CN1926394A - 用于空气分离的低温蒸馏方法和实施该方法的设备 - Google Patents

用于空气分离的低温蒸馏方法和实施该方法的设备 Download PDF

Info

Publication number
CN1926394A
CN1926394A CNA2005800066563A CN200580006656A CN1926394A CN 1926394 A CN1926394 A CN 1926394A CN A2005800066563 A CNA2005800066563 A CN A2005800066563A CN 200580006656 A CN200580006656 A CN 200580006656A CN 1926394 A CN1926394 A CN 1926394A
Authority
CN
China
Prior art keywords
air
interchanger
oxygen
pressure column
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800066563A
Other languages
English (en)
Inventor
E·加尼耶
D·古尔丹
F·茹达斯
P·勒博
F·斯坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN1926394A publication Critical patent/CN1926394A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0078Noble gases
    • C01B2210/0082Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明涉及一种使用包括有互相热联接的中压塔(9)与低压塔(11)的设备来分离空气的低温蒸馏方法。本发明的方法包括以下步骤:在交换器(10)中将一些被压缩和净化的空气V冷却至深冷温度并将其至少一部分送到中压塔;将富氧气流和富氮气流(LR、LP)从中压塔送到低压塔;并且从低压塔抽取富氮气流和富氧气流(35,23)。根据本发明,中压塔在6和9bar abs之间工作,并且进入交换器的空气V的总量与交换器的总容积的比值大于3000Nm3/h/m3并且优选在3000和12000Nm3/h/m3之间。而且,离开交换器的氧气流与为该氧气流保留的流动面积的比值小于30Nm3/h/cm2

