氯化锂形式的锂。
附图说明
图1是卤化无机矿物的装置示意图,其使用下流式反应器,其中从床的下面抽真空而从床的上面引入反应气体;
图2是用于卤化无机矿物的装置示意图,其使用上流式反应器,其中从床的上面抽真空而从床的下面引入反应气体,并且其包括透气屏蔽的示意件,该透气屏蔽利用机械特性使得气体流动而防止颗粒物质的流动;
图3是卤化无机矿物的装置示意图,其使用一种反应器,其中从床的下面抽真空并且从床的下面引入反应气体;和
图4是卤化无机矿物的装置示意图,其使用一种反应器,其中从床的上面抽真空并且从床的上面引入反应气体。
具体实施方式
简而总之,本发明的实施方案使用辅以真空的循环间歇法用于由无机矿物产生的细粒径的微粒物质的卤化如氯化。该微粒物质可以天然存在或者可以由故意粉碎而产生。该颗粒可以获自泡沫浮选法,并且极细。粒径的减小增加了表面积(比表面积)以增加与反应气体如氯气的反应的速率和完成程度。粒径可以小于对于流化床可行情况下的粒径;如果在流化床中颗粒太小,它们不期望地被气体物流带走。如上所述,无机矿物的高温氯化可用于除去杂质来选矿和回收有价值的物质。
在本发明的实施方案,用由矿物产生的颗粒填装反应器来形成床,该颗粒可以是细颗粒如-325目(44微米)的颗粒。循环间歇法包括,对于多次循环,反复进行以下步骤:(a)在至少部分真空下排空反应器;(b)将反应气体引入到反应器中以填充固定床的空隙;(c)保持反应器内的反应气体并且使其与颗粒接触达预定的反应时间(反应阶段),这期间床是固定的;和(d)在至少部分真空下从反应器中排出气态反应产物和未反应的反应气体。在该重复循环过程中,最后一步(d)在至少部分真空下从反应器中排出气态反应产物和未反应的反应气体并入下一循环的第一步(a)在至少部分真空下排空反应器。可以从床的顶部或底部慢慢地引入反应气体(例如,氯气),以避免携带床的颗粒。同样,可以从床的顶部或底部排空反应器。
本发明的重要的实施方案涉及从锂矿石如锂辉石(其中,其纯形式是硅酸铝锂LiAlSi2O6)中提取氯化锂(LiCl)形式的锂。锂辉石天然地以α晶相的形式存在,但是通过在至少1040℃的温度锻烧,它可以转换为β晶相。如下文中所详细描述,当β锂辉石在1000℃左右的温度氯化时,优先地排出锂,而极少的其他组分(铝和硅)形成氯化物。通过氯化β锂辉石提取锂的速率约是通过氯化α锂辉石提取锂的速率的十倍。当氯化锂辉石的β晶相时,提取锂的高选择性是使用方面的重要优点。
更特别地,并且现在参考图1的示意说明,用颗粒填装下流式反应器10以形成固定床12,其受到透气载体14对抗重力的支撑。例如,透气载体14可以包括多孔玻璃或泡沫陶瓷体,其平均孔径约为100微米。反应器10具有入口阀16和出口阀18,通过入口阀16将反应气体引入,而冷凝器20和真空泵22位于出口阀18的下游。反应器10被加热,如由电阻式加热元件24所示。然而,也可以提供燃料燃烧型热源,用于例如使一氧化碳和/或碳与氧气的燃烧。在下流式反应器10内,加热也可以同时伴随有将粗碳微粒置于床12的顶部,引入氧气并点燃。为了通过床12进行热传递,将需要下流式设计。至反应器10内部的典型的通道是通过可移动的盖26。冷凝器20可以在室温下运转,或者可以被激冷,这取决于被回收的特定反应产物。
作为多孔玻璃或泡沫陶瓷体的替代品,图1中的透气载体14可以包括一种机械装置,如图2中以典型形式所示的螺旋装置,并且更详细地描述在Dunn Jr.的美国专利No.2,856,264中。这种机械装置的功能是基于微粒床12物质的静止角。
