CN1937264A - White light-emitting diode and its preparing method - Google Patents

White light-emitting diode and its preparing method Download PDF

Info

Publication number
CN1937264A
CN1937264A CNA2005100864508A CN200510086450A CN1937264A CN 1937264 A CN1937264 A CN 1937264A CN A2005100864508 A CNA2005100864508 A CN A2005100864508A CN 200510086450 A CN200510086450 A CN 200510086450A CN 1937264 A CN1937264 A CN 1937264A
Authority
CN
China
Prior art keywords
layer
light emitting
emitting diode
thickness
gan
Prior art date
Application number
CNA2005100864508A
Other languages
Chinese (zh)
Inventor
周均铭
陈弘
郭丽伟
邢志刚
王晓辉
汪洋
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to CNA2005100864508A priority Critical patent/CN1937264A/en
Publication of CN1937264A publication Critical patent/CN1937264A/en

Links

Abstract

Light emitting diode (LED) in white light includes a LED with light emission from back, phosphor layer on back face of substrate, and resin shell for external package. The LED with light emission from back includes GaN buffer layer, N type GaN layer, luminous layer, P type GaN layer, and leading out electrode in sequence on a substrate of ruby. Thinning down the substrate of ruby, coating needed phosphor powder on back face of substrate of the LED with light emission from back, packaging them by using resin according to conventional method, the invention obtains the LED in white light. The LED in white light raises luminous intensity in red light wave band, reduces color temperature of white light, and increases color-rendering index of white light.

Description

一种白光发光二极管及其制备方法 One kind of white light emitting diode and preparation method

技术领域 FIELD

本发明涉及到一种白光发光二极管,及其制备方法。 The present invention relates to a white light emitting diode, and a preparation method.

背景技术 Background technique

白光发光二极管作为白光光源具有发光效率高、响应时间短、寿命长等诸多优点,这些优点决定了它将部分取代现有白光光源的趋势。 White light emitting diode white light source having a high luminous efficiency, short response time, long life and many other advantages, which will determine the trend of partial substitution of the conventional white light source. 目前普遍认同的白光发光二极管的制作方法有以下三种:(1)由三个单独制作的或是单片集成的红光、绿光和蓝光发光二极管同时发光,从而混合得到白光,(2)由紫外或紫光发光二极管作为发光光源激发外层包裹的红绿蓝三色混合荧光粉,三色荧光粉的发光混合得到白光,(3)由蓝光发光二极管作为发光光源,部分地激发外层包裹的黄光荧光粉发出黄光,内部发光二极管所发蓝光和激发荧光粉得到的黄光混合得到白光。 Currently widely accepted method for manufacturing the white LED has the following three: (1) produced by the three separate monolithically integrated, or red, green and blue light emitting diode emits light simultaneously to obtain a mixed white light, (2) of ultraviolet or violet light emitting diode as a light source emitting excitation outer package mixed phosphors of red, green and blue, three-color luminescent phosphor mixed to obtain white light, (3) a blue light-emitting diode as a light source, the outer wrap partially excitation the yellow phosphor to emit yellow light, blue light-emitting diode inside and mixed with the yellow phosphor excited obtained to give white light.

其中,方法(1)由于成本和技术方面的原因还没有得到应用。 Wherein the method (1) for reasons of cost and technology has not been applied. 方法(2)是制作比较简单也是最被看好的一种白光发光二极管的制作方法,但由于至今没有找到合适的耐紫外辐照的封装树脂以及缺乏高效的红色荧光粉,因而也没有得到普遍应用。 Method (2) is to produce relatively simple and most promising method for manufacturing a white light emitting diode, but has not found a suitable ultraviolet radiation-resistant encapsulating resin and the lack of efficient red phosphor, and therefore have not been widely used . 方法(3)是目前已经被商业化的一种白光发光二极管制作方法,但是也存在缺乏合适的红光荧光粉的难题而使得制备的白光发光二极管的发光品质受到了限制;而且由两色光混合得到的白光光谱比较单一,此方法制备的白光发光二极管的光谱在长波波段(红光波段)严重缺失,所发的白光偏黄或是偏蓝(色温偏高),且显色指数比较低,导致这些白光发光二极管作为白光光源的应用范围比较狭窄,不能适应对发光质量要求较高的照明需求。 Method (3) has been commercialized is a white light emitting diode manufacturing method, but there is a lack of suitable red light emitting phosphor such that the problem of the quality of the produced white LED is limited; and a mixture of the two shade comparison of the spectra to obtain a single white light, the white LED spectrum produced serious deficiencies in this method a long wavelength band (red band), issued yellowish or bluish white light (color temperature is high), and relatively low color rendering index, these results in white light emitting diode white light source as the application range is relatively narrow, can not meet the high quality requirements of the light-emitting lighting needs.