Description

用于空气分离的低温蒸馏方法和实施该方法的设备
技术领域
本发明涉及一种通过低温蒸馏分离空气的方法并涉及一种用于实施该方法的设备。
背景技术
通常,工程师在建立空气分离方法中的目的在于使能量消耗最小化。
对于使用空气分离双塔生产低能氧众所周知的是,特别应用其以便一方面在减小交换器中的压差并减小主气化室处的温差的同时使空气压缩机的输送压力最小化,另一方面通过减小交换器中的温差、选择大量的理论蒸馏塔板并且安装足够数量的结构化填料段或塔板而使氧的提取率最大化。
因此,低压塔具有四个结构化填料段或塔板,包括在低压塔的底部和富液入口之间的两个段,所述富液是从中压塔底部取出的富氧液体。这两个段是必需的以便确保低压塔的贮槽中很高的蒸馏性能。因此,中压塔也具有四个结构化填料段或塔板,包括在液态空气入口和贫液抽出位置之间的两个段。
空气分离设备的交换器通常由一组交换体部或若干交换体部的子集构成。
一组交换体部包括偶数个交换体部,每个交换体部都被供给以相同的待冷却流体和相同的待加热流体。流体是通过用于各种不同流体(不同的成分和/或压力)的公共收集管路供给的,如“The Standards of the BrazedAluminium Plate-Fine Heat Exchanger Manufacturers’Association”(2000年,第二版)的图1-3中所示。
由于通过单个收集管路能够供给的体部的最大数量是十二(即六对交换体部),所以大容量设备经常需要使用若干个交换体部的子集,每个子集包括偶数个交换体部并且每个子集的体部通过用于各种流体的公共收集管路供给。因此,由两个交换体部的子集构成的交换器将包括将待冷却的空气送到第一子集的第一输送管路和将待冷却的空气送到第二子集的第二输送管路。同样地,该交换器将包括用于回收第一子集的冷却空气的第一收集管路和用于回收第二子集的冷却空气的第二收集管路。
被送至塔的已净化并压缩的空气在包括有单组交换体部的交换器中冷却,交换器的容积通常大于200m3,因此,在下述示例的情况下,被送到交换器的总的空气流与交换器的容积的比值将大约为2000Nm3/h/m3
蒸馏所需要的制冷经常通过被送到供给低压塔的鼓风涡轮机的空气流和/或被送到克劳德(Claude)涡轮机的空气流来提供。在下述示例的情况下,被送到交换器的空气量与被送到鼓风涡轮机的流的量的比值通常在5∶1和15∶1之间。
在某些情况下,当能量不昂贵或者免费时,在增加能量需求的情况下减少设备开支是有利的。
在从WO 03/033978已知的使用包括有互相热联接的中压塔和低压塔的设备通过低温蒸馏分离空气的方法中,一些被压缩和净化的空气V在交换管路中被冷却至深冷温度并将该空气的至少一部分送到中压塔,将富氧气流和富氮气流从中压塔送到低压塔并从低压塔抽取富氧气流和富氮气流,中压塔在6和9bar abs之间的压力下工作,并且进入交换器的空气V的总量与交换器的总容积的比值在3000和6000Nm3/h/m3之间。
在进入交换器的空气V的总量与交换器的总容积之比低于6000Nm3/h/m3的情况下,并且考虑空气总量约为570000Nm3/h的空气分离设备,在交换器由最少十四个交换体部构成、一个交换体部的最大容积约为8m3的情况下,交换器的总容积约为110m3
对于不同的交换体部之间流的均匀分布问题,现有技术规定了两个交换体部的子集:包括分组成四对的八个交换体部的第一子集和具有分组成三对的六个交换体部的第二子集。安装单组为十四个的交换体部是难以想象的(由于在这种情况下体部之间存在的长距离,所以流的分布不均匀,并且空气分离设备的性能将受到影响)。
在进入交换器的空气V的总量与交换器的总容积之比约为7000Nm3/h/m3的情况下,并且考虑空气总量约为570000Nm3/h的空气分离设备,在交换器具有由十个交换体部构成的单组交换体部、一个交换体部的最大容积约为8m3的情况下,交换器的总容积约为80m3。在这种情况下,有利地利用单组交换体部实现不同交换体部之间的流的均匀分布,因此对于供给到或来自于这十个体部的每种流体只有单个公共收集管路或输送管路。