为开始运转,移开代表性的盖26,通过所得开口向反应器10装料以形成床12。在许多氯化法中,需要碳作为还原剂。碳可以以碳颗粒(粗颗粒或细颗粒)的形式提供,其与形成床12的矿物微粒混合。或者,作为还原剂的碳可以以气态形式供给,如与氯气混合的一氧化碳(CO)。将反应器10和床12加热到例如可以发生氯化的温度。这一般在250℃-1100℃的范围内(金在约275℃氯化;铁在650-850℃之间氯化,锂在约1050℃氯化)。关闭入口阀16,而打开出口阀18,并且使真空泵22运转以最初在至少部分真空下排空反应器10。典型的真空度为1.0英寸(25.4毫米)Hg。关闭出口阀18,将反应气体通过入口阀16引入到反应器10中。在图1中,反应气体表示为氯气(Cl2)。氯气和一氧化碳的混合物(Cl2+CO)可以交替地通过入口阀16被引入。关闭阀14和16达预定的反应时间(反应阶段),一般地数分钟。当到达预定的反应时间后,打开出口阀18,在高温下气态反应产物(以及未反应的氯气)流出反应器进入冷凝器20,并且一般地随反应产物冷却而冷凝成固体。由真空泵22的辅助并因此在至少部分真空下,通过冷凝器20排空反应器10。在典型的实施方案中,要使用足够的真空度以气化全部的卤化物(例如氯化物)反应产物。典型的真空度为1.0英寸(25.4毫米)Hg。该方法继续进行另外的循环,通过冷凝器20排空反应器10的最后步骤并入其中打开出口阀18和使真空泵22运转以最初在至少部分真空下排空反应器10的步骤。
参考图2,在另一个实施方案中,用颗粒填装上流式反应器40以形成固定床42,其受到透气载体(一般标为44)对抗重力的支撑,并且其更特别地采取螺旋装置45的形式,这种螺旋装置45示于Dunn Jr.的美国专利No.2,856,264中所详述的典型形式中。这种机械装置的功能是基于微粒床12物质的静止角。为了泄出任何剩余的床物质,可以使螺旋装置升高或下降,留下通畅的通路。反应器40具有入口阀46和出口阀48,通过入口阀46将反应气体引入,而冷凝器50和真空泵52位于出口阀48的下游。反应器40被加热,如由电阻式加热元件54所示,不过,也还可以使用燃料燃烧型热源。在上流式反应器40内,加热也可以同时伴随有将粗碳微粒置于床42的下面,引入氧气并点燃。为了通过床42进行热传递,将需要上流式设计。至反应器40内部的典型的通道是通过可移动的盖56。冷凝器50可以在室温下运转,或者可以被激冷,这取决于被回收的特定反应产物。
图2上流式反应器40的运转类似于图1的下流式反应器10的运转。特别地对于图2上流式反应器40,反应气体应该被慢慢地引入以避免携带床42颗粒。床12和42是固定床,而不是流化床。如在流化床反应器中,在引入反应气体前排空比使反应气体流过并通过颗粒更有利于使反应气体与空隙空间内的颗粒接触。
作为一种技术方案(未示出),可以提供一种下流式/上流式反应器的结合。通过提供合适的阀,相同的反应器可以以如图1的下流式方式和以如图2的上流式方式交替地运转。上流式对床进行辅助调节。
图3表示了反应器60,其顶部封闭,从床62的下面引入反应气体并且抽真空。反应器60具有开口(未示出),通过该开口,对反应器60进行装料而形成床62。床62也是固定床62,并且其受到透气载体64对抗重力的支撑。反应器60具有入口阀66和出口阀68,通过入口阀66从底将反应气体引入,并且通过出口阀68还从底部排空反应器60。冷凝器70和真空泵72在出口阀68的下游。反应器60被加热,如由电阻式加热元件74所示,然而,也还可以使用燃料燃烧型热源。冷凝器70可以在室温下运转,或者可以被激冷,这取决于被回收的特定反应产物。
图3反应器60的运转类似于图1下流式反应器10或者图2上流式反应器40的运转。在所有情况下,如在流化床反应器中,在引入反应气体前排空比使反应气体流过并通过颗粒更有利于使反应气体与空隙空间内的颗粒接触。
图4表示了又一个实施方案,反应器80在顶部封闭,而从床82的上面引入反应气体并且抽真空。此外,反应器80具有开口,如由可移动的盖81所表示,通过该开口,对反应器80进行装料而形成床82。床82也是固定床82。然而,不同于图1、2和3的反应器,图5的反应器80不需要用于床82的透气载体。相反地,床82直接地安置在反应器的底部84。反应器80具有入口阀86和出口阀88,通过入口阀86从顶部将反应气体引入,并且通过出口阀88还从顶部排空反应器80。冷凝器90和真空泵92在出口阀88的下游。冷凝器90可以在室温下运转,或者可以被激冷,这取决于被回收的特定反应产物。图4反应器80合适得由其下端加热,如通过置于包含电热元件或者燃料燃烧型热源的绝热加热室94。剩余的床82物质从反应器80排出,排出是通过移开盖81并且反转反应器80而进行的。图4反应器80的运转类似于上文中所述的实施方案。在所有情况下,如在流化床反应器中,在引入反应气体前排空比使反应气体流过并通过颗粒更有利于使反应气体与空隙空间内的颗粒接触。