发明内容 SUMMARY

本发明的目的在于克服现有技术制备的白光发光二极管的光谱在长波波段严重缺失,色温偏高且显色指数比较低的缺陷,从而提供一种可以提高红光波段的光强度、有效地降低了白光的色温并提高了白光的显色指数的白光发光二极管,及其制备方法。 Object of the present invention to overcome the spectrum of white light emitting diode prepared by the prior art of serious deficiencies in the long wavelength band, high color temperature and color rendering index low defect, thereby providing a light intensity of the red band can be improved effectively reduce a white color temperature and improved color rendering index of white light emitting diode white light, and its preparation method.

本发明的目的是通过如下的技术方案实现的:本发明提供的白光发光二极管,如图3所示,其包括一背出光的发光二极管,及在其衬底1的背面上的荧光粉层8,和其外部封装用的树脂壳9。 Object of the present invention are achieved by the following technical solution: a white light emitting diode of the present invention provides, as shown in FIG. 3, which comprises a light emitting diode of the back, and on the back surface of the substrate 1 which the phosphor layer 8 , and its outer shell encapsulating resin 9.

所述的背出光的发光二极管包括一红宝石衬底1,其上依次为GaN缓冲层2、n型GaN层3、发光层4、p型GaN层5,以及分别从n型GaN层和p型GaN层引出的n型电极6和p型电极7;所述的红宝石衬底为掺杂了0.01~5wt%过渡族金属元素的Al2O3;厚度为0.05~0.2mm;所述的过渡族金属元素包括Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn等;所述的GaN缓冲层为在异质衬底上外延的过渡层,此过渡层的材料可为GaN、AlGaN、InAlN、InAlGaN或这几种合金的组合,其厚度为100nm~10μm;所述的n型GaN层为制备n型欧姆接触的接触层,此层可为GaN、InAlN、AlGaN、InAlGaN或这几种合金的组合,厚度为50nm~3μm;所述的发光层为发光二极管的有源层,此层为由势垒层GaN或InyGa1-yN以及量子阱层InxGa1-xN组成的多量子阱(其中y<x),量子阱的周期数为1~20,其中势垒层厚度为5~20nm,量子阱层厚度为1~10nm;所述的p型Ga The light emitting diode back light comprises a ruby ​​substrate 1, which in turn is a GaN buffer layer 2, n-type GaN layer 3, a light emitting layer 4, p-type GaN layer 5, respectively, and the n-type GaN layer and the p-type the n-type GaN layer lead-out electrode 6 and the p-type electrode 7; the ruby ​​substrate is doped with 0.01 ~ 5wt% of Al2O3 transition metal element; a thickness of 0.05 0.2mm ~; said transition metal element comprises Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and the like; the GaN buffer layer is an epitaxial buffer layer on a heterogeneous substrate, the buffer layer material may be GaN, AlGaN, InAlN, InAlGaN, or a combination of these types of alloy, having a thickness of 100nm ~ 10μm; the n-type GaN contact layer is a layer of n-type ohmic contact preparation, may be GaN, InAlN, AlGaN, InAlGaN this layer or these types the combination of the alloy, having a thickness of 50nm ~ 3μm; light-emitting layer is a light emitting diode, the active layer, this layer is a GaN barrier layer or InyGa1-yN and the InxGa1-xN quantum well layer composed of a multiple quantum well (where y <x), the cycle number of quantum wells is 1 to 20, wherein the barrier layer having a thickness of 5 ~ 20nm, the quantum well layer has a thickness of 1 to 10 nm; the p-type Ga N层为制备p型欧姆接触的接触层,此层可为GaN、InAlN、AlGaN、InAlGaN或这几种合金的组合,厚度为20nm~3μm;所述的n型电极由多层金属组合而成,常用的电极材料和结构为Ti/Al/Ti/Au或Ti/Al/Ni/Au,厚度分别为1~10nm/10~500nm/1~10nm/200nm~2μm;所述的p型电极由多层金属组合而成,常用的电极材料和结构为Ni/Au或Pt/Au,厚度分别为1~100nm/200nm~2μm;所述的荧光粉层优选为蓝光、绿光或黄光荧光粉的混合物涂层,通常的荧光粉材料为稀土铝酸盐,其厚度为10nm~10μm;所述的树脂壳由常规的、透光性好的环氧树脂材料制成。 Preparation of N layer as a contact layer of p-type ohmic contact, this layer may be a combination of GaN, InAlN, AlGaN, InAlGaN, or these types of alloy, having a thickness of 20nm ~ 3μm; the n-type electrode made of a combination of a plurality of layers of metal , commonly used electrode material and structure Ti / Al / Ti / Au or Ti / Al / Ni / Au, respectively, the thickness of 1 ~ 10nm / 10 ~ 500nm / 1 ~ 10nm / 200nm ~ 2μm to; the p-type electrode is formed the multilayer metal combination, and the common electrode material structure Ni / Au or Pt / Au, the thickness of each 1 ~ 100nm / 200nm ~ 2μm to; the phosphor layer is preferably a blue, green or yellow phosphor the coating mixture usually is a rare earth aluminate phosphor material having a thickness of 10nm ~ 10μm; said resin case is made of a conventional, well translucent epoxy material.

