CN1925786A - Methods and devices for non-invasively measuring quantitative information of substances in living organisms - Google Patents

Methods and devices for non-invasively measuring quantitative information of substances in living organisms Download PDF

Info

Publication number
CN1925786A
CN1925786A CN 200580006926 CN200580006926A CN1925786A CN 1925786 A CN1925786 A CN 1925786A CN 200580006926 CN200580006926 CN 200580006926 CN 200580006926 A CN200580006926 A CN 200580006926A CN 1925786 A CN1925786 A CN 1925786A
Authority
CN
China
Prior art keywords
means
signal
substance
apparatus
impedance
Prior art date
Application number
CN 200580006926
Other languages
Chinese (zh)
Inventor
瓦赫兰·莫拉迪安
瓦勒里·阿曼阿恰恩
马克西姆·麦尔金
格基克·法曼杨
米纳斯·汉姆巴泽姆杨
Original Assignee
卡里斯托医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US55091304P priority Critical
Application filed by 卡里斯托医药有限公司 filed Critical 卡里斯托医药有限公司
Publication of CN1925786A publication Critical patent/CN1925786A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content

Abstract

公开了确定活体内物质的数量的系统和方法。 Discloses a number of determined substance in a living system and method. 在一个实施例中,所述方法包括:将电子特征信号(signature signal)施加到所述活体,其中所述电子特征信号相应于所述物质的预定数量;测量所述活体对所述施加的特征信号的响应;以及确定增加的响应是否由施加所述电子特征信号产生,如果是,则从所述物质的所述预定数量确定所述活体内所述物质的所述数量。 In one embodiment, the method comprises: an electronic signature signal (signature signal) is applied to the living body, wherein the electrical signature signal corresponds to a predetermined amount of the substance; characterized in measuring the living body is applied to the response signal; and determining whether an elevated response generated by applying the electrical signature signal, and if so, from the predetermined number to determine the amount of the substance of the substance in vivo.

Description

用于非侵入性地测量活体中物质的定量信息的方法和装置 A method and apparatus for measuring quantitative information of substances in living body non-invasively

与相关申请的交互参考本申请要求于2004年3月6日提交的名为“用于非侵入性地测量活体中物质的定量信息的方法和装置”的美国临时专利申请号为60/550,913的申请日期的权益,该申请的公开被包含于此,以作参考。 CROSS REFERENCE TO RELATED APPLICATIONS with the present application claims entitled "Method and apparatus for non-invasively measuring quantitative information of substances in living body" on March 6, 2004, filed in the U.S. Provisional Patent Application No. 60 / 550,913 to benefit of the filing date, the disclosure of which is incorporated herein by reference.

技术领域 FIELD

本发明一般地涉及医学测量装置,尤其是涉及用于非侵入性地测量活体中物质的定量信息的方法和装置。 The present invention generally relates to a medical measuring apparatus, and more particularly to a method of non-invasively measuring apparatus and quantitative information of substances in living body.

背景技术 Background technique

活体及其机能系统是广频谱中极微弱电磁振荡的来源。 Living and functioning system is very weak broad spectrum of electromagnetic oscillations source. 几个整体的治疗过程利用这种原理。 Several of the overall treatment process using this principle. 这些治疗过程利用特殊的非常细致的振荡信息,并通常被称为“生物共振疗法”。 These treatment processes using a special oscillation very detailed information, and is generally referred to as "bio-resonance therapy."

术语生物共振疗法(“BRT”)是由Brugemann研究院于1987年为“使用病人自己的电磁振荡治疗”而创造的。 The term bio-resonance therapy ( "BRT") is Brugemann Institute in 1987 to "use the patient's own electromagnetic oscillations treatment" and creation. 这一原理可以被追溯到医生F.Morrell,他于1977首次提出了其观点的使用。 This principle can be traced back to the doctor F.Morrell, in 1977, he first proposed the use of their views. Morrell医生假定所有的疾病和其先决条件都伴有电磁振荡或者是由电磁振荡引起的。 Morrell physician assumes that all disease and its prerequisites are accompanied or caused by electromagnetic vibration of electromagnetic oscillations. 根据Morrell医生的假定,不存在在身体内或身体周围没有病理的振荡的病理现象。 According to doctors assumed Morrell, does not exist in the body pathology or no pathological oscillations around the body.

病理的电磁振荡与每个病人身体的健康的振荡一起是活跃的。 Electromagnetic oscillations pathological oscillations and health of each patient's body to be active together. 由于病人自己的振荡或信号本质上是电磁的,因此通过使用电极和电磁测量装置能够检测出它们。 Because it is the patient's own electromagnetic signal or oscillating nature, Therefore, by using the electrodes and the electromagnetic measuring device capable of detecting them. 使用被称为分离器的东西,通过滤波器可以滤除在所有人体中实际上相同的和谐的振荡。 Using what is referred to as separator, it can filter out virtually identical in all humans harmonious oscillations passed through the filter. 可能由病原体引起的干扰频率则不能被滤波器捕获。 May interfere with the frequency caused by a pathogen can not be captured filter. 因此,分离器仅仅与和谐的频率共振。 Thus, the separator and harmony resonance frequency only. 这样,就可能分离和谐的频率和不和谐的频率。 Thus, it is possible to separate frequency and dissonant harmony.

糖尿病是一种危害生命的疾病,其影响了估计两千万美国人,这其中50%的人并不知道得病。 Diabetes is a disease hazards of life, it affects an estimated twenty million Americans, of which 50 per cent of people do not know sick. 最新的统计估计显示全世界约有一亿两千五百万人被诊断患有糖尿病,并且到2010年,该数字有望上升到二亿两千万。 The latest statistics show an estimated 100 million people around the world 25 million people are diagnosed with diabetes, and by 2010, that number is expected to rise to two hundred and twenty million. 糖尿病的早期检测是可处理的,以允许那些受到疾病侵害的人活得更长和更健康。 Early detection of diabetes is treated, in order to allow those who have been against the disease live longer and healthier. 血糖水平的监视和跟踪提供了有价值的信息,以帮助控制病人的糖尿病。 Blood sugar level monitoring and tracking provides valuable information to help control the patient's diabetes. 定期使用胰岛素的糖尿病人需要每天检查葡萄糖水平三次或更多次。 Regular use of insulin diabetics need to check daily glucose levels three or more times. 这种监视葡萄糖水平的过程允许医生在检测疾病的治愈中掌握即时的和原始的信息。 This monitoring process glucose levels allows doctors to obtain real-time information and original cure detection disease.

在二十世纪七十年代期间,发明了基于化学试验片的监视葡萄糖水平的仪器,该化学试验片能够与抽出的血液起反应。 During the 1970s, he invented the instrument to monitor glucose levels of a chemical test piece based on the chemical can react with the test piece drawn blood. 现在,有用于确定血糖水平的复杂的电子仪器;然而,这些仪器仍然使用侵入性的技术以从病人抽出血样。 Now, there are sophisticated electronic instruments used to determine blood glucose levels; however, these instruments still use invasive techniques to extract blood samples from patients. 然而,这种技术是侵入性的,不方便的,并且有时让人感到疼痛。 However, this technique is invasive, inconvenient, and sometimes people feel pain. 希望使用电磁振荡以确定活体内某种物质的数量,例如血糖,而不是使用侵入性的技术,例如验血。 Desirable to use electromagnetic oscillations to determine the amount of a substance in vivo, such as blood glucose, instead of using invasive techniques, such as blood tests. 此外,使用不同物质的振荡以确定活体内任何物质的水平也将是有用的。 In addition, the use of different materials to determine the level of any substance oscillation in vivo will also be useful.