讨论
本发明的实施方案使得具有足够的反应时间来在循环的排空部分中排出产物和未反应的氯气前来利用反应物的重要部分(例如氯气)。所用的高度真空度可以用来使在反应中形成的高沸点物质气化,例如锂矿石氯化获得的氯化锂(LiCl)。在这种情况中,为有效使用氯气,使用较长的排空时间以使压力仅仅降低到所需压力值以上。较高的真空度使得任何可以在随后一个或多次循环中使反应减速的液障气化。
使用很多循环来使床中期望量的元素或杂质氯化。在各次循环中所含的反应物的量取决于床的空隙体积,所述床可包括矿石固体和碳(如果羰氯化的话),并且如果期望的话,还有其它惰性物质,以提供增加的空隙空间。
当反应气体被引入反应器中时,在循环部分期间增加压力使得通过增加每次循环反应物的量而减少了循环次数。因为空隙空间的数量和矿物微粒的反应物表面与床体积成正比,所以每次循环的产量随床体积的增加而线性地增加。
本发明的实施方案不同于使用流化床的气体反应方法。在流化床中,气体反应取决于气体流化速度和当气体通过床时的床接触时间。而且,随着床加厚,气泡形成降低了平均气体接触时间。
在本发明的实施方案中,气固接触随空隙体积而变,在整个床中是恒定的,并且随循环次数的总数而成倍增加。扩散距离较小,导致更好的反应性和更高的反应气体利用率。在反应阶段期间可以调整反应时间以精确地到达期望的反应时间。
因而,本发明的实施方案解决了以下状况,其中粉碎矿物以增加反应性却难以将其保持在传统的流化床反应器中。在本发明的实施方案中,反应气体占据了床中的空穴达足够的时间,其可以远远超过它们在流化床反应器中在向上通过床时与这种细颗粒的接触时间。
因此,本发明的实施方案使得可以利用大比表面积(相对于细颗粒)的矿石,并且同时有助于控制反应气体的接触时间。这在用于回收锂的氯化反应器(例如,其中反应性较低)中是特别重要的。使用流化床反应器,满足处理较细颗粒的床物质和控制反应气体与床的接触时间的双重要求,如果可能的话也是困难的。
锂提取的一般讨论
作为特别的实例,可以使用本发明的实施方案来从锂矿石如锂辉石(其中,其纯形式是硅酸铝锂LiAlSi2O6)中提取氯化锂(LiCl)形式的锂。就锂辉石来说,还提取了其他的氯化物副产物,主要是氯化铝(AlCl3)和四氯化硅(SiCl4)。虽然以下讨论主要针对锂辉石,特别着重于有利的β晶相,但是可以注意到存在着其它的锂矿石,包括锂云母,K(Li,Al)3(Si,Al)4O10(F,OH)2;透锂长石,架状硅酸铝锂(lithiumaluminiumtectosilicate),LiAlSi4010;和锂磷铝石(Li,Na)Al(PO4)(F,OH)。随后,通过电解氯化锂(一种传统的工业方法,不管氯化锂的来源)而产生金属锂。
虽然传统上锂可以从并且是从矿石如锂辉石中提取的,但出于经济性的原因,某些富含锂(例如复盐KLiSO4)的卤水塘(湖)是目前主要的工业锂源。如上所述,高温氯化是一种重要的产生钛的方法。然而,当被应用于提取锂时,正如应用于钛工业中的高温氯化技术的应用面临许多困难。例如,与四氯化钛的沸点(136.4℃)相比,氯化锂具有高得多的沸点(大于1000℃)。结果,反应所产生的绝大数量的氯化锂没有被气化进入气相,而是仍然留在锂辉石的结晶颗粒的表面,在此其使得反应变慢。
而且,矿石中所含的锂与矿石中所含的钛相比,对碳/氯气和一氧化碳/氯气的氯化系统的反应性较低。现在遍及世界的金属钛和钛白粉工业中所使用的流化技术要求粒径太大,不能实现足以有效氯化锂矿石的比表面积。因此,除了所造成的流化问题以外,为了解决就锂矿石来说的反应性不足的问题,提出了通过减小尺寸来增加表面积。其中粒径为-200目(75微米)或更小的过细物质表现出特别的困难。过细物质未良好地流化。典型的方法是使过细物质聚集,然后将聚集产物粉碎至可流化的尺寸。由于损失了小的表面积,这增加了加工成本并且降低了反应性。本发明的实施方案不要求流化。相反,细颗粒被直接氯化。