本发明提供一种上述白光发光二极管的制备方法,包括如下的步骤:1)采用红宝石作为衬底,使用常规的半导体器件的沉积技术在其上依次生长GaN缓冲层、n型GaN层、发光层、p型GaN层,得到发光波长为300~600nm的发光二极管;所述的红宝石衬底为掺杂了0.01~5wt%过渡族金属元素的Al2O3;厚度为0.4~0.5mm;所述的过渡族金属元素包括Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn等; The present invention provides a method for preparing the above-described white light emitting diode, comprising the steps of: 1) as the ruby ​​substrate, a semiconductor device using a conventional deposition techniques are sequentially grown on the GaN buffer layer thereon, n-type GaN layer, a light emitting layer, , P-type GaN layer, to obtain an emission wavelength of 300 to 600nm light emitting diode; and the ruby ​​substrate is doped with 0.01 ~ 5wt% of Al2O3 transition metal element; a thickness of 0.4 ~ 0.5mm; the transition group metallic elements include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and the like;

所述的GaN缓冲层为GaN、AlGaN、InAiN、InAlGaN或这几种合金的组合,其厚度为100nm~10μm;所述的n型GaN层为GaN、InAlN、AlGaN、InAlGaN或这几种合金的组合,厚度为50nm~3μm;所述的发光层为发光二极管的有源层,此层为由势垒层GaN或InyGa1-yN以及量子阱层InxGa1-xN组成的多量子阱(其中y<x),量子阱的周期数为1~20,其中势垒层厚度为5~20nm,量子阱层厚度为1~10nm;所述的p型GaN层为GaN、InAlN、AlGaN、InAlGaN或这几种合金的组合,厚度为20nm~3μm;2)将步骤1)得到的发光二极管利用常规的SiO2掩膜及光刻技术,从n型GaN层和p型GaN层分别引出n型电极6和p型电极7,得到背出光的发光二极管;然后将红宝石衬底用机械研磨的方法减薄到0.05~0.2mm;所述的n型电极由多层金属组合而成,常用的电极材料和结构为Ti/Al/Ti/Au或Ti/Al/Ni/Au,厚度分别为1~10nm/10~500nm/1~10nm/200nm~2μm;所述 The GaN buffer layer is a combination of GaN, AlGaN, InAiN, InAlGaN, or these types of alloys, having a thickness of 100nm ~ 10μm; the n-type GaN layer is GaN, InAlN, AlGaN, InAlGaN, or an alloy of these types combination, a thickness of 50nm ~ 3μm; light-emitting layer is a light emitting diode, the active layer, this layer is a GaN barrier layer or InyGa1-yN and the InxGa1-xN quantum well layer composed of a multiple quantum well (where y <x ), the number of cycles of the quantum well is 1 to 20, wherein the barrier layer having a thickness of 5 ~ 20nm, the quantum well layer has a thickness of 1 to 10 nm; the p-type GaN layer is GaN, InAlN, AlGaN, InAlGaN, or these types of the combination of the alloy, having a thickness of 20nm ~ 3μm; 2) step 1) to give the light emitting diode and the SiO2 mask using conventional photolithographic techniques, the n-type GaN layer and a p-type GaN layer are respectively n-type electrode lead 6 and the p-type electrodes 7, to give back the light emitting diode; and then the substrate with mechanical polishing method of ruby ​​thinned to 0.05 ~ 0.2mm; the n-type electrode made of a combination of a plurality of layers of metal, and the electrode material used for the structure Ti / Al / Ti / Au or Ti / Al / Ni / Au, respectively, the thickness of 1 ~ 10nm / 10 ~ 500nm / 1 ~ 10nm / 200nm ~ 2μm to; the p型电极由多层金属组合而成,常用的电极材料和结构为Ni/Au或Pt/Au,厚度分别为1~100nm/200nm~2μm;3)将步骤2)得到的背出光的发光二极管的衬底背面涂布各色荧光粉,以得到所需的绿光、蓝光或黄光发光成分;再用树脂按照常规方法封装,得到本发明的白光发光二极管;所述的荧光粉层优选为蓝光、绿光或黄光荧光粉的混合物涂层,通常的荧光粉材料为稀土铝酸盐,其厚度为1μm~1mm;所述的树脂壳由常规的、透光性好的环氧树脂材料制成。 LED 3) in step 2) to give a back light; p-type electrode assembly formed from multiple layers of metal, and the common electrode material structure Ni / Au or Pt / Au, the thickness of each 1 ~ 100nm / 200nm ~ 2μm to color phosphor coated substrate back surface, to obtain the desired green, blue or yellow light emitting component; and then the resin package according to a conventional method to give the white LED according to the present invention; the blue phosphor layer is preferably , green, or yellow phosphor coating mixture, typically a rare earth aluminate phosphor material having a thickness of 1μm ~ 1mm; said resin case by a conventional, light transmissive epoxy resin material good to make.