同样地,对于空气总量约为475000Nm3/h的空气分离设备,由于能量成本低或可用的能量(多),因此通过安装由单组交换体部(8个体部)构成的交换管路可使投资最小化,并且其容积对应于进入交换器的空气V的总量与交换器的总容积的比值,即约为7400Nm3/h/m3
而且,根据现有技术,增大进入交换器的空气V的总量与交换器的总容积的比例将尤其由于流动面积的减少引起的流的速度增加而导致交换器的所有流(废氮气流、空气流、氧气流等)在交换器中的压降增加。
然而,对于进入交换器的空气V的总量与交换器的总容积之比大于6000Nm3/h/m3的情况,氧气流的压降将不会增加,而是以与氧气流通常可接受的设计相对应的极限值保持恒定。通常只有通过保持交换器的每个体部的流动面积恒定并由此保持交换器用于氧气流的通道总数恒定,才能够通过减小交换器的容积来保持氧气流的速率,这因此导致交换器的每个体部的氧气通道数量增加(因为交换体部的数量减少了)。因此,其他的流的压降的增加将超过通过体部数量的简单比值而获得的压降。
然而,特别是在其中液体必须气化的液态氧通道的情况下,可提供可变的流动面积或增大流动面积。
通常,氧气流上的压降不超过400毫巴并且用于氧气流的流动面积不超过20至25Nm3/h/cm2。在液体流的情况下,该流动面积对应于恒定的横截面或者液态氧气化的位置处的横截面。
氧气流包括至少30mol%(摩尔百分比)氧,优选地至少70mol%氧,更优选地至少90mol%氧,并且在交换器的入口处可为气态或液态。
发明内容
本发明的一个目的是通过减小交换器的尺寸(由此通过增加交换器中的压降和温差并且通过增加主气化室处的温差)并且/或者通过减小蒸馏塔的尺寸(通过将理论塔板的数量和填料段或塔板的数量减到最小)来减少空气分离设备的投资成本并增加其能量。
送到交换器的空气V的量包括所有送到蒸馏装置的空气和膨胀然后送到大气的可能的空气流。
结构化填料段为入口和相邻流体的入口或出口之间的一段结构化填料。
结构化填料通常为交叉波形类型,但是也可为其它几何形状。它们可带孔和/或局部地偏移。
本发明的一个目的是提供一种使用包括有互相热联接的中压塔和低压塔的设备通过低温蒸馏分离空气的方法,在这种方法中,使一些被压缩和净化的空气V在交换器中冷却至深冷温度并将该空气的至少一部分送到中压塔,将富氧气流和富氮气流从中压塔送到低压塔并从低压塔抽取富氮气流和富氧气流,其特征在于,进入交换器的空气V的总量与交换器的总容积的比值大于3000Nm3/h/m3并且优选在3000和12000Nm3/h/m3之间,并且离开交换器的氧气流的速率与交换器中为该氧气流保留的通道的总横截面的比值小于30Nm3/h/cm2,优选地小于25Nm3/h/cm2
优选地,进入交换器的空气V的总量与交换器的总容积的比值大于6000Nm3/h/m3并且优选在6500和12000Nm3/h/m3之间。
根据其它可选的方面:
-进入交换器的空气V的总量与交换器的总容积的比值在6500和12000Nm3/h/m3之间;
-进入交换器的空气V的总量与交换器的总容积的比值在7000和12000Nm3/h/m3之间;
-所述交换器包括至少一组至多为十二个的交换体部,一组中的每个体部都被供给以相同的流体,每种流体来自该组的所有交换体部共用的收集或输送管路;
-从塔中抽取至少一种液体流,该液体流可选地增压,并且在该交换器或另一交换器中气化;
-在交换器的冷端的最大温差为10℃;
-在交换器的暖端的最大温差为10℃;
-在交换器中液态氧气化开始时的最大温差为3℃;
-在交换器中液态氧气化结束时的最大温差为14℃;
-将富氧液体从低压塔送到贮槽再沸器,所述富氧液体在该再沸器中通过与来自中压塔的富氮气体热交换而部分地气化,再沸器具有至少2℃的ΔT;
-将被压缩和净化的空气的一部分送到鼓风涡轮机,该鼓风涡轮机具有在-50℃和-140℃之间、优选地在-100℃和-130℃之间的进口温度;