因此,所需要的是能够通常通过使用电磁振荡,非侵入性地测试物质,例如血液中或身体内的葡萄糖水平的方法和/或装置。 Accordingly, what is needed is typically by use of electromagnetic oscillation can be non-invasively test substance, for example, a method of glucose level or blood within the body and / or devices.

发明内容 SUMMARY

前面提到的需要由本发明的各实施例实现。 By the need to achieve the aforementioned embodiments of the present invention. 因此,在一个实施例中,提供了一种用于非侵入性地测量活体中物质水平的方法和系统,所述方法包括:测量植物性系统不同经脉上的点之间的电势,或者测量有机体皮肤上不同点之间的电势;将所述测量值存储为参考点;施加多个低电流电信号,其中每个信号相应于前面来自于所述物质的已知浓度的提取的电信号,以确定所述参考点和对所述电信号的响应之间的最大差,接着通过使用所述最大差和前面确定的表,确定所述活体内所述物质的数量,其中所述的表将所述物质的所述数量与所述最大差关联。 Thus, in one embodiment, a method and system for non-invasively measuring the level of material in a living body, the method comprising: an electrical potential difference between the measurement points on different meridians plant system, or measuring the organism potential between different points on the skin; applying a plurality of known concentrations electrical low current electrical signals, wherein each signal corresponds to the front from the extracted substance, to; the measured value is stored as the reference point determining a maximum difference between the reference point and in response to said electrical signal, and then determined by using the difference between the maximum and the preceding table, determining whether the amount of the substance in vivo, wherein said table the the amount of said substance associated with the maximum difference.

在另一方面,公开了确定活体内物质的方法,所述方法包括施加电子特征信号(signature signal)到所述活体,其中所述电子特征信号相应于所述物质的预定数量;测量所述活体对所述施加的特征信号的响应;以及确定增加的响应是否由施加所述电子信号(electrical signature)产生,如果是,则从所述物质的预定的数量确定所述活体内所述物质的数量。 In another aspect, a method of determining a substance in vivo, the method comprising applying an electronic signature signal (signature signal) to the living body, wherein the electrical signature signal corresponds to a predetermined amount of the substance; measuring the living body in response to the applied signature signal; and determining whether an elevated response generated by applying the electrical signal (electrical signature), and if so, the amount of material from said predetermined number of the in vivo determination of the substance .

在另一方面,所述“身体响应”的检测是根据对于施加到所述皮肤上两点之间的身体上的相同物质信号波形(signature wave),监视连续生成的电导率变化与时间的关系曲线的收敛水平。 In another aspect, detecting the "body response" is based on the dependence of the conductivity change with time for the same signal waveform substance (signature wave) on the skin on the body to be applied between two points, monitoring continuously generated horizontal convergence curve.

在另一方面,有用于将人体血液内不同葡萄糖分子浓度的自振荡频率与参考溶液中预知葡萄糖浓度的类似频率相匹配的过程。 On the other hand, there is a process for the self-oscillation frequencies of different concentrations of glucose molecules in the human blood and the glucose concentration in the reference solution is similar to the frequency predicted matches. 作为这种共振或“葡萄糖共振(GlucoResonance)”的结果,人体上两个预定义的穴位之间的电势(“穴位水平”(“aculevel”))变化很大。 As a result of this resonance or "glucose resonance (GlucoResonance)", the potential between two predefined points on the human body large ( "aculevel" ( "aculevel")) changes. 所述变化表示测量的具有葡萄糖共振的穴位水平和没有葡萄糖共振的穴位水平之间的差。 The variation represents the difference between the resonance point level with the glucose measurement without glucose levels and resonance points.

一个方面使用从几百个具有不同葡萄糖水平的生物制剂溶液提取的自振荡频率的内部数据库,其中葡萄糖水平包括从10mg/dl到600mg/dl的血糖水平范围。 The use of an internal database extracted from hundreds of biologics solutions having different glucose levels of self-oscillation frequency, wherein the blood glucose level comprises a level ranging from 10mg / dl to 600mg / dl of. 为了测试血液中的葡萄糖,对于所述参考数据库内的每个项目,可以在病人的皮肤上的预定点或穴位上施加低电流电信号。 To test the glucose in blood, for each item within the reference database, a low current electrical signal may be applied to the patient's skin at a predetermined point or points. 这些电信号被施加到这些点上,即之前已经测量了电势以建立校准穴位水平。 These electrical signals are applied to these points, i.e. before the potential has been measured to establish the level of the calibration points. 接着对于每个数据点的所述测量的穴位水平与所述校准穴位水平比较。 Then compares the measured level points for each data point and the calibration point level. 这些值之间的大的扰动/变化表示所述病人的血糖水平。 Large disturbance / variation between these values ​​representing the patient's blood glucose level.

在其它方面,公开了用于测量活体内物质的装置,所述装置可以包括:处理器装置;用于施加和接受信号的至少两个电极装置,用于确定所述至少两个电极装置之间的阻抗的阻抗测量装置;用于存储电子特征信号的数据库的存储装置,其中每个电子特征信号相应于物质的不同数量;以及用于将所述电子特征信号施加到所述至少两个电极装置的装置。 In other aspects, an apparatus for measuring a substance in a living, the apparatus may comprise: a processor means; at least two electrode means for applying and receiving signals between the at least two electrode means for determining the impedance measurement impedance means; memory means for storing a database of electrical signature signals, wherein each electrical signature signal corresponds to different amounts of material; and means for applying the electrical signature signals to the at least two electrode means s installation.

结合附图,从下面的详细描述中将更清楚地理解这些和其它特征和优点。 DRAWINGS These will be more clearly understood and other features and advantages from the following detailed description. 注意到附图并不旨在表示本发明唯一的构成是重要。 Noting the drawings are not intended to represent the only configuration of the present invention is important.

附图说明 BRIEF DESCRIPTION

图1a是说明本发明的一个实施例的示意图;图1b是说明能够用于本发明的不同实施例中的阻抗计的示意图;图1c是说明能够用于本发明的不同实施例中的复位电路(resetcircuit)的示意图;图2说明用于非侵入性地测量活体内物质的定量信息的一般过程;图3a说明用于非侵入性地测量活体内物质的定量信息的详细过程;图3b是图3a中所示的过程的继续;图4a-4b说明了用于说明时域中进行的阻抗测量的曲线图;图5是说明本发明的另一个实施例的示意图;图6a是说明表现本发明的一个或更多方面的便携仪器的透视图;图6b是图6a所示的便携仪器的分解透视图。 Figure 1a is a schematic of one embodiment of the present invention will be described; FIG. 1b is a diagram illustrating the impedance of different embodiments of the present invention can be used to meter; FIG. 1c illustrates different embodiments of the present invention can be used in the reset circuit schematic (ResetCircuit); Figure 2 illustrates an exemplary non-invasively measuring quantitative information general procedure vivo substances; FIG. 3a illustrates a non-invasive quantitative measurement information detailed process in vivo substances; FIG. 3b is a diagram process continues in FIG. 3A; FIG. 4a-4b illustrate a graph for explaining the impedance measurement performed when the domain; FIG. 5 is a schematic diagram of another embodiment of the described embodiment of the present invention; Figure 6a illustrates the performance of the present invention a perspective view of one or more aspects of the portable device; Figure 6b is an exploded perspective view of the portable device shown in FIG. 6a.