本发明是针对目前缺乏有效的红光荧光粉而造成白光发光二极管在红光波段缺失的实际情况而提出的新方法。 The present invention is a novel method of white light emitting diode in the red band actual deletion proposed in view of the current lack of effective red phosphor caused. 本发明以掺杂的红宝石作为衬底生长紫外、紫光以及蓝光发光二极管结构,作为激发白光发光二极管外层包裹荧光粉的激发光源,结合背出光的器件封装结构,来改进白光发光二极管的色温和显色指数。 The present invention, as a substrate to grow a doped ruby ​​ultraviolet, violet and blue light-emitting diode structure, the excitation as the excitation source, the white LED phosphor layer package, in conjunction with the device package structure of a back light, improving the color temperature of white light emitting diode and CRI.

本发明提供的白光发光二极管根据所选择的发光二极管的发光波长,通过对红宝石衬底的减薄,来调节红宝石衬底对光的吸收比例;并通过采用不同的荧光粉来得到白光,例如,用紫外光激发的白光发光二极管需要选用蓝光、绿光荧光粉,而用蓝光激发的白光发光二极管则需要选用黄光荧光粉。 The present invention provides a white light emitting diode according to the selected emission wavelength of the light emitting diode, by thinning the substrate of ruby, ruby ​​substrate ratio adjusting light absorption; and the white light obtained through the use of different phosphors, for example, excitation with ultraviolet light, the white LED need to use blue, green phosphor, and excitation with blue light, the white LED need to use the yellow phosphor.

不同的红宝石衬底,其掺杂浓度、晶向、和厚度不同,其对不同波长光的吸收系数也不同。 Different ruby ​​substrate, dopant concentration, crystal orientation, and the different thickness, the absorption coefficient of light of different wavelengths is different. 本发明使用的典型的红宝石的吸收曲线如图2所示。 Typical absorption curve of the present invention ruby ​​shown in Figure 2.

与现有技术相比,本发明提供的白光发光二极管的优点在于:1、本发明通过选用一掺杂了过渡族金属元素的红宝石作为衬底,进行外延生长GaN基发光二极管材料,在优化的发光二极管的外延生长条件下,有效地提高红光波段的光强度,降低了白光的色温并提高了白光的显色指数,即提高了白光发光二极管的发光质量;2、本发明的方法保留了现有的背出光发光二极管器件工艺、荧光粉涂布工艺以及树脂封装流程,在不增加器件复杂性的前提下,从根本上提高了白光发光二极管的性能。 Compared with the prior art, the white LED according to the present invention provides the advantages that: 1, according to the present invention, by selecting a transition metal doped ruby ​​elements as the substrate, the epitaxial growth of GaN-based light emitting diode material, the optimization of LED epitaxial growth under conditions effective to improve the light intensity of the red band, reducing the color temperature of white light and improved color rendering index of white light, i.e. to improve the quality of the white LED light emission; 2, the method of the present invention retain a conventional light emitting diode device back process, a coating process and a resin encapsulated phosphor process, without increasing the complexity of the device under the premise of improving the performance of white light emitting diode fundamentally.

附图说明 BRIEF DESCRIPTION

图1是GaN基发光二极管的示意图;图2是本发明使用的红宝石的光吸收曲线图;图3是本发明提供的白光发光二极管的示意图;其中,1衬底,2GaN缓冲层,3n型GaN层,4发光层,5p型GaN层,6n型电极,7p型电极,8荧光粉层,9树脂壳。 1 is a schematic of a GaN-based light emitting diode; FIG. 2 is a graph showing the light absorption of the present invention is used in ruby; FIG. 3 is a schematic view of a white light emitting diode of the present invention provides; wherein the substrate 1, 2GaN buffer layer, GaN type with 3N layer, a light emitting layer 4, 5P-type GaN layer, 6N-type electrode, 7P-type electrode, the phosphor layer 8, 9 resin case.

具体实施方式 detailed description

实施例1、1)采用0.4mm厚的红宝石(其为掺杂了0.01wt%过渡族金属元素Cr的Al2O3,其光吸收曲线图如图2所示)作为衬底1,使用金属有机物化学汽相沉积技术(MOCVD)在其上依次生长2μm的GaN缓冲层(由GaN组成)2、500nm的n型GaN层(由GaN组成)3、发光层(由势垒层GaN和量子阱层In0.1Ga0.9N组成的5个周期的多量子阱,其中势垒层GaN的厚度为10nm,量子阱层In0.1Ga0.9N的厚度为3nm)4、200nm的p型GaN层(由GaN组成)5,得到发光波长为430nm的蓝紫光GaN发光二极管,如图1所示;2)将步骤1)得到的发光二极管利用常规的SiO2掩膜及光刻技术,从n型GaN层和p型GaN层引出n型电极6和p型电极7,得到背出光的发光二极管;然后将红宝石衬底用机械研磨的方法减薄到0.1mm; Example 1,1) using ruby ​​0.4mm thick (which is doped with Al2O3 0.01wt% of transition metal elements Cr, light absorption curves shown in Figure 2) as the substrate 1, using a metal organic chemical vapor deposition technique (MOCVD) grown GaN buffer layer is 2μm (composed of GaN) n-type GaN layer is 2,500nm (composed of GaN) 3, a light emitting layer (a potential barrier by the quantum well layer and a GaN layer sequentially In0 thereon. 1Ga0.9N 5 cycles consisting of multiple quantum wells, wherein the thickness of the barrier layer of GaN 10 nm, the thickness of the quantum well layer of In0.1Ga0.9N 3nm) 4,200nm p-type GaN layer (composed of GaN) 5 a light emitting wavelength of 430nm blue-violet GaN light emitting diode shown in Figure 1; 2) in step 1) to give the light emitting diode and the SiO2 mask using conventional photolithographic techniques, the n-type GaN layer and a p-type GaN layer n-type electrode lead 6 and the p-type electrode 7, to give back the light emitting diode; and ruby ​​substrate is thinned by mechanical polishing method to 0.1mm;