-空气V的量与被送到鼓风涡轮机的空气流的量的比值小于40,优选地在5和25之间;
-从塔中抽取至少一种液体流,该液体流可增压并且在交换器中气化;
-中压塔在6.5和8.5bar abs之间工作;
-来自低压塔的废氮气流在交换器中的压降大于200毫巴;
-低压空气流在交换器中的压降大于250毫巴;
-空气V的量与空气流D的量的比值在5∶1和25∶1之间;
i)用交换器输出的液态空气流的全部或一部分供给液态空气膨胀涡轮;以及/或者
ii)用冷却器或由冷却器产生的冰水(其可来自与用于冷却净化装置入口处的空气的循环水路相同的循环水路)冷却空气增压机输出的空气和/或处于最低压力下的空气;以及/或者
iii)将增加的空气流送到鼓风涡轮机,以使送到交换器的空气V的量与送到鼓风涡轮机的空气流D的量的比值小于10∶1;
-氧的纯度在30和100mol%(摩尔百分比)之间,优选地在95和100mol%之间;
-氧提取率在85和100%之间。
本发明的另一个目的是提供一种用于生产风煤气的空气分离设备,所述设备包括具有单组交换体部的热交换器、用于收集第一压力下的空气的单个管路以及将用于收集第一压力下的空气的管路连接到每个交换体部的输送装置、用于收集待加热的第一压力下的氧的单个管路以及将用于收集待加热的第一压力下的氧的管路连接到每个交换体部的输送装置,其特征在于,所述氧收集管路的直径至少为25cm。
根据其它可选的方面:
-所述交换器包括至少一组至多为十二个的交换体部,一组中的每个体部都被供给以相同的流体,每种流体来自该组的所有交换体部共用的收集或输送管路;以及
-所述交换器包括至少一组至多为十二个的交换体部,通过空气收集管路和氧收集管路供给一组中的每个体部。
可选地,设备可包括从低压塔供给的氩塔。
鼓风涡轮机使空气膨胀并将该空气的至少一部分送到双塔中的低压塔。
附图说明
下面将参照附图说明本发明,在附图中:
图1是用于实施根据本发明的方法的设备的示意图;
图2是在图1的设备中使用的交换器的图示。
具体实施方式
在图1中,来自净化装置(未示出)的处于7bar abs下的475000Nm3/h的空气流1被分成三部分。第一部分流3在增压机5中增压至例如气化液态氧所需的压力。高压空气AIR HP 7被送到交换器10但是没有到达冷端,被冷却至-160℃,膨胀,液化并被分别送到空气分离双塔的两个塔9和11,即中压塔和低压塔。
没有增压的第二部分流AIR MP 13也被送到交换器10,在被送到中压塔9的底部之前通过交换器10部分地降温至-140℃。
在被送到低压塔11之前,约为45000Nm3/h的第三部分流15被送到增压机17,(然后)部分地在交换器中冷却并在鼓风涡轮机19中膨胀,(在低压塔11)的入口温度为-130℃。送到鼓风涡轮机19的空气流的量与送到交换器的空气量之比为10∶1。
处于最低压力的空气流13在交换器10中的压降约为300毫巴,废氮气35(的压降)约为250毫巴。
交换器10的容积为60m3,因此被送到交换器10的空气(流1或流V)的量与该交换管路10的容积(=体部的数量×总宽度×总叠层(empilagetotal)×总长度)之比为7900Nm3/h/m3
可选地,交换器可由若干组交换器体部形成,每一组的体部相同。
除了其尺寸和塔的理论塔板的数量以及再沸器21的温差之外,双塔是常规装置,因为中压塔包含四十个理论塔板,低压塔包含四十五个理论塔板,而所述温差大于2.5℃。
优选地,富氧液体(富液LR)和富氮液体(贫液LP)在交换器SR中低温冷却并在一阀中膨胀后被从中压塔送到低压塔。
低压塔11包含三个结构化填料段,包括在塔的基部和富液入口(该入口与吹入空气入口结合在一起)之间的底部处的段I、在富液入口和液态空气入口之间的段II、以及在液态空气入口和贫液入口之间的段III。
中压塔9包含三个结构化填料段,包括在塔的基部和液态空气入口之间的底部处的段I、在液态空气入口和贫液LP出口之间的段II、以及在贫液LP出口和中压氮气出口31之间的段III。显然,如果没有液态氮或气态氮的抽取,则中压塔仅包含两个段,段III被省去。