具体实施方式 Detailed ways

然而,应该理解下面的公开提供了许多不同的实施例,或例子,其用于实现本发明的不同特征。 However, it should be understood that the following disclosure provides many different embodiments, or examples, various features of the present invention is implemented for use. 下面描述了组件,信号,消息,协议,以及装置的特定的例子,以简化本公开。 The following describes specific examples of components, signals, messages, protocols, and means to simplify the present disclosure. 当然,这些仅是例子并不在于限制权利要求中描述的本发明。 Of course, these are merely examples that do not limit the invention described in the claims. 提出了公知的元件而没有进行详细的描述,这是为了不以不必要的细节模糊本发明。 Made known elements not described in detail, it is in order not to obscure the present invention with unnecessary detail. 对于大多数部分,省略了获得本发明的完整理解所不必需的细节,其详细程度处于相关领域的一般技术人员的能力范围内。 For the most part, details are omitted to obtain a complete understanding of the present invention are not necessary, which is the level of detail within the ability of one of ordinary skill in the relevant art. 省略了关于这里描述的控制电路和机制的细节;这是因为这种控制电路处于相关领域的一般技术人员的能力范围内。 Details are omitted, and mechanisms for the control circuit described herein; This is because such a control circuit is within the ability of one of ordinary skill in the relevant art.

在中国医学中穴位是被人所公知的。 In Chinese medicine, acupuncture points are known to people. 在二十世纪50年代,ReinhardVoll医生研究了针刺疗法并认识到人体在皮肤上具有约2000个穴位,这些穴位沿着被称为经脉的20条线。 In the 1950s, ReinhardVoll doctors studied acupuncture and realize that the human body has about 2,000 acupuncture points on the skin, these points along the 20 lines are called meridians. 根据中国传统医学,经脉是能量的通道并且能量运动被称为气(Qi)。 According to traditional Chinese medicine, meridians channel energy and the energy of motion is referred to as gas (Qi). 西方研究还表明可用通过测绘皮肤电阻而发现穴位。 The study also shows that the West Point found by mapping available and skin resistance. 因此,穴位是特殊的表皮解剖位置,其中在穴位上或穴位之上的皮肤的电阻比周围皮肤的电阻低,从而使穴位成为身体内电磁信号的关键的导体。 Thus, special points epidermis anatomical location, wherein the resistance of the skin at the point or points on a lower resistance than the surrounding skin, so that the key points of the conductors within the body of an electromagnetic signal. 一些研究已经表明穴位阻抗约为周围皮肤阻抗的一半(或者穴位的电导率为周围皮肤电导率的两倍高)。 Some studies have shown that acupuncture impedance is about half the impedance of the surrounding skin (or acupuncture points of conductivity is twice as high as the surrounding skin conductivity). 因此,就可能在穴位测量流电的皮肤或其它路径的阻抗或电导率,以确定有机体的自振荡频率的共振点。 Thus, it is possible to measure the galvanic skin impedance or conductivity or other paths in the points in order to determine the resonance point of the self-oscillation frequency of the organism. 在这种情况下,人体变为共振点的主要的检测器,同时身体的任何两个不同点之间的电导率可能是身体对共振作用反应的第二“检测器”。 In this case, the main body of the detector becomes the resonance point, while the electrical conductivity between any two different points of the body may be a second "detector" body resonance effect reaction.

如前所述,在某些治疗方法中,不和谐的频率(例如,某些病原体的特征频率)可以被滤除和转化。 As described above, in certain therapeutic methods, discordant frequency (e.g., frequency characteristics of certain pathogens) may be converted and filtered. 使用电极,这些被转化的频率和来自分离器的和谐的频率可以被反馈给病人。 Using an electrode, these frequencies are frequency converted and harmony from the separator may be fed back to the patient. 病人自身的电磁场对治疗信号起反应又使修改的模式进入测量仪器和分离器。 The patient's own electromagnetic signal responsive to treatment mode and enter the changes to the measuring instrument and the separator. 可以重复这一过程,因此身体内的病理信号随之减少并最终被消除。 This process can be repeated, so pathological signals within the body be reduced and eventually eliminated. 已经表明从身体消除病理信号具有有益的治疗效果。 It has been shown to have beneficial therapeutic effects from the body to eliminate pathological signal.

本发明的一个方面认识到某些物质,例如葡萄糖也具有特殊的电磁振荡或频率。 One aspect of the present invention recognize that certain substances, such as glucose have a specific frequency or electromagnetic oscillation. 对于这种应用,“物质”是一种特定的物体或者明确的化学合成物,例如葡萄糖。 For this application, "substance" is a specific object or defined chemical composition, such as glucose. 与特定物质关联的振荡可以随有机体内物质的数量改变而改变。 It may vary depending on the number of organic substances in the body to change the oscillation associated with a particular substance. 因此,本发明的不同方面使用电磁振荡来确定活体内的物质,例如血糖的浓度。 Accordingly, various aspects of the present invention uses electromagnetic oscillations to determine the substance in vivo, for example, blood glucose concentration.

如前所述,每种物质还具有其自身的磁性的“自”频率振荡。 As described above, each substance also has a "self" frequency of the oscillating magnetic itself. 当通过电极将反应物的频率引入到有机体时,反应物的频率与有机体的频率相互作用并产生频率幅度的变换。 When the frequency is introduced into the organism through the electrode reactant, and the frequency organism reactants interact with each converted frequency amplitude. 可以检测和测量信号的幅度或“激励”的响应或变化。 Signal amplitude can be detected and measured, or "excited" response or change. 因此,当与参考点相比较时(参考点也可以是使用相同反应物特征的第一电导率/阻抗测量),可能确定哪个信号频率产生了最大的激励。 Thus, when compared to the reference point (reference point may be used a first conductivity / impedance characteristic was measured in the same reactor), which may determine the frequency of the signal produced the largest excitation. 当比较多个频率时(每个频率相应于已知的物质水平),产生最大激励的频率是相应于有机体内物质水平的频率。 When comparing the plurality of frequency (each frequency corresponding to a known level of material) to produce a frequency corresponding to the maximum excitation frequency of an organic substance level in vivo.

因此,对于参考数据库中的每个参考相关,具有特定频率的低电流电信号可以被引入到有机体内,其被施加到人体上的针压点或任何其它点,这里电势以前已经被测量。 Thus, the reference database for each of the reference correlation, low current electrical signal having a specific frequency may be introduced into the organism, which is applied to the acupressure points on the human body or any other point where the potential has been measured before. 对于参考数据库中的每个相关可以重复这一过程,直到发现匹配(例如,产生最大激励的信号)。 For each relevant reference database may repeat this process until a match is found (e.g., the maximum excitation signal is generated).

现在转到图1a,说明了本发明的一个方面。 Turning now to FIG. 1a, illustrating one aspect of the present invention. 在这个方面,有用于测量活体内物质水平的测量仪器10。 In this regard, for measuring the level of the substance in vivo measurement instrument 10. 测量仪器10包括用户接口12。 Measurement instrument 10 includes a user interface 12. 用户接口12可以包括一个或更多接口,其能够接收输入和向用户或软件主体提供输出。 The user interface 12 may include one or more interfaces, which is capable of receiving input and providing output to a user or software main body. 用户接口12的特定方面可以包括显示器,触敏输入屏,输入键,麦克风和/或扬声器(未示出)。 Particular aspect of the user interface 12 may include a display, a touch-sensitive input screen, input keys, a microphone and / or speakers (not shown).

用户接口12可以与处理器14通信。 The user interface 12 may be in communication with the processor 14. 在本发明的某些方面,处理器14控制测量仪器10的过程和不同功能。 In certain aspects of the present invention, the processor 14 controls the process of measuring instrument 10 and the different functions. 在本发明的一些方面,处理器14可以被连接到第一存储器16。 In some aspects of the present invention, the processor 14 may be coupled to the first memory 16. 存储器16可以被构造在处理器14内或者是外部存储器芯片。 The memory 16 may be configured within the processor 14 or an external memory chip. 在本发明的某些方面,处理器14还可以与第二存储器18通信。 In certain aspects of the present invention, the processor 14 may also communicate with a second memory 18. 第二存储器18可以是外部存储器芯片或构造在处理器14内的存储器。 The second memory 18 may be an external memory chip or a memory configured within processor 14. 在某些实施例中,第二存储器可以包括参考数据库20,例如提取的葡萄糖反应物特征的数据库。 In certain embodiments, the second memory 20 may comprise a reference database, such as database glucose response was extracted feature.