因此,锂和矿石(锂辉石)内的伴生元素在高温下被完全氯化。其他结晶组分的氯化产物、铝和氯化硅在所需的氯化温度下是极易挥发的。氯化锂不是。
本发明的实施方案借助了至少部分真空以使氯化锂气化。本方法循环进行,在各次循环中使用填隙式气体来与矿物反应,使用伴随床的碳作为还原剂,其中,有许多用于矿石的完全氯化。
锂辉石/碳混合物被送入到反应器中,排空并且使氯气填充空隙来开始反应。完全结晶体起化学反应,并且通过反应产生的挥发物,氯化铝和四氯化硅,进入这些空隙。所产生的绝大数量的氯化锂没有被气化进入气相,而是仍然留在结晶体的表面,在此其随着反复循环而堆积起层,使得反应变慢。
在循环反应部分后的下一个工序是排空。这里,挥发物和燃烧气体,CO和CO2流出反应器进入冷凝器。由于真空度提高到气化水平,氯化锂离开床并且进入冷凝器。
氯化锂往往妨碍整个氯化反应。然而,当真空度增加到氯化锂被明显气化的情况时,矿石颗粒表面又变得可以进行氯化化学反应了。这不必在每次循环中发生。
由于氯化锂在表面上堆积,氯化速率下降。不必在每次循环后抽高真空。床仅需要被排空而足以使得更多的反应气体进入空隙代替所反应的气体。但是,当反应速率明显下降时,那么可以将反应器抽到较高的真空度以将氯化锂产物清理到冷凝器。
如增加进入氯气的压力一样,增加空隙体积使得每次循环进行更多的反应。尺寸大的碳颗粒用作衬垫以增加空穴的数量。小尺寸的颗粒形式的碳对反应是必要的,并且必须以高于除去锂和铁所需的化学计量的数量存在。
通过氯化β锂辉石来提取锂
本发明的重要的实施方案涉及从锂矿石如锂辉石(其中,其纯形式是硅酸铝锂LiAlSi2O6)中提取氯化锂(LiCl)形式的锂。在矿石中还一般存在包括铁和钠的杂质。锂辉石天然地以α晶相存在,本文中至此的讨论主要是关于氯化以其α晶相存在的锂辉石。
锂辉石可以通过在至少1040℃的温度锻烧而转换为β晶相。当β锂辉石在1000℃左右的温度氯化时,优先地排出锂,而极少的其他组分(铝和硅)形成氯化物。通过氯化β锂辉石提取锂的速率约是通过氯化α锂辉石提取锂的速率的十倍。据信,锻烧成β晶相在某种程度上打开了晶体结构,这使得氯气与锂原子在晶体结构中更好的接触。当使用锂辉石的β晶相时,提取锂的高选择性是重要的。
因此,可以用锂辉石的α晶相或者β晶相来完成锂的提取。当氯化α晶相时,锂辉石的所有组分(主要是铁、铝、锂、钠和二氧化硅)必须以氯化物的形式除去。换句话说,反应产物全部是气态反应产物,包括氯化锂、氯化铝和四氯化硅,其全部从反应器中排出。该反应以相对相等的速率按与所存在的各组分的量成比例地生成所有的组分。所有的α锂辉石需要进行反应以回收全部的锂。换句话说,氯化法100%消耗床。
然而,当氯化β晶相时,氯化铁首先被除去,然后优先地除去锂,极少的其他组分形成氯化物。反应产物是氯化锂和剩余的床物质。重要地,最少90%的锂可以被除去并且以氯化锂的形式被收集,而大约85wt%的锂辉石留在床中。而且,氯化β锂辉石需要较少的氯气(因为较少的物质需要被氯化)和少得多的时间。与α锂辉石相比,对于β锂辉石,锂的氯化速率要快很多。另外,具有潜在经济价值的矿物被留在床中。剩余的床基本上是具有极少的锂的锂辉石。这是在陶瓷、玻璃和填料工业中具有潜在经济价值的硅铝酸盐矿物。
锂辉石的另一个特征是β晶相比α晶相软,因此更容易碾碎至适当的粒径(例如-325目)而形成床。一个方法程序是提供α锂辉石;碾碎α锂辉石而生成α锂辉石颗粒;锻烧α锂辉石颗粒而生成β锂辉石颗粒,和形成β锂辉石颗粒的床;和使该床氯化而除去氯化锂形式的锂,留下硅铝酸盐的剩余的床物质。另一个利用更软的β锂辉石的方法程序是提供α锂辉石;锻烧α锂辉石而生成β锂辉石;然后碾碎β锂辉石而生成β锂辉石颗粒,和形成β锂辉石颗粒的床;和使该床氯化而除去氯化锂形式的锂,留下硅铝酸盐的剩余的床物质。