低压塔11的贮槽再沸器21实际上与中压塔9成一体并且通过来自该塔9的中压氮气流加热。用泵抽吸来自低压塔11底部的液态氧气流23以便克服流体静压高度并到达再沸器21,在再沸器21处部分地气化,其中气态流25被送到交换装置I下方的低压塔,而液体流27被送到泵29,在该处被加压至其工作压力。
用泵抽吸的流27在交换器10中气化。
从中压塔9的段III上方的顶部抽取液态氮气流31,经泵抽吸并且也在交换器10中气化。
液态氮和液态氧的压力可以是任意值,只要交换器10是根据气化所需的最大空气压力而设计。
应当理解,本发明也适用于其中单一液体流在交换器10中气化或者没有从塔中抽取的液体在设备中气化的情况。
代替相对于空气气化,液体流也可相对于循环氮气流气化。
可替代地,液体流可在只用于相对于空气流或者循环氮气流使液体流气化的专用交换器中气化。
所述方法还可生产液态氧和/或液态氮和/或液态氩作为最终产品。
可从中压塔9和/或从低压塔11抽取气态氮33、35。
气态氮35在低温冷却器SR中加热。
可替代地,或者除此以外,可从低压塔11抽取气态氧气流作为最终产品。该流(未示出)可可选地在压缩机中加压。
中压气态氮气流NG MP 33和低压废氮气流35在交换器10中加热。流NR 35可用于以已知方式再生空气净化系统和/或可被送到燃气轮机。
所述的方法可以大于95%的效率生产99.5mol%的氧OG HP。这种氧通常用于供给以燃料如天然气的气化器中。
在设备中,低压塔11可如示例中那样在中压塔9旁边,或者位于中压塔9上方。
为了生产液态氧气流和/或液态氮气流和/或氩气流并且/或者减小压力水平,尤其是AIR HP 7的压力,可以通过使用(以下方法)提供所需的制冷:
i)用交换器10输出的液态空气流HP 7的全部或一部分供给的液态空气膨胀涡轮;以及/或者
ii)冷却器或由冷却器产生的冰水(其可来自与用于冷却净化装置入口处的空气的循环水路相同的循环水路),以便冷却空气增压机5输出的空气和/或增压机17输出的空气和/或MP空气13;以及/或者
iii)将增加的空气流送到鼓风涡轮机19,以使送到交换器的空气V的量与送到鼓风涡轮机的空气流D的量的比值小于10∶1。
如果液体不是作为最终产品生产,也可以使用这些制冷方法。
可通过电动马达和/或通过液压马达和/或通过汽轮机和/或通过燃气轮机驱动增压机5、17和/或主压缩机(未示出)。
涡轮机19可联接于专用的增压机或发电机上。
设备还可包括本领域技术人员所公知的常规元件,如克劳德(Claude)涡轮机、水轮机、中压或低压氮气涡轮机、由液体喷射产生的制冷、一个或多个氩生产塔、例如由来自低压塔的空气和氧供给的混合塔、例如由富液和/或空气供给的在中间压力下工作的塔、以及具有两个或三个再沸器的低压塔,等等。
图2示出适于在图1的方法中使用的交换器10。
交换器10的容积为60m3,因此被送到交换器10的空气(流1或流V)的量与该交换管路10的容积(=体部的数量×总宽度×总叠层×总长度)之比为7900Nm3/h/m3
假定体部的最大容积约为8m3,体部100的数量为八以便具有偶数个体部,所述体部100中的四个被放置在中线的每一侧。
将中压空气13送到输送管路113然后送到八个管113A,每个管供给一个体部100。然后将被冷却的中压空气送到收集管路(未示出)然后送到中压塔。将高压空气15送到输送管路115然后送到两个管,每个管供给四个体部100。将高压空气7送到输送管路107然后送到两个管,每个管供给四个体部100。
来自八个体部100的加热的废氮气35被收集于收集管路135中。
每个体部包括经由用于输送被抽吸的液态氧的管路供给的通道,通道直径至少为25cm。在八个体部100中为氧保留的所有通道的总面积小于25Nm3/h/cm2,约为20Nm3/h/cm2
通过气化生产的气态氧被送到收集管路127,该收集管路127的直径至少为25cm,优选地约为30cm。
低压氮气33被送到收集管路133。