在一个实施例中,参考数据库20可以是将参考或特征频率与“反应物”中物质的特定水平关联的数值表。 In one embodiment, the reference database 20 may be a table of values ​​associated with a specific reference level, or the characteristic frequency and "reactant" in substance. 如在该应用中使用的,反应物是通常与液体或溶剂混合以形成混合物的物质。 As used in this application, the reactants are usually mixed with a liquid substance or solvent to form a mixture. 由于反应物的生物或化学活性可以选择反应物。 Since the biologically or chemically active reactants may be selected reactant. 如后面将解释的,反应物可以被用于确定物质的自振荡频率。 As will be explained later, the reaction may be used to determine the self-oscillation frequency thereof. 通过使用实验的技术,关联自振荡频率与反应物中物质数量的表格可以被建立并载入到数据库20中。 Experiments using techniques, quantities of substances associated with self-oscillating table may be created and loaded into the database 20 and the frequency of the reactants.

存储器18可以与一对电极22a和22b通信。 The memory 18 may be in communication with the pair of electrodes 22a and 22b. 在某些实施例中,一个电极可以是有源-正极(active-positive),另一个电极可以是无源-负极(passive-negative)。 In certain embodiments, the active electrode may be a - a positive electrode (active-positive), the other electrode may be passive - negative (passive-negative). 如后面将解释的,电极22a和22b适用于与有机体的皮肤相互作用并可以被用于测量皮肤上两点之间的阻抗。 As will be explained later, the electrodes 22a and 22b are adapted to interact with the skin of the organism and can be used to measure the impedance between two points on the skin. 在某些实施例中,电极与阻抗计24通信,阻抗计24确定或测量电极22a和22b之间的阻抗。 In certain embodiments, the communication electrodes and the impedance meter 24, determined or measured impedance meter 24 the impedance between the electrodes 22a and 22b. 阻抗计24可以与放大器26通信,其放大从阻抗计24发送的信号。 Impedance meter 24 may be in communication with the amplifier 26, which amplifies the signal 24 transmitted from the impedance meter.

在示例性的实施例中,放大器26可以与模数转换器28通信,其将来自放大器的模拟信号转换为数字信号。 Converts an analog signal in an exemplary embodiment, the amplifier 26 may be in communication with the analog to digital converter 28, which is a digital signal from the amplifier. 在一些实施例中,数字信号可以被发送到处理器14。 In some embodiments, the digital signal may be sent to the processor 14.

复位电路30还可以被连接到测量仪器10和与处理器14通信。 The reset circuit 30 may also be connected to the communication processor 10 and the measurement instrument 14. 复位电路30还可以与电极22a和22b通信。 The reset circuit 30 may also be in communication with the electrodes 22a and 22b. 在一些实施例中,复位电路30可以适用于清除或“短路”电极之间的任何残余的电荷。 In some embodiments, the reset circuit 30 may be adapted to remove any residual charge between or "short" electrode. 换句话说,复位电路30清除任何残余的电容量和/或改变极化,其可能在电极之间的皮肤上产生。 In other words, the reset circuit 30 to remove any residual capacitance and / or polarization change, which may occur on the skin between the electrodes. 测量仪器10可以由电源供电,例如电池(未示出)。 Measuring instrument may be powered by power source 10, such as a battery (not shown).

现在转到图1b,说明了阻抗计24的一个实施例。 Turning now to FIG. 1b, it illustrates an embodiment of the impedance meter 24. 在该实施例中,电路39确定两个电极之间的阻抗的相对变化,并输出表示阻抗变化的相应的电压。 In this embodiment, the circuit 39 determines the relative change in the impedance between the two electrodes, and outputs a voltage corresponding to the change in impedance. 在该实施例中,电路39可以包括分别到电极22a和22b(图1)的导线40a和40b。 In this embodiment, the circuit 39 may include a wire, respectively to the electrodes 22a and 22b (FIG. 1) 40a and 40b. 导线40a可以被连接到运算放大器42的负极或反相输入。 Wire 40a may be connected to the negative or inverting input of the operational amplifier 42. 运算放大器42的正极或非-反相输入可以被连接到包括电阻44,共地线46,电压参考48,以及电阻50的部分电路(partial circuit)。 The positive electrode or the operational amplifier 42 - may be connected to the inverting input comprising a resistor 44, 46 were ground, the reference voltage 48, and a part of the circuit (partial circuit) 50 of the resistor. 电压参考48的正导线和电阻50的负导线可以被连接到电阻52。 The positive voltage reference conductor 48 and the negative lead of the resistor 50 may be connected to the resistor 52. 电阻52可以被连接到导线40a和运算放大器42的负输入。 Resistor 52 may be connected to the negative input lead of operational amplifier 42 and 40a.

在该示例性实施例中,导线40b被连接到运算放大器42的输出。 In the exemplary embodiment, the wire 40b is connected to the output of the operational amplifier 42. 电阻54还将导线40a连接到导线40b。 Resistor 54 is also connected to the lead wires 40a 40b. 运算放大器42的输出向可变增益放大器56输出电压,可变增益放大器56适用于接收来自处理器14(图1)的信号。 The output of the operational amplifier 42 of a voltage to the variable gain amplifier 56, variable gain amplifier 56 adapted to receive the signal from the processor 14 (FIG. 1). 因此,电路39向可变增益放大器56输出电压,其相应于电极之间的阻抗的变化。 Thus, the circuit 39 to the variable gain amplifier 56 output voltage, which corresponds to a change in impedance between the electrodes. 可变增益放大器56放大该电压并将放大的信号发送到模数转换器58。 Amplifies the voltage signal and amplifying the variable gain amplifier 56 is sent to the analog to digital converter 58. 在该示例性实施例中,模数转换器58转换来自于可变增益放大器56的模拟信号,并将转换的数字信号发送到处理器14。 In the exemplary embodiment, the analog to digital converter 58 converts the analog signal from the variable gain amplifier 56, and transmits the converted digital signal to the processor 14.

现在转到图1c,说明了复位电路30的一个方面。 Turning now to FIG. 1c, illustrating one aspect of the reset circuit 30. 在该示例性的实施例中,有一般的模拟开关60,其适用于从导线62接收来自于处理器14(图1)的输入命令。 In the exemplary embodiment, there is a general analog switch 60, which is adapted to receive from wire 62 from the processor 14 (FIG. 1) input commands. 模拟开关60还可以分别通过导线64a和64b与电极22a和22b(图1)通信。 The analog switch 60 may also communicate the wires 64a and 64b and the electrodes 22a and 22b (FIG. 1), respectively. 当接收到来自处理器14的合适的命令后,模拟开关60被启动,这有效地“短路”了电极之间的任何残余电荷。 Upon receipt of the appropriate command from the processor 14, the analog switch 60 is activated, it effectively "short circuit" of any residual charge between the electrodes. 在其它实施例中(未示出),电路可以适用于交替电极22a和22b的极性。 In other embodiments (not shown), the circuit may be adapted to alternate the polarity of the electrodes 22a and 22b.