应该理解的是,虽然将α锂辉石锻烧成β锂辉石、然后氯化β锂辉石在上文关于通过真空辅助的循环间歇法中进行了公开,但是也可以使用其他的氯化法,包括使用现有技术的流化反应器、轴向流动反应器和输送反应器的那些。因此,在本发明的一些实施方案中,通过锻烧锂辉石而生成β锂辉石,在反应器中氯化β锂辉石和从反应器中排出包括氯化锂的反应产物来从锂辉石形式的锂矿石中提取氯化锂形式的锂。一个特别的方法程序包括以下步骤:锻烧锂辉石而生成β锂辉石,然后碾碎锻烧的锂辉石而生成待在反应器中氯化的β锂辉石颗粒。另一个特别的方法程序包括以下步骤:碾碎锂辉石矿石而生成α锂辉石颗粒,然后锻烧α锂辉石颗粒而生成待在反应器中氯化的β锂辉石。
实施例I
为了将石英纯化到极限水平,已经建议将其的粒径减小到极值,即-325目,以使细夹杂物的表面暴露。被暴露的夹杂物的氯化使夹杂物杂质气化或者将其转变为可溶性氯化物,显著提高了石英品质。
作为锂辉石,来自含40ppm锂的锂辉石矿的石英被缩小到-325目,因此堆积密度约为1.712g/cc。使用2.65g/cc的真密度,可计算空穴空间约为54.8%或0.385cc/g。排空空穴,使氯化混合物CO/Cl流入空穴空间并且达到入口气体物流的压力和固体的温度,在暴露的杂质表面开始氯化反应。
在足够的时间以使基本上全部的反应气体混合物反应后,用真空泵排空所得氯化产物的气体混合物。在600℃,2大气压(50%Cl),需要循环7次。在900℃,需要循环9.4次。
实施例II
在期望使用下流式氯化法(Downflow Chlorination)来氯化大量产物的情况下,虽然空穴空间与床体积成正比例,循环的次数显著增加。这里,利用压力线性地减少了所需循环的次数。
使用1克摩尔的理论锂辉石,在流化过程中如所证实地进行化学反应,需要5摩尔的氯气和一氧化碳。碾碎至325目,由堆积密度和矿物密度1.56g/cc和3.2g/cc计算得到锂辉石的空穴空间为334cc/g。在600℃,2大气压,需要循环5779次。在自动气阀和真空泵提取作用下,4次循环/分钟4或2小时。在总压为10大气压时,每批需要5小时。时间与批量无关并且压力有助于添加和提取。
实施例III
金粉很难流化。由于高价值、高分子量、与氯气的低温反应物,非常需要按照下流式氯化处理。同样地,铂和镶牙用金合金-PGM合金可以使用这种技术。
用50wt%的铜对补齿合金进行四分法并且使用美国专利5,004,500的方法(被Browning Resources USA生产使用),将其转换成纯金和铂合金粉,制成了约60%空穴的细粉。将其引入到下流式氯化法金属反应器中,用具有(70-100微米孔隙度)的类似金属的烧结圆盘载体在外面进行加热,可以随着循环引入气体而进行氯化,反应期间是在全压力下,随后真空提取氯化产物。
如果反应时间足以使用基本上全部的氯气和一氧化碳的话,几乎没有反应气体流出,仅有被冷凝的贵金属氯化物。取决于铜四分法的量,粒径和反应性以及循环时间改变。
使用10秒的气体流入的总循环时间、在一定温度下的反应时间和由真空泵进行抽气,可以计算出生产率。还应该注意,全部的床同时进行反应,使得根据以下计算可以确定处理量:
金的原子量为196.96,密度为19.3g/cc。倒数为0.052cc/g。假设除铜过程后金粉的空穴空间为60%,那么空穴空间是0.031cc/g。氯化AuCl3需要1.5mol的氯气,在300℃的反应温度下,其体积为22.41×(573/273)(1.5)=70.5升。
对于0.031cc/g的空穴空间和10秒的总循环氯化来说,将花32小时或更少(由于空穴空间减少):10×(2,274,240)/3600(196.96)=32小时。使用金属反应器,在10大气压下运行时,3.2小时。
实施例IV--从β锂辉石提取锂
下表显示了从锂辉石(其已被锻烧成其β晶相)中提取锂的结果。在高温氯化前后,对床进行试验,并且举例说明了锂的优先提取。
  组成       试验(%)   氯化前       试验(%)   氯化后  