所述的n型电极的材料和结构为Ti/Al/Ti/Au、其厚度分别为2nm/200nm/2nm/1μm;所述的p型电极的材料和结构为Ni/Au、其厚度分别为100nm/1μm;3)将步骤2)得到的背出光的发光二极管的衬底背面涂布30μm的黄光和绿光荧光粉(比例为2∶1)8,以得到所需色温的白光发光;再用环氧树脂9按照常规方法封装,得到本发明的白光发光二极管。 The material and structure of the n-type electrode of Ti / Al / Ti / Au, the thickness thereof respectively 2nm / 200nm / 2nm / 1μm to; materials and structures of the p-type electrode is Ni / Au, the thickness thereof were 100nm / 1μm; 3) step 2) coating the back surface of the substrate a light emitting diode back light obtained yellow and green phosphors 30μm (ratio of 2) 8, to obtain the desired color temperature of white light; 9 in a conventional manner and then an epoxy resin package, resulting in a white light emitting diode of the present invention.

与由常规工艺制备的普通白光发光二极管相比,该白光发光二极管是在红宝石衬底上制备的,其红光波段的光谱明显加强,从而色温从18400°K降低到17900°K,显色指数也从76改善到85,得到了明显的提高。 Compared with the conventional white light emitting diode prepared by the conventional process, the white light emitting diode is fabricated on a substrate ruby, red band spectrum which significantly enhanced, thereby the color temperature is reduced from 18400 ° K to 17900 ° K, color rendering index also improved from 76 to 85, has been significantly improved.

实施例2、1)采用0.5mm厚的红宝石(其为掺杂了5wt%过渡族金属元素Fe的Al2O3)作为衬底1,使用金属有机物化学汽相沉积技术(MOCVD)在其上依次生长500nm的AlGaN缓冲层2、3μm的n型GaN层3、发光层(由势垒层In0.01Ga0.99N和量子阱层In0.12Ga0.88N组成的10个周期的多量子阱,其中势垒层In0.01Ga0.99N的厚度为12nm,量子阱层In0.12Ga0.88N的厚度为2nm)4、1μm的p型InAlGaN和GaN的组合p型层5,得到发光波长为470nm的蓝光GaN发光二极管,如图1所示;2)将步骤1)得到的发光二极管利用常规的SiO2掩膜及光刻技术,从n型GaN层和p型GaN层引出n型电极6和p型电极7,得到背出光的发光二极管;然后将红宝石衬底用机械研磨的方法减薄到0.15mm;所述的n型电极的材料和结构为Ti/Al/Ni/Au、其厚度分别为2nm/200nm/20nm/1μm;所述的p型电极的材料和结构为Pt/Au、其厚度分别为100nm/2μm;3)将步骤2)得到的背出光的发光二 Example 2,1) with 0.5mm thick ruby ​​(5wt%, which is doped with transition metal elements of Fe Al2O3) as the substrate 1, using a metal organic chemical vapor deposition (MOCVD) are sequentially grown thereon 500nm the 2,3μm AlGaN buffer layer 3 of n-type GaN layer, an emission layer (In0.01Ga0.99N barrier layers and a quantum well layer consisting of 10 cycles of In0.12Ga0.88N multiple quantum well, wherein the barrier layer In0 .01Ga0.99N a thickness of 12nm, a thickness of the quantum well layer In0.12Ga0.88N 2nm) 4,1μm p-type InAlGaN and GaN p-type layer 5 in combination, to obtain a blue emission wavelength of 470nm GaN light emitting diodes, such as As shown in FIG. 1; 2) in step 1) to give the light emitting diode and the SiO2 mask using conventional photolithographic techniques, the n-type electrode lead 6 and the p-type electrode 7 and the n-type GaN layer p-type GaN layer, a back light to give light emitting diode; mechanical polishing and the substrate is thinned to a method ruby ​​0.15mm; the materials and structures of the n-type electrode of Ti / Al / Ni / Au, thickness were 2nm / 200nm / 20nm / 1μm ; materials and structures of the p-type electrode was Pt / Au, the thickness thereof were 100nm / 2μm; 3) the step 2) of the light emission back to give di 管的衬底背面涂布50μm的黄光荧光粉8,以得到所需色温的白光发光;再用环氧树脂9按照常规方法封装,得到本发明的白光发光二极管。 Backside of the substrate tube coated 50μm yellow phosphor 8, to obtain the desired color temperature of white light; epoxy 9 then packaged in a conventional manner to give the white LED according to the present invention.