图2说明了确定活体内,例如人体内特定物质的数量的一般方法200。 Figure 2 illustrates the determination in vivo, for example, the number of general methods of a particular substance in the human body 200. 过程从步骤202开始并进行到步骤204,这里相应于一个频率的电子特征波形或信号被施加到电极上(例如图1的电极22a和22b),其中电极可以与有机体的皮肤接触。 From the process step 202 and proceeds to step 204, wherein the electronic frequency corresponding to a signal or waveform is here applied to the electrodes (such as electrodes 22a and 22b in FIG. 1), wherein the electrode may be in contact with the skin of the organism. 施加的电子特征信号与预先确定的物质浓度相关。 Applied to an electronic signature signal associated with a predetermined concentration of the substance. 在本方法的一些方面,存在存储在传统的存储芯片上的预先存在的参考数据库(例如,图1的数据库20),其包括“特征”信号频率(例如22-24KHz)和已知的物质反应物浓度之间的关系。 In some aspects of the method, in the presence of a conventional memory chip reference database (e.g., database 20 of FIG. 1) preexisting storage, which includes a "feature" frequency signal (e.g. 22-24KHz) and reacting the known the relationship between the concentration. 因此,数据库中的每个特征频率与有机体内物质的已知浓度相关。 Thus, the frequency of each feature in the database associated with the known concentration of the organic substances in the body.

在步骤206,测量对施加的特征信号的响应或“激励”。 In step 206, measurement of the response characteristics of signals applied to or "excitation." 在步骤208,过程确定响应是否被“增加”。 In step 208, the process determines whether the response is "add." 换句话说,有机体是否以这种方式响应,即显示施加的电信号和已知的物质浓度之间的正相关。 In other words, if in this way the organism in response, i.e., a positive correlation between the electric signals applied to the display and the known concentration of the substance. 如果确定对施加的电子特征(electrical signature)的响应被增加,则过程进行到步骤210,这里可以产生之间的相关性以确定有机体内物质(例如葡萄糖)的水平。 If it is determined in response to the applied electrical characteristics (electrical signature) is increased, the process proceeds to step 210, to determine the correlation between the organic substances in the body (e.g., glucose) can be produced here between. 在另一方面,如果没有增加的响应,则过程可以返回到步骤204,这里,在一些实施例中,可以施加新的电子特征波形。 On the other hand, if no increase in response, then the process may return to step 204, where, in some embodiments, may be applied to new electronic signature waveform.

如下面将要解释的,在一些实施例中,过程可以迭代地施加多个电子特征信号,这里每个信号相应于特定的物质浓度。 As will be explained below, in some embodiments, an iterative process may be applied to the plurality of electrical signature signals, where each signal corresponds to the concentration of a specific substance. 可以确定引起最大激励量的电子特征信号(或多个信号),并且可以再次访问参考数据库以确定相应于频率的特定的物质水平。 It can determine the cause of the maximum amount of the excitation electron signature signal (or signals), and the reference database can be accessed again to determine a frequency corresponding to the level of a specific substance. 因此,能够确定物质的水平并通过用户接口显示物质水平。 Accordingly, it is possible to determine the level of the substance and the level of the substance through the user interface display.

作为一个例子,人类血液中的不同浓度的葡萄糖分子的自振荡频率能够与参考溶液中已知浓度的葡萄糖的类似频率匹配。 As an example, the self-oscillation frequency of the glucose molecules in the human blood at various concentrations can be similar to the frequency matching the reference solution of known concentration of glucose. 一旦频率匹配,则可以容易地确定血液中相应的葡萄糖水平。 Once the frequency matching, you can readily determine the corresponding blood glucose level.

图3a和3b说明图2所示的一般方法的详细的示例性实施例。 Figures 3a and 3b illustrate in detail an exemplary embodiment of the general method shown in FIG. 过程在步骤302开始,在某些实施例中,来自用户接口的信号启动该过程。 Process begins at step 302, in some embodiments, a signal from the user interface, the process is started. 在其它方面,作为预先编程的进程或定时电路的结果,过程可以由处理器启动。 In other aspects, a pre-programmed process or result of the timing circuit, the process may be initiated by the processor. 在启动后,过程然后进行到步骤304,这里通过电极22a和22b测量皮肤上两个不同点之间的电阻。 After the start, the process then proceeds to step 304, the resistance between the two different points on the skin where measured by electrodes 22a and 22b. 在某些实施例中,两个点可以是落在不同经脉上的穴位。 In certain embodiments, two points may be points fall on different meridians. 在步骤306,过程确定阻抗信号(例如,表示阻抗的电压)是否处于可接受的预定的限度内。 In step 306, the process determines the impedance signal (e.g., voltage represents the impedance) is within predetermined acceptable limits. 例如,如果来自阻抗测量的读数太低,则可以调整放大器增益。 For example, if the readings from the measured impedance is too low, the gain of the amplifier may be adjusted. 如果读数没有处于预定的限度内,则在步骤308,计算增益系数。 If the reading is not within predetermined limits, then at step 308, the gain coefficient is calculated. 在步骤310中,增益系数可以被存储在存储器中以用于在以后进行额外的阻抗测量中的用途。 In step 310, the gain coefficient may be stored in memory for use for an additional impedance measurement in the future. 在步骤312,增益系数可以被用于调整放大器的增益。 In step 312, the gain factor may be used to adjust the gain of the amplifier. 接着过程返回到步骤304,在步骤304再次测量阻抗。 The process then returns to step 304, at step 304 the measured impedance again. 在步骤306,过程确定新的阻抗信号是否处于可接受的预定的限度内。 In step 306, the process determines the new impedance signal is within predetermined acceptable limits. 一旦已经确定该信号处于可接受的限度内,则过程进行到步骤314。 Once it has been determined that the signal is within acceptable limits, the process proceeds to step 314.

在步骤314,来自参考数据库20的第一特征信号被施加到电极上。 At step 314, a first characteristic signal from the reference database 20 is applied to the electrodes. 在一些实施例中,特征波形相应于已知的葡萄糖水平。 In some embodiments, a characteristic waveform corresponding to a known glucose level. 在步骤316,接着在时域进行电阻的一系列测量,其产生了第一数据组。 In step 316, followed by a series of resistance measurements in the time domain, which generates a first data set. 第一数据组可以由图4a所示的曲线图上的曲线402表示。 The first data set may be represented by curve 402 in the graph shown in FIG. 4a. 在图4a中,纵轴表示响应或测量的阻抗。 In Figure 4a, the vertical axis represents the impedance or measured response. 横轴表示时间。 The horizontal axis represents time. 因此,曲线402表示由于施加特征信号产生的随着时间推移的阻抗响应,其中特征信号在时间为0时被施加。 Thus, due to the application characteristic curve 402 represents signals generated over time impedance response, wherein the characteristic signal is applied as at time 0. 换句话说,曲线上的每个点表示从施加特征信号开始的在特定时间测量的阻抗值。 In other words, each point on the curve represents the impedance values ​​measured at a specific time from the start of the signature signal is applied.

返回到图3,在步骤318,接着如参考图1c所述,可以清除电极上的残余电压。 Returning to Figure 3, in step 318, then as described with reference to FIG 1C, can remove the residual voltage on the electrode. 在步骤320,再次通过电极施加特征信号。 In step 320, the signature signal is applied again through the electrodes. 这是与在步骤314施加的信号相同的信号。 This signal is applied at step 314 the same signal. 在步骤322,在时域进行另一系列的电阻抗测量,这产生第二数据组。 In step 322, a further series of electrical impedance measurements in the time domain, which generates a second data set. 第二数据组可以由图4b所示的曲线图中的曲线404表示。 The second data set may be represented by a graph 404 in the graph shown in Figure 4b. 在某些实施例中,如果没有满足预定义的指标,例如测量质量指标,可以重复步骤314到322以产生额外的数据组。 In certain embodiments, if the indicator does not meet the predefined, for example, for the measurement quality, steps 314-322 may be repeated to create additional data sets.