    Sio2Al2O3Fe2O3CaOTiO2MgONa2OK2OMnOLi2O     64.8926.970.500.0330.0150.0070.250.0950.0515.66     84.9312.760.150.140.0380.0230.0550.230.0050.5
实施例V--从β锂辉石提取铁
下表显示了从锂辉石(其已被锻烧成其β晶相)中提取铁的结果。在高温氯化前后,对床进行试验。
   组成       试验(%)   氯化前       试验(%)   氯化后  
    Fe2O3Al2O3Li2O     0.1828.627.94     0.00928.96.59
实施例VI--蓝晶石选矿
下表显示了从蓝晶石(经验公式Al2SiO5,以其纯形式)中提取铁的结果。在高温氯化前后,对床进行试验。
   组成       试验(%)   氯化前       试验(%)   氯化后  
    Al2O3SiO2总Fe2O3K2OMgOCaONa2OP2O5TiO2蓝晶石石英黄铁矿     52.0740.025.710.040.220.020.000.151.2982.79.570.34     57.9740.860.050.000.230.020.000.120.9692.066.760.00
由上所述,将会理解的是本发明的实施方案提供了氯化反应器和方法,其尤其适宜于细颗粒缓慢反应的氧化物矿石,其中一种或多种氯化产物可以在高反应温度条件下具有低蒸气压。这避免需要聚集微细物质以到达可流化的粒径并且避免由于在聚集物质中吸留颗粒表面而使反应变慢。本发明的实施方案还适合于加工任何由于物质不符合要求的粒度分布而造成的在现有反应器方法中不能被流化的或加工的物质。本发明的实施方案还对任何需要通过任何现有反应器技术氯化的物质有效。本发明的实施方案适用于任何受过氯化的具有任何粒径分布的物质。特别是在氯化通过锻烧天然存在的α锂辉石而生成的β锂辉石中具有优势。
虽然本发明的特定实施方案已经在这里举例说明并描述,应该认识到本领域普通技术人员将会想到许多的改变和变化。因此应该理解的是,所附权利要求书用来覆盖所有这些属于本发明的真实精神和范围的改变和变化。
工业实用性
从上文显而易见的是本发明可被用于开采中的方式和本发明可被实施和使用中的方式。

Claims (29)

1.一种卤化矿物的方法,包括:向反应器填装由矿物产生的颗粒而形成床;并且对于多次循环,重复以下步骤:
在至少部分真空下排空反应器,
将含卤素的反应气体引入到反应器中,
保持反应器内的反应气体并且使其与颗粒接触达预定的反应时间,和
在至少部分真空下从反应器中除去气态反应产物。
2.权利要求1的方法,其中反应气体包括氯气。
3.权利要求1的方法,其还包括加热反应器和床至升高的温度。
4.权利要求1的方法,其中,在所述除去气态反应产物的步骤中,使用足够的真空度以气化全部的卤化物反应产物。
5.权利要求1的方法,其中该反应器至少部分地从床的下面排空。
6.权利要求5的方法,其中反应气体从床的下面引入。
7.权利要求5的方法,其中反应气体从床的上面引入。
8.权利要求1的方法,其中该反应器至少部分地从床的上面排空。
9.权利要求8的方法,其中反应气体从床的下面引入。
10.权利要求8的方法,其中反应气体从床的上面引入。
11.权利要求1的方法,其中用尺寸大约-325目的颗粒填装反应器。
12.权利要求1的方法,其中用锂辉石颗粒填装反应器和包括氯气的反应气体。
13.权利要求12的方法,其中作为还原剂的碳粒子与矿物颗粒混合以形成床。
14.权利要求12的方法,其中以一氧化碳气体形式的碳与反应气体中的氯气混合。
15.权利要求1的方法,其中用含杂质的石英颗粒填装反应器。
16.一种从锂矿石提取氯化锂形式的锂的方法,包括:
向反应器填装由矿石产生的颗粒而形成床;
加热该反应器和床;并且
对于多次循环,重复以下步骤:
在至少部分真空下排空反应器,
将氯气引入到反应器中,
保持反应器内的反应气体并且使其与颗粒接触达预定的反应时间,和
在至少部分真空下从反应器中除去包含气体形式的氯化锂的气态反应产物。