Claims (14)

1.一种使用包括有互相热联接的中压塔(9)和低压塔(11)的设备通过低温蒸馏分离空气的方法,在这种方法中,使一些被压缩和净化的空气V在交换器(10)中冷却至深冷温度并将该空气的至少一部分送到中压塔,将富氧气流和富氮气流(LR,LP)从中压塔送到低压塔,从低压塔抽取富氮气流和富氧气流(35,23)并送到交换器,其特征在于,进入交换器的空气V的总量与交换器的总容积的比值大于3000Nm3/h/m3并且优选在3000和12000Nm3/h/m3之间,并且离开交换器的氧气流的速率与为该氧气流保留的通道的总横截面的比值小于30Nm3/h/cm2,优选地小于25Nm3/h/cm2
2.根据权利要求1所述的方法,其特征在于,将富氧液体(23)从低压塔(11)送到贮槽再沸器(21),所述富氧液体在该再沸器中通过与来自中压塔(9)的富氮气体热交换而部分地气化,再沸器具有至少2℃的ΔT。
3.根据权利要求1或2所述的方法,其特征在于,所述交换器(10)包括至少一组至多为十二个的交换体部(100),一组中的每个体部都被供给以相同的流体,每种流体来自该组的所有交换体部共用的收集或输送管路(107,113,115,127,133,135)。
4.根据上述权利要求中任一项所述的方法,其特征在于,从塔(9,11)中抽取至少一种液体流(27,31),该液体流可选地增压,并且在交换器(10)或另一交换器中气化。
5.根据上述权利要求中任一项所述的方法,其特征在于,所述中压塔(9)在5和15bar abs之间,优选地在6.5和8.5bar abs之间工作。
6.根据上述权利要求中任一项所述的方法,其特征在于,来自低压塔的废氮气流(35)在交换器(10)中的压降大于200毫巴。
7.根据上述权利要求中任一项所述的方法,其特征在于,低压空气流(13)在交换器(10)中的压降大于250毫巴。
8.根据上述权利要求中任一项所述的方法,其特征在于,空气V的量与空气流D(1)的量的比值在5∶1和25∶1之间。
9.根据上述权利要求中任一项所述的方法,其特征在于:
i)用交换器(10)输出的液态空气流的全部或一部分供给液态空气膨胀涡轮;以及/或者
ii)用冷却器或由冷却器产生的冰水(其可来自与用于冷却净化装置入口处的空气的循环水路相同的循环水路)冷却空气增压机(5,7)输出的空气和/或处于最低压力下的空气;以及/或者
iii)将增加的空气流送到鼓风涡轮机(19),以使送到交换器的空气V的量与送到鼓风涡轮机的空气流D的量的比值小于10∶1。
10.根据上述权利要求中任一项所述的方法,其特征在于,氧的纯度在85和100mol%之间,优选地在95和100mol%之间。
11.根据上述权利要求中任一项所述的方法,其特征在于,氧提取率在85和100%之间。
12.一种用于生产风煤气的空气分离设备,所述设备包括具有单组交换体部的热交换器、用于收集第一压力下的空气的单个管路以及将用于收集第一压力下的空气的管路连接到每个交换体部的输送装置、用于收集待加热的第一压力下的氧的单个管路以及将用于收集待加热的第一压力下的氧的管路连接到每个交换体部的输送装置,其特征在于,所述氧收集管路(127)的直径至少为25cm。
13.根据权利要求12所述的设备,其特征在于,所述交换器(10)包括至少一组至多为十二个的交换体部(100),一组中的每个体部都被供给以相同的流体,每种流体来自该组的所有交换体部共用的收集或输送管路(107,113,115,127,133,135)。
14.根据权利要求12或13所述的设备,其特征在于,所述交换器包括至少一组至多为十二个的交换体部(100),通过空气收集管路和氧收集管路供给一组中的每个体部。
CNA2005800066563A 2004-03-02 2005-02-22 用于空气分离的低温蒸馏方法和实施该方法的设备 Pending CN1926394A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0450406A FR2867262B1 (fr) 2004-03-02 2004-03-02 Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
FR0450406 2004-03-02
FR0405125 2004-05-12