在步骤324,数据组彼此比较以确定是否已经达到收敛。 In step 324, the data set with each other to determine whether convergence has been reached. 收敛的结果可以由图4c所示的曲线图图表地表示,图4c表示附加到曲线404上的曲线402。 Convergence result can be represented by a graph chart shown in FIG. 4c, 4c shows a graph of the curve is attached to 404,402. 如果没有达到收敛,则过程直接进行到步骤328。 If there is no convergence is reached, the process proceeds directly to step 328. 如果达到收敛,则在步骤326,在过程进行到328之前,过程将特征组(signature set)存储为候选数据组。 If convergence is reached, then at step 326, before the process proceeds to 328, wherein the process group (signature set) is stored as candidate data groups.

在步骤328,过程确定是否已经施加了数据库中的所有特征信号。 In step 328, the process determines whether the signal applied to all of the features in the database. 如果没有,则过程进行到步骤330(图3a),其中如参考图1c所述除去残余的电压。 If not, the process proceeds to step 330 (FIG. 3A), as described with reference to FIG 1c wherein said removing residual voltage. 从步骤330,过程进行到步骤332,其中建立数据库中的下一个特征信号以被施加到电极。 Proceeds from step 330 to step 332 during which the signature signal to establish a database in the next to be applied to the electrode. 接着过程返回到步骤314,这里对于新的特征信号重复步骤314到328。 The process then returns to step 314, where a new signature signal for repeating steps 314-328. 在另一方面,如果在步骤328中,确定所有的特征信号已经被施加到电极,则过程进行到步骤334。 On the other hand, if in step 328, it is determined that all the characteristic signal has been applied to the electrodes, the process proceeds to step 334.

在步骤334中,逻辑电路检查存储的候选数据组以确定存储的候选数据组中具有最大的收敛性或“最佳”候选者的组。 In step 334, the logic circuit checks data stored candidate set to determine the stored candidate data sets having the largest convergence, or "best" candidate group. 在步骤336中,使用可响应用于产生最佳候选者的频率,接着可以访问参考数据库以确定相应于信号的的物质水平。 In step 336, for generating a frequency response using the best candidate, you may then access the database to determine the reference signal corresponding to the level of material. 因此,物质水平能够被确定并被发送到用户接口。 Accordingly, the level of the substance to be determined and transmitted to the user interface. 过程在步骤338结束。 In step 338 the process ends.

现在转到图5,有用于测量活体内物质水平的可选的测量仪器500。 Turning now to FIG. 5, for measuring the level of active material in the body of the measuring instrument 500 optional. 测量仪器500包括一对电极502a和502b。 Measuring device 500 comprises a pair of electrodes 502a and 502b. 一个电极是有源-正极(active-positive),另一个电极是无源-负极(passive-negative)。 A is an active electrode - a positive electrode (active-positive), the other passive electrode - negative (passive-negative). 电极502a和502b适用于与有机体的皮肤相互作用,并可以测量皮肤上两点,例如不同经脉上两点之间的电导率。 Electrodes 502a and 502b are adapted to interact with the organism's skin, and the skin can be measured on two points, for example, the conductivity between two points on different meridians. 电极与阻抗计504通信,阻抗计504测量电极502a和502b之间的阻抗。 And the communication electrode impedance meter 504, the impedance meter 504 measuring the impedance between the electrodes 502a and 502b. 阻抗计504可以与处理器506通信。 Impedance meter 504 may be in communication with the processor 506. 如下面将详细解释的,处理器506控制仪器500的各方面。 As will be explained in detail below, the processor 506 controls various aspects of the instrument 500. 处理器506与用于存储参考数据库510的第一存储设备508通信。 Processor 506 and 508 for storing a first communication reference database storage device 510. 在一些实施例中,第一存储设备可以是传统的存储器芯片。 In some embodiments, the first storage device may be a conventional memory chip. 在其它的实施例中,处理器506可以与用于存储临时变量和测量的数据的第二存储设备507通信。 The second communication device 507 is stored in other embodiments, the data processor 506 may be used for storing temporary variables and measured. 第二存储设备507可以或者构造在处理器内或者作为外部芯片。 507 or may be configured in a second memory device as an external processor or chip. 处理器506还可以与用户接口509通信,其可以采用多种实施例,例如屏幕和输入设备。 The processor 506 may also communicate a user interface 509, which may employ various embodiments, such as a screen and an input device.

在一些实施例中,处理器506还可以与数模转换器512通信,其中数模转换器512将来自处理器的数字信号转换为模拟信号。 Converting the digital signal in some embodiments, processor 506 may also communicate with a digital to analog converter 512, digital to analog converter 512 where the analog signal from the processor. 在一些实施例中,模拟信号可以被发送到放大器514,放大器514适用于将信号发送到电极502a和502b。 In some embodiments, the analog signal may be transmitted to the amplifier 514, the amplifier 514 is adapted to transmit signals to the electrodes 502a and 502b. 复位信号发生器516还与电极502a和502b通信并适用于发送信号到电极。 The reset signal generator 516 is also in communication with the electrodes 502a and 502b and adapted to transmit signals to the electrodes. 复位信号发生器516还与处理器506通信。 The reset signal generator 516 is also in communication with processor 506. 在某些实施例中,信号发生器516适用于交替到电极和放大器514的信号的极性。 In certain embodiments, the signal generator 516 applies an alternating signal to the amplifier 514 and the electrode polarity. 在其它的实施例中,信号发生器可以是类似于参考图1a所述的复位电路30的复位电路。 In other embodiments, the signal generator may be similar with reference to FIG reset circuit the reset circuit of claim 1a 30.

如在参考图1a所述的实施例中,用户接口509可以发送信号到处理器106以启动过程。 As in the embodiment described with reference to Figure 1a, the user interface 509 may send a signal to the processor 106 to start the process. 作为响应,处理器506启动过程,其使阻抗计504读取电极502a和502b之间的阻抗。 In response, processor 506 starts the process, the impedance meter 504 which reads the impedance between the electrodes 502a and 502b. 阻抗计504,放大阻抗信号,数字化阻抗信号并将其送回处理器506。 Impedance meter 504, the impedance signal is amplified, digitized impedance signal processor 506 and returning them. 处理器使用初始的阻抗读数以计算增益系数,该增益系数可以被存储在存储器507中以备后用。 The initial impedance readings using the processor to calculate a gain coefficient, the gain coefficient may be stored for later use in a memory 507.

接着处理器506启动读取存储在存储器508的数据库510的过程。 Then, the processor 506 starts 510 reads data stored in the process database of the memory 508. 接着来自数据库510的编码或特征信号被发送到将数字信号转换为模拟信号的数模转换器512。 Then the signal from the encoder or characteristic database 510 is transmitted to the digital to analog converter 512 converts the digital signal into an analog signal. 接着模拟信号被发送到放大器514,放大器514放大模拟信号并将该信号发送到电极502a和502b。 Then the analog signal is transmitted to the amplifier 514, the amplifier 514 amplifies the analog signal and sends the signal to the electrodes 502a and 502b. 接着电极502a和502b之间的阻抗可以由阻抗计504读出。 Next impedance between the electrodes 502a and 502b may be read by the impedance meter 504. 接着可以根据类似于上述的迭代过程确定有机体内的物质量。 It may then be determined based on the body mass of an organic iterative process similar to the above.

图6a说明系统600的示例性实施例,系统600被设计为佩戴在人的手腕上。 6a illustrates an exemplary embodiment of system 600, system 600 is designed to be worn on a person's wrist. 如所示,有便携的测量仪器602,其适用于被连接到腕带604a和604b。 As shown, there is a portable measuring instrument 602, which is adapted to be connected to the wristband 604a and 604b. 测量仪器602可以包括前面参考图1a到图1c或图5所述的所有部件。 Measurement instrument 602 may include a previously described with reference to Figure 1c or Figure 1a all of the components of FIG. 5.