17.权利要求16的方法,其中,在所述除去气态反应产物的步骤中,使用足够的真空度以气化全部的氯化物反应产物。
18.权利要求16的方法,其中作为还原剂的碳粒子与由锂矿石产生的颗粒混合以形成床。
19.权利要求16的方法,其中以一氧化碳气体形式的碳与被引入反应器的氯气混合。
20.权利要求16的方法,其包括向反应器中填装锂矿石产生的颗粒形式的锂辉石颗粒。
21.权利要求16的方法,其还包括:
提供锂辉石作为锂矿石;和
碾碎锂辉石生成α锂辉石颗粒,其作为填装反应器的由锂矿石产生的颗粒;和其中:
气态反应产物包含氯化锂、氯化铝和四氯化硅。
22.权利要求16的方法,其还包括:
提供锂辉石作为锂矿石;
锻烧锂辉石生成β锂辉石;和
碾碎锻烧的锂辉石生成β锂辉石颗粒,其作为填装反应器的由锂矿石产生的颗粒;和其中:
反应产物包含氯化锂和剩余的床物质。
23.权利要求16的方法,其还包括冷凝从反应器排出的氯化锂气体而生成固体氯化锂。
24.一种从以锂辉石形式的锂矿石中提取氯化锂形式的锂的方法,包括:
锻烧锂辉石而生成β锂辉石;
在反应器中氯化β锂辉石;和
从反应器中排出包含氯化锂的反应产物。
25.权利要求24的方法,其还包括锻烧锂辉石以生成β锂辉石,和然后碾碎锻烧的锂辉石而生成待在反应器中氯化的β锂辉石颗粒。
26.权利要求24的方法,其还包括碾碎锂辉石矿石以生成α锂辉石颗粒,和然后锻烧生成的α锂辉石颗粒而生成待在反应器中氯化的β锂辉石。
27.一种具有β锂辉石晶体结构但除去了至少90%的锂的硅铝酸盐物质,其通过以下步骤生成:
提供α锂辉石;
煅烧α锂辉石而生成β锂辉石;
形成β锂辉石颗粒的床;和
使该床氯化而除去氯化锂形式的锂。
28.权利要求27的硅铝酸盐物质,其通过以下步骤生成:
提供α锂辉石;
锻烧α锂辉石而生成β锂辉石;
碾碎该β锂辉石而生成β锂辉石,和形成β锂辉石颗粒的床;和
使该床氯化而除去氯化锂形式的锂。
29.权利要求27的硅铝酸盐物质,其通过以下步骤生成:
提供α锂辉石;
碾碎α锂辉石而生成α锂辉石颗粒;
锻烧α锂辉石颗粒而生成α锂辉石颗粒,和形成β锂辉石颗粒的床;和
使该床氯化而除去氯化锂形式的锂。
CN 200580010825 2004-03-30 2005-03-29 包含锂提取的循环真空氯化法 Pending CN1938228A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US55807504P 2004-03-30 2004-03-30
US60/558,074 2004-03-30
US60/558,075 2004-03-30
US11/092,286 2005-03-28

Publications (1)

Publication Number Publication Date
CN1938228A true CN1938228A (zh) 2007-03-28

Family

ID=37955139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580010825 Pending CN1938228A (zh) 2004-03-30 2005-03-29 包含锂提取的循环真空氯化法

Country Status (1)

Country Link
CN (1) CN1938228A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105060318A (zh) * 2010-04-23 2015-11-18 辛博尔股份有限公司 由氯化锂制备碳酸锂的方法
CN110494574A (zh) * 2017-02-28 2019-11-22 Sms集团有限公司 借助氯化和氯碱工艺由含锂的矿石制备氢氧化锂的方法
CN111479778A (zh) * 2017-12-14 2020-07-31 浦项产业科学研究院 氢氧化锂的制备方法和碳酸锂的制备方法