与由普通常规工艺得到的白光发光二极管相比,该白光发光二极管是在红宝石作衬底上制备的,其红光波段的光谱明显加强,从而色温从18200°K降低到17800°K,显色指数也从73改善到84,得到了明显的提高。 Compared with the white light emitting diode obtained by ordinary conventional processes, the white light emitting diode is prepared on a substrate as ruby, red band spectrum which significantly enhanced, thereby the color temperature is reduced from 18200 ° K to 17800 ° K, a color index also improved from 73 to 84, has been significantly improved.

Claims (10)

1.一种白光发光二极管,其包括一背出光的发光二极管,及在其衬底的背面上的荧光粉层,和其外部封装用的树脂壳,其特征在于:所述的背出光的发光二极管包括一红宝石衬底,其上依次为GaN缓冲层、n型GaN层、发光层、p型GaN层,以及分别从n型GaN层和p型GaN层引出的的n型电极和p型电极。 A white light emitting diode comprising a light emitting diode in a back light, and a phosphor layer on the back surface of the substrate thereof, and a resin encapsulating the exterior case, wherein: the emitted light back out ruby diode comprising a substrate, which in turn is a GaN buffer layer, n-type GaN layer, light emitting layer, a p-type GaN layer, and n-type electrode and a p-type electrode are drawn out from the n-type GaN layer and a p-type GaN layer .
2.如权利要求1所述的白光发光二极管,其特征在于:所述的红宝石衬底为掺杂了0.01~5wt%过渡族金属元素的Al2O3;厚度为0.05~0.2mm。 2. The white light emitting diode according to claim 1, wherein: said substrate is doped ruby ​​0.01 ~ 5wt% of Al2O3 transition metal element; a thickness of 0.05 ~ 0.2mm.
3.如权利要求1所述的白光发光二极管,其特征在于:所述的GaN缓冲层为在异质衬底上外延的过渡层,此过渡层的材料为GaN、AlGaN、InAlN、InAlGaN或这几种合金的组合,其厚度为100nm~10μm。 3. The white light emitting diode according to claim 1, wherein: said GaN buffer layer on a hetero-substrate, epitaxial buffer layer, the buffer layer material is GaN, AlGaN, InAlN, InAlGaN, or that combination of several of the alloy, having a thickness of 100nm ~ 10μm.
4.如权利要求1所述的白光发光二极管,其特征在于:所述的n型GaN层为制备n型欧姆接触的接触层,此层为GaN、InAlN、AlGaN、InAlGaN或这几种合金的组合,厚度为50nm~3μm。 This layer is GaN, InAlN, AlGaN, InAlGaN, or that several of the alloy layer is an n-type GaN n-type ohmic contact layer prepared contact: white light emitting diode as claimed in claim 1, characterized in that combination, a thickness of 50nm ~ 3μm.
5.如权利要求1所述的白光发光二极管,其特征在于:所述的发光层为发光二极管的有源层,此层为由势垒层GaN或InyGa1-yN以及量子阱层InxGa1-xN组成的多量子阱,其中y<x,量子阱的周期数为1~20,其中势垒层厚度为5~20nm,量子阱层厚度为1~10nm。 5. The white light emitting diode according to claim 1, wherein: said light emitting layer is a light emitting diode active layer, this layer is a GaN barrier layer or InyGa1-yN quantum well layer and the composition of InxGa1-xN multiple quantum well, where y <x, the cycle number of quantum wells is 1 to 20, wherein the barrier layer having a thickness of 5 ~ 20nm, the quantum well layer having a thickness of 1 ~ 10nm.
6.如权利要求1所述的白光发光二极管,其特征在于:所述的p型GaN层为制备p型欧姆接触的接触层,此层为GaN、InAlN、AlGaN、InAlGaN或这几种合金的组合,厚度为20nm~3μm。 6. The white light emitting diode according to claim 1, wherein: said p-type GaN layer is a p-type ohmic contact layer prepared in contact with, the layer of GaN, InAlN, AlGaN, InAlGaN, or an alloy of these types combination, a thickness of 20nm ~ 3μm.
7.如权利要求1所述的白光发光二极管,其特征在于:所述的n型电极为Ti/Al/Ti/Au或Ti/Al/Ni/Au,厚度分别为1~10nm/10~500nm/1~10nm/200nm~2μm;所述的p型电极为Ni/Au或Pt/Au,厚度分别为1~100nm/200nm~2μm。 7. The white light emitting diode according to claim 1, characterized in that: n-type electrode of the Ti / Al / Ti / Au or Ti / Al / Ni / Au, respectively, the thickness of 1 ~ 10nm / 10 ~ 500nm to / 1 ~ 10nm / 200nm ~ 2μm; p-type electrode of the Ni / Au or Pt / Au, the thickness of each 1 ~ 100nm / 200nm ~ 2μm is.