图6b是图6a所示的便携式仪器602的分解透视图。 Figure 6b is an exploded perspective view of the portable device 602 shown in FIG. 6a. 在该实施例中,测量仪器602包括用户接口,用户接口包括触摸屏606和液晶显示器(LCD)608。 In this embodiment, the measuring instrument includes a user interface 602, user interface 606 includes a touch screen and a liquid crystal display (LCD) 608. 触摸屏606接受来自用户的输入,LCD608显示信息和处理结果。 The touch screen 606 receives an input from a user, LCD608 display information and processing results. 在该示例性实施例中,有封装各部件的外壳部件610a和610b,其中各部件例如前述的处理器和存储设备。 In the exemplary embodiment, a housing member 610a and member 610b of each package, wherein each of the aforementioned components, such as a processor and a storage device. 在该实施例中,可以在印刷电路版612上组装部件。 In this embodiment, the member may be assembled on a printed circuit board 612. 在该特定的例子中,电源,例如锂电池614为仪器提供需要的电源。 In this particular example, the power source, such as a lithium battery 614 provides power required for the instrument. 电极616a和616b可以位于表的下面并适用于接触人手腕的背面。 Electrodes 616a and 616b may be positioned below the table and adapted to contact with the back surface of the human wrist. 在某些实施例中,电极616a和616b由导电材料,例如不锈钢制成。 In certain embodiments, the electrodes 616a and 616b made of a conductive material, such as stainless steel. 在所示的实施例中,电极616a和616b可以被隔开以对准内分泌或淋巴系统经脉的穴位。 In the illustrated embodiment, the electrodes 616a and 616b may be spaced apart to align the lymphatic system or the endocrine meridians points.

出于说明和描述的目的已经提供了本发明的实施例的前述描述。 Purposes of illustration and description has been provided for the foregoing description of the embodiments of the present invention. 其不是穷举的或不旨在将本发明限制到所公开的严格形式。 It is not intended to be exhaustive or to limit the invention to the form disclosed strict. 根据上面的教导许多修改和变换是可能的。 According to the above teachings that many modifications and variations are possible. 这意味本发明的范围不是由该详细描述限定,而是由随附的权利要求限定的。 This means that the scope of the present invention is defined not by this detailed description, but rather by the appended claims as defined.

例如,在一些实施例中,有确定活体中物质的方法,所述方法包括:将电子特征信号施加到所述活体,其中所述电子特征信号相应于所述物质的预定的数量;测量所述活体对所述施加的特征信号的响应;以及确定增加的响应是否由施加所述电子信号产生,如果是,则从所述物质的所述预定的数量确定所述活体内所述物质的数量。 For example, in some embodiments, there is a method of determining a substance in a living body, the method comprising: applying the electrical signature signal to the living body, wherein the electrical signature signal corresponds to a predetermined quantity of said substance; measuring the biological response characteristic of the applied signal; and determining whether an elevated response generated by applying the electrical signal, if it is, the substance from the predetermined number to determine the number of the substance in vivo.

还可以有类似于上述的方法,其进一步包括提供多个电子特征信号,其中所述多个特征信号中的每个特征信号相应于所述物质的不同的预定数量。 There may also be a method similar to the above, further comprising providing a plurality of electrical signature signals, wherein each of said plurality of feature signals corresponding to the characteristic signals of the predetermined number of different species.

还可以有类似于上述的方法,其中所述多个特征信号相应于所述物质的预定数量,其范围从所述物质的较小的数量到所述物质的很大的数量。 There may also be a method similar to the above, wherein said plurality of feature signals corresponding to a predetermined amount of the substance, ranging from a small to a large amount of the substance quantity of the substance.

还可以有类似于上述的方法,其中对于所述多个电子特征信号中的每个电子特征信号重复权利要求1所述的方法。 There may also be a method similar to the above, wherein the method of claim 1 wherein the electronic signal is repeated for each of the plurality of electrical signature signals as claimed in claim.

还可以有类似于上述的方法,其中所述物质是葡萄糖。 There may also be a method similar to the above, wherein said substance is glucose.

还可以有类似于上述的方法,其中所述测量所述响应包括测量所述活体的皮肤上两个不同点之间的所述阻抗。 There may also be a method similar to the above, wherein the measuring the response of the impedance measured between the skin of the living body comprises two different points.

还可以有类似于上述的方法,其中所述测量所述响应包括:随着时间的推移测量由于施加相应于所述物质的预定数量的所述特征信号产生的多个阻抗值,以建立测量数据值的第一数据组;将所述电子特征信号重新施加到所述活体上;随着时间的推移测量由于施加所述特征信号产生的多个阻抗值,以建立测量数据值的第二数据组。 There may also be a method similar to the above, wherein the measuring the response comprises: measuring over time due to the application of the plurality of impedance values ​​corresponding to a predetermined amount of the substance of the signature signal to establish the measurement data a first set of data values; wherein the electronic signal is again applied to the living body; as measured over time due to the resistance value of the plurality of said characteristic signal produced is applied, to establish a second data set of measure data values .

还可以有类似于上述的方法,其进一步包括清除皮肤上的点之间的任何残余电荷。 There may also be a method similar to the above, further comprising clearing any residual charges between the points on the skin.

还可以有类似于上述的方法,其中所述确定包括:确定在所述第一和第二数据组之间是否存在收敛;如果在所述第一和第二数据组之间存在收敛,则将所述数据组存储为候选组。 There may also be a method similar to the above, wherein said determining comprises: determining whether there is convergence between the first and second data sets; if there is convergence between the first and second data sets, then storing said data set as a candidate group.

还可以有类似于上述的方法,其进一步包括:检查每个存储的候选组以确定具有最大收敛性的所述候选组,以及将所述物质的数量设置为相应于具有最大收敛性的所述候选组的所述特征。 There may also be a method similar to the above, further comprising: checking each stored candidate set to determine the candidate set having the largest convergence, and the number of the substance having the maximum is set to correspond to said convergence the feature candidate set.

在另一个实施例中,可以有用于测量活体内物质的装置,所述装置的特征在于:处理器装置;用于施加和接受信号的至少两个电极装置,用于确定所述至少两个电极装置之间的阻抗的阻抗测量装置;用于存储电子特征信号的数据库的存储装置,其中每个电子特征信号相应于物质的不同数量;以及用于将所述电子特征信号施加到所述至少两个电极装置的装置。 In another embodiment, there may be means for measuring a substance in a living, said apparatus comprising: a processor means; at least two electrode means for applying and receiving signals, means for determining at least two electrodes impedance measuring means between the impedance means; memory means for storing a database of electrical signature signals, wherein each electrical signature signal corresponds to different amounts of material; and means for applying the electrical signature signals to the at least two It means an electrode arrangement.

还可以有类似于上述的装置,其进一步的特征在于,用于放大来自所述阻抗确定装置的信号的放大器装置;以及用于将来自所述放大器装置的模拟信号转换为数字信号的模数转换装置。 There may also be an apparatus similar to the above, further characterized in that the amplifier means for amplifying the signal from the impedance determining means; and means for converting the analog signal from the amplifier means to digital signals in analog to digital conversion device.

还可以有类似于上述的装置,其进一步的特征在于,用于调节所述放大装置的增益的增益调节装置。 There may also be an apparatus similar to the above, further characterized in that, for adjusting the gain of the gain of the amplifying means adjusting means.

还可以有类似于上述的装置,其进一步的特征在于,用于存储从所述增益调节装置确定的增益系数的存储装置。 There may also be an apparatus similar to the above, further characterized in that the storage means for storing a gain factor determined from the apparatus gain adjustment.

还可以有类似于上述的装置,其进一步的特征在于,用于放电所述至少两个电极装置之间的任何残余电压的复位装置。 There may also be an apparatus similar to the above, further characterized in that the means used to reset any residual voltage between the at least two electrodes of the discharge apparatus.