Publications (1)

Publication Number Publication Date
CN1926394A true CN1926394A (zh) 2007-03-07

Family

ID=34855186

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800066563A Pending CN1926394A (zh) 2004-03-02 2005-02-22 用于空气分离的低温蒸馏方法和实施该方法的设备

Country Status (2)

Country Link
CN (1) CN1926394A (zh)
FR (1) FR2867262B1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011156968A1 (en) * 2010-06-18 2011-12-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchanger unit
CN105579801A (zh) * 2013-09-17 2016-05-11 乔治洛德方法研究和开发液化空气有限公司 通过空气的低温蒸馏而制备气态氧的方法和设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120226A (zh) * 2017-12-28 2018-06-05 乔治洛德方法研究和开发液化空气有限公司 通过低温精馏从空气中生产高纯氮和氧气的方法及设备
CN108036584A (zh) * 2017-12-28 2018-05-15 乔治洛德方法研究和开发液化空气有限公司 通过低温精馏从空气中生产高纯氮、氧气和液氧的方法及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9015377D0 (en) * 1990-07-12 1990-08-29 Boc Group Plc Air separation
FR2778971A1 (fr) * 1998-05-20 1999-11-26 Air Liquide Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression
JP3715497B2 (ja) * 2000-02-23 2005-11-09 株式会社神戸製鋼所 酸素の製造方法
DE10021081A1 (de) * 2000-04-28 2002-01-03 Linde Ag Verfahren und Vorrichtung zum Wärmeaustausch
FR2830928B1 (fr) * 2001-10-17 2004-03-05 Air Liquide Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011156968A1 (en) * 2010-06-18 2011-12-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heat exchanger unit
CN105579801A (zh) * 2013-09-17 2016-05-11 乔治洛德方法研究和开发液化空气有限公司 通过空气的低温蒸馏而制备气态氧的方法和设备
CN105579801B (zh) * 2013-09-17 2018-06-29 乔治洛德方法研究和开发液化空气有限公司 通过空气的低温蒸馏而制备气态氧的方法和设备

Also Published As

Publication number Publication date
FR2867262A1 (fr) 2005-09-09
FR2867262B1 (fr) 2006-06-23

Similar Documents

Publication Publication Date Title
CN1103041C (zh) 制备低纯氧气的副塔低温精馏系统
CN1129767C (zh) 生产中纯度氧的方法和设备
CN101479550B (zh) 低温空气分离系统
CN1089427C (zh) 用于生产低纯度氧的低温精馏系统
CN1041460C (zh) 利用低温精馏分离空气以生产气体产品的方法和设备
CN1890525A (zh) 用于通过低温蒸馏分离空气的方法和设备
CN1196909C (zh) 氧气和氮气的生产方法
CN201199120Y (zh) 一种空气回热式的矿井瓦斯气的分离液化设备
CN1097247A (zh) 空气分离
CN1239876C (zh) 利用分离空气的三塔系统和粗氩塔制备氩的方法及装置
CN102047057B (zh) 分离空气的方法和设备
CN1130538C (zh) 用于供应可变流量的来自空气的一种气体的方法和设备
CN1813046A (zh) 同时生产可液化天然气和天然气液体的馏分的方法和装置
CN1254823A (zh) 制备产生动力的蒸汽的装置
CN1784579A (zh) 通过低温空气蒸馏生产加压空气的方法和系统
CN1167246A (zh) 带有再沸器压缩机的双纯氧发生器
CN1268657A (zh) 低温分离空气的双塔系统
CN1521121A (zh) 生产气态高压的氧气、氩气和氮气至少之一的方法和设备
CN1784580A (zh) 用于空气分离的低温蒸馏方法和系统
CN1170861A (zh) 高纯氮发生装置与方法
CN1407303A (zh) 利用液化天然气冷能的空气分离装置
CN1918445A (zh) 综合工艺和气体处理方法
CN1908559A (zh) 含空气煤层气液化分离工艺及设备
CN1044156C (zh) 低温精馏分离空气的方法和装置
CN1926394A (zh) 用于空气分离的低温蒸馏方法和实施该方法的设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070307