8.如权利要求1所述的白光发光二极管,其特征在于:所述的荧光粉层为蓝光、绿光或黄光荧光粉的混合物涂层,其厚度为1μm~1mm。 8. The white light emitting diode according to claim 1, wherein: said phosphor coating layer is a mixture of blue, green or yellow phosphor having a thickness of 1μm ~ 1mm.
9.如权利要求1所述的白光发光二极管,其特征在于:所述的树脂壳为环氧树脂材料制成的壳。 9. The white light emitting diode according to claim 1, wherein: said resin case is made of an epoxy material shell.
10.一种权利要求1所述的白光发光二极管的制备方法,包括如下的步骤:1)采用红宝石作为衬底,使用常规的半导体器件的沉积技术在其上依次生长GaN缓冲层、n型GaN层、发光层、p型GaN层,得到发光波长为300~600nm的发光二极管;所述的红宝石衬底为掺杂了0.01~5wt%过渡族金属元素的Al2O3;厚度为0.4~0.5mm;所述的GaN缓冲层为GaN、AlGaN、InAlN、InAlGaN或这几种合金的组合,其厚度为100nm~10μm;所述的n型GaN层为GaN、InAlN、AlGaN、InAlGaN或这几种合金的组合,厚度为50nm~3μm;所述的发光层为发光二极管的有源层,此层为由势垒层GaN或InyGa1-yN以及量子阱层InxGa1-xN组成的多量子阱,其中y<x,量子阱的周期数为1~20,势垒层厚度为5~20nm,量子阱层厚度为1~10nm;所述的p型GaN层为GaN、InAlN、AlGaN、InAlGaN或这几种合金的组合,厚度为20nm~3μm;2)将步骤1)得到的发光二 The method of preparing a white light emitting diode according to claim 10. A, comprising the following steps: 1) substrate as a ruby, a semiconductor device using a conventional deposition techniques are sequentially grown on the GaN buffer layer thereon, n-type GaN a light emitting layer, P-type GaN layer, to obtain an emission wavelength of 300 to 600nm light emitting diode; and the ruby ​​substrate is doped with 0.01 ~ 5wt% of Al2O3 transition metal element; a thickness of 0.4 ~ 0.5mm; the She said GaN buffer layer is GaN, AlGaN InAlN InAlGaN combination, or these types of alloys, having a thickness of 100nm ~ 10μm; the n-type GaN layer is GaN, a combination of InAlN, AlGaN, InAlGaN, or an alloy of these types a thickness of 50nm ~ 3μm; light-emitting layer is a light emitting diode, the active layer, this layer is a GaN barrier layer or InyGa1-yN and the InxGa1-xN quantum well layer composed of a multiple quantum well, where y <x, number of cycles of the quantum well is 1 to 20, the barrier layer having a thickness of 5 ~ 20nm, the quantum well layer has a thickness of 1 to 10 nm; the p-type GaN layer is GaN, InAlN AlGaN InAlGaN combination, or alloys of these types a thickness of 20nm ~ 3μm; 2) step 1) light-emitting obtained 管利用常规的SiO2掩膜及光刻技术,从n型GaN层和p型GaN层分别引出n型电极和p型电极,得到背出光的发光二极管;然后将红宝石衬底用机械研磨的方法减薄到0.05~0.2mm;所述的n型电极为Ti/Al/Ti/Au或Ti/Al/Ni/Au,厚度分别为1~10nm/10~500nm/1~10nm/200nm~2μm;所述的p型电极为Ni/Au或Pt/Au,厚度分别为1~100nm/200nm~2μm;3)将步骤2)得到的背出光的发光二极管的衬底背面涂布各色荧光粉,以得到所需的绿光、蓝光或黄光发光成分;再用树脂按照常规方法封装,得到本发明的白光发光二极管。 Tube using a conventional photolithographic technique and the SiO2 mask, n-type GaN layer from the p-type and n-type GaN layer lead-out electrode and the p-type electrode, respectively, to give back the light emitting diode; Save then ruby ​​substrate with mechanical polishing method thin 0.05 ~ 0.2mm; n-type electrode of the Ti / Al / Ti / Au or Ti / Al / Ni / Au, respectively, the thickness of 1 ~ 10nm / 10 ~ 500nm / 1 ~ 10nm / 200nm ~ 2μm is; the said p-type electrode of Ni / Au or Pt / Au, the thickness of each 1 ~ 100nm / 200nm ~ 2μm is; 3) step 2) coating the back surface of the substrate on the back light emitting diode of each color phosphor obtained, to give desired green, blue or yellow light emitting component; and then the resin package according to a conventional method, to obtain a white light emitting diode of the present invention.
CNA2005100864508A 2005-09-21 2005-09-21 White light-emitting diode and its preparing method CN1937264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2005100864508A CN1937264A (en) 2005-09-21 2005-09-21 White light-emitting diode and its preparing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2005100864508A CN1937264A (en) 2005-09-21 2005-09-21 White light-emitting diode and its preparing method