CN112351953A (zh) * 2018-06-07 2021-02-09 浦项产业科学研究院 氯化锂的制备方法及其装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105060318A (zh) * 2010-04-23 2015-11-18 辛博尔股份有限公司 由氯化锂制备碳酸锂的方法
CN110494574A (zh) * 2017-02-28 2019-11-22 Sms集团有限公司 借助氯化和氯碱工艺由含锂的矿石制备氢氧化锂的方法
CN111479778A (zh) * 2017-12-14 2020-07-31 浦项产业科学研究院 氢氧化锂的制备方法和碳酸锂的制备方法
CN112351953A (zh) * 2018-06-07 2021-02-09 浦项产业科学研究院 氯化锂的制备方法及其装置
CN112351953B (zh) * 2018-06-07 2023-04-18 浦项产业科学研究院 氯化锂的制备方法及其装置

Similar Documents

Publication Publication Date Title
US2701179A (en) Metal halide production
CN111170750A (zh) 通过将二次铝灰无害化处理以制造耐火材料的方法
US7588741B2 (en) Cyclical vacuum chlorination processes, including lithium extraction
CN102181670B (zh) 一种镁氯循环利用制备海绵钛的方法
US20070081937A1 (en) Production of high-purity niobium monoxide and capacitor production therefrom
CN113699299B (zh) 直接还原用原料、直接还原用原料的制造方法和还原铁的制造方法
EP3960889A1 (en) Method for preparing highly pure metallic lithium by vacuum thermal reduction
CN1938228A (zh) 包含锂提取的循环真空氯化法
CN106315584A (zh) 利用含钛矿物或炉渣制备碳氧化钛或/和碳化钛的方法
CN101462767A (zh) 一种粗四氯化钛制取方法
CN109055781A (zh) 一种以钛铁复合矿为原料制备钛产品的方法
CN106744960A (zh) 一种配碳氢气还原制备碳氧化钛或/和碳化钛的方法
CN115491527B (zh) 一种含铀废渣的预处理方法和铀的回收方法
CN110155965B (zh) 一种生产TiN、TiC、TiCN粉体的系统及方法
US2723902A (en) Method for the treatment of iron ore
CN206735820U (zh) 一种蓝宝石级高纯氧化铝块体、多晶锭制备装置
CN106745135A (zh) 一种蓝宝石级高纯氧化铝块体、多晶锭制备方法和装置
CN108623293A (zh) 一种磷石膏和赤泥制备高白陶瓷材料联产酸的工艺
CN108217655B (zh) 一种纳米碳化钨制备系统及制备方法
CN112744862B (zh) 一种二氧化钛的制备方法及其方法制备的四氯化钛和二氧化钛
CN104878218B (zh) 一种以硼镁石为原料利用真空热还原法制取金属镁及硼化钙的方法
TWI802162B (zh) 還原爐之操作方法
GB2076022A (en) Method of carbothermically producing aluminium
JP4341415B2 (ja) 高純度海綿鉄の製造方法
CN113371745B (zh) 一种粉煤灰资源化生产高纯氧化铝的系统与方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070328