Publications (1)

Publication Number Publication Date
CN1937264A true CN1937264A (en) 2007-03-28

Family

ID=37954647

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100864508A CN1937264A (en) 2005-09-21 2005-09-21 White light-emitting diode and its preparing method

Country Status (1)

Country Link
CN (1) CN1937264A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442095B (en) 2007-11-19 2011-01-26 日进半导体株式会社 White led chip and manufacture method thereof
CN102122690A (en) * 2011-01-14 2011-07-13 映瑞光电科技(上海)有限公司 Multi-quantum well structure, light-emitting diode and packaging part of light-emitting diode
CN102122689A (en) * 2011-01-14 2011-07-13 映瑞光电科技(上海)有限公司 Multi-quantum well structure and manufacturing method thereof, and light emitting diode
CN102122688A (en) * 2011-01-14 2011-07-13 映瑞光电科技(上海)有限公司 Multi-quantum well structure, manufacturing method thereof and light-emitting diode
CN102142492A (en) * 2011-01-14 2011-08-03 映瑞光电科技(上海)有限公司 Multiple quantum well structure, manufacturing method thereof and light emitting diode
WO2012031385A1 (en) * 2010-09-07 2012-03-15 深圳市众明半导体照明有限公司 Warm white light led chip with high brightness and high color rendering
CN102034912B (en) * 2009-12-29 2015-03-25 比亚迪股份有限公司 Light-emitting diode epitaxial wafer, manufacturing method and manufacturing method of chip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442095B (en) 2007-11-19 2011-01-26 日进半导体株式会社 White led chip and manufacture method thereof
CN102034912B (en) * 2009-12-29 2015-03-25 比亚迪股份有限公司 Light-emitting diode epitaxial wafer, manufacturing method and manufacturing method of chip
WO2012031385A1 (en) * 2010-09-07 2012-03-15 深圳市众明半导体照明有限公司 Warm white light led chip with high brightness and high color rendering
CN102122690A (en) * 2011-01-14 2011-07-13 映瑞光电科技(上海)有限公司 Multi-quantum well structure, light-emitting diode and packaging part of light-emitting diode
CN102122688A (en) * 2011-01-14 2011-07-13 映瑞光电科技(上海)有限公司 Multi-quantum well structure, manufacturing method thereof and light-emitting diode
CN102142492A (en) * 2011-01-14 2011-08-03 映瑞光电科技(上海)有限公司 Multiple quantum well structure, manufacturing method thereof and light emitting diode
CN102122689B (en) 2011-01-14 2012-10-03 映瑞光电科技(上海)有限公司 Multi-quantum well structure and manufacturing method thereof, and light emitting diode
CN102122688B (en) 2011-01-14 2012-10-03 映瑞光电科技(上海)有限公司 Multi-quantum well structure, manufacturing method thereof and light-emitting diode
CN102122689A (en) * 2011-01-14 2011-07-13 映瑞光电科技(上海)有限公司 Multi-quantum well structure and manufacturing method thereof, and light emitting diode

Similar Documents

Publication Publication Date Title
US8207552B2 (en) Thin film light emitting diode
US7057212B2 (en) Flip chip nitride semiconductor light emitting diode
US5557115A (en) Light emitting semiconductor device with sub-mount
EP1686629B1 (en) Nitride semiconductor light emitting diode and method for manufacturing the same
TW541714B (en) Semiconductor light-emitting device
CN101562225B (en) Light emitting means
KR100499129B1 (en) Light emitting laser diode and fabricatin method thereof
Yamada et al. Red-enhanced white-light-emitting diode using a new red phosphor
JP5032171B2 (en) Semiconductor light emitting device, method for manufacturing the same, and light emitting device
JP4989773B1 (en) Semiconductor light emitting device
JP2006086489A (en) Nitride semiconductor light emitting device having electrostatic discharge protection capability
CN100359707C (en) Ga Nitride Light emitting device
CN100375303C (en) Ohm electrode containing gold germanium nickel, indium gallium aluminum nitrogen semiconductor luminous element and its manufacturing method
US8330173B2 (en) Nanostructure having a nitride-based quantum well and light emitting diode employing the same
JP2005526403A (en) Reliable and robust group III light emitting diodes used in standard packages
JP3763754B2 (en) Group III nitride compound semiconductor light emitting device
US7291865B2 (en) Light-emitting semiconductor device
JP2006054420A (en) Nitride semiconductor light emitting element and its manufacturing method, and light emitting device formed in flip chip structure equipped therewith
US20090206320A1 (en) Group iii nitride white light emitting diode
US6744196B1 (en) Thin film LED
US6620643B1 (en) Light-emitting device using group III nitride compound semiconductor
US7994539B2 (en) Light emitting diode having algan buffer layer and method of fabricating the same
US8729583B2 (en) Semiconductor light-emitting device
CN100472831C (en) Nitride semiconductor light emitting element
EP1132977A2 (en) Semiconductor light emitting device and method for manufacturing same

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)