还可以有类似于上述的装置,其进一步的特征在于,用于容纳所述测量装置的部件的外壳装置,其中所述外壳装置适用于与带状装置结合。 There may also be an apparatus similar to the above, further characterized in that the housing means for receiving said measurement means of the device, wherein said housing means is adapted to bind to the strap means.

还可以有类似于上述的装置,其中所述带状装置是手腕带状装置。 There may also be an apparatus similar to the above, wherein said strap means is a wrist strap means.

还可以有类似于上述的装置,其中所述电极装置部分地由不锈钢制成。 There may also be an apparatus similar to the above, wherein said electrode means is partially made of stainless steel.

可以有类似于上述的装置,其中所述物质是葡萄糖。 It may be similar to the above apparatus, wherein said substance is glucose.

可以有类似于上述的装置,其进一步的特征在于:用于转换来自于所述存储装置的数字信号的数模转换装置;以及用于放大来自于所述数模转换装置的模拟信号的放大器装置。 Can be similar to the above apparatus, further characterized by: a digital to analog conversion means for converting the digital signal from said storage means for; and an amplifier means for amplifying the analog signal from the digital to analog conversion means .

Claims (20)

1.一种确定活体内物质的方法,所述方法包括:将电子特征信号施加到所述活体,其中所述电子特征信号相应于所述物质的预定的数量;测量所述活体对所述施加的特征信号的响应;以及确定增加的响应是否由施加所述电子信号产生,如果是,则从所述物质的所述预定的数量确定所述活体内所述物质的数量。 1. A method of determining substances in vivo, the method comprising: applying the electrical signature signal to the living body, a predetermined amount corresponding to the substance wherein the electrical signature signal; measuring the living body is applied to the response characteristic signal; and determining whether an elevated response generated by applying the electrical signal, if it is, the substance from the predetermined number to determine the number of the substance in vivo.
2.如权利要求1所述的方法,其进一步包括提供多个电子特征信号,其中所述多个特征信号中的每个特征信号相应于所述物质的不同的预定数量。 2. The method according to claim 1, further comprising providing a plurality of electrical signature signals, wherein each of said plurality of feature signals corresponding to the characteristic signals of the predetermined number of different species.
3.如权利要求2所述的方法,其中所述多个特征信号相应于所述物质的预定数量,其范围从所述物质的小的数量到所述物质的大的数量。 The method according to claim 2, wherein said plurality of feature signals corresponding to a predetermined amount of the substance, which ranges from a small amount of the substance to the large amount of material.
4.如权利要求2或3所述的方法,其中对于所述多个电子特征信号中的每个电子特征信号重复权利要求1所述的方法。 4. The method of claim 2 or claim 3, wherein the method of claim 1 wherein the electronic signal is repeated for each of the plurality of electrical signature signals as claimed in claim.
5.如权利要求1所述的方法,其中所述物质是葡萄糖。 5. The method according to claim 1, wherein said substance is glucose.
6.如权利要求1所述的方法,其中所述测量所述响应包括测量所述活体的皮肤上两个不同点之间的所述阻抗。 6. The method according to claim 1, wherein the measuring the response comprises measuring the impedance between two different points on the skin of the living body.
7.如权利要求1或4所述的方法,其中所述测量所述响应包括:随着时间的推移测量由于施加相应于所述物质的预定数量的所述特征信号产生的多个阻抗值,以建立测量数据值的第一数据组;将所述电子特征信号重新施加到所述活体上;随着时间的推移测量由于施加所述特征信号产生的多个阻抗值,以建立测量数据值的第二数据组。 7. The method of claim 1 or claim 4, wherein the measuring the response comprises: a plurality of impedance values ​​over time due to the application of the measurement signal corresponding to said predetermined number of said characteristic substance produced, to establish a first data set of measure data values; wherein the electronic signal is again applied to the living body; over time due to application of a plurality of measured values ​​of the characteristic impedance of the signal generated, to establish the measurement data values second data set.
8.如权利要求7所述的方法,其进一步包括清除皮肤上的点之间的任何残余电荷。 8. The method according to claim 7, further comprising clearing any residual charges between the points on the skin.
9.如权利要求7所述的方法,其中所述确定包括:确定在所述第一和第二数据组之间是否存在收敛;如果在所述第一和第二数据组之间存在收敛,则将所述数据组存储为候选组。 9. The method according to claim 7, wherein said determining comprises: determining whether there is convergence between the first and second data sets; if there is between the first and the second data set converged, then storing said data set as a candidate group.
10.如权利要求9所述的方法,其进一步包括:检查每个存储的候选组以确定具有最大收敛性的所述候选组,以及将所述物质的数量设置为相应于具有最大收敛性的所述候选组的所述特征。 10. The method according to claim 9, further comprising: checking each stored candidate set to determine the candidate set having the largest convergence, and setting the amount of the substance having a corresponding maximum convergence wherein the candidate set.
11.一种用于测量活体内物质的装置,所述装置的特征在于:一处理器装置;用于施加和接受信号的至少两个电极装置,用于确定所述至少两个电极装置之间的阻抗的一阻抗测量装置;用于存储电子特征信号的数据库的一存储装置,其中每个电子特征信号相应于物质的不同数量;以及用于将所述电子特征信号施加到所述至少两个电极装置的一装置。 11. An apparatus for measuring a living body material, said apparatus comprising: a processor means; and at least two electrode means for applying a receiving signal for determining the at least two electrodes between devices an impedance of the impedance measuring means; a memory means for storing a database of electrical signature signals, wherein each electrical signature signal corresponds to different amounts of material; and means for applying the electrical signature signals to the at least two It means a device electrode.
12.如权利要求11所述的装置,其进一步的特征在于:用于放大来自所述阻抗测定装置的信号的一放大器装置;以及用于将来自所述放大器装置的模拟信号转换为数字信号的一模数转换装置。 12. The apparatus of claim 11, further comprising: amplifier means for amplifying a signal from the impedance measuring means; and means for converting the analog signal from the amplifier means into a digital signal, an analog to digital conversion means.
13.如权利要求11所述的装置,其进一步的特征在于用于调节所述放大装置的增益的一增益调节装置。 13. The apparatus of claim 11, further characterized in that said amplifying means a gain adjustment means for adjusting the gain.
14.如权利要求13所述的装置,其进一步的特征在于用于存储从所述增益调节装置确定的增益系数的一存储装置。 14. The apparatus according to claim 13, further characterized by means for storing a gain from said memory means to determine the gain factor adjusting means.
15.如权利要求11所述的装置,其进一步的特征在于用于放电所述至少两个电极装置之间的任何残余电压的一复位装置。 15. The apparatus of claim 11, further characterized by a reset means for the discharge of any residual voltage between the at least two electrode means.
16.如权利要求11所述的装置,其进一步的特征在于用于容纳所述测量装置的部件的一外壳装置,其中所述外壳装置适用于与带状装置结合。 16. The apparatus of claim 11, further characterized by a housing means for accommodating said measuring member means, wherein said housing means is adapted to bind to the strap means.
17.如权利要求16所述的装置,其中所述带状装置是手腕带状装置。 17. The apparatus according to claim 16, wherein said strap means is a wrist strap means.
18.如权利要求11所述的装置,其中所述电极装置部分地由不锈钢制成。 18. The apparatus of claim 11, wherein said electrode means is partially made of stainless steel.
19.如权利要求11所述的装置,其中所述物质是葡萄糖。 19. The apparatus of claim 11, wherein said substance is glucose.
20.如权利要求11所述的装置,其进一步的特征在于:用于转换来自于所述存储装置的数字信号的一数模转换装置;以及用于放大来自于所述数模转换装置的模拟信号的一放大器装置。 20. The apparatus of claim 11, further characterized in that: a digital to analog conversion means for converting the digital signal from said storage device; and means for amplifying the analog digital to analog conversion means from a signal amplifier means.
CN 200580006926 2004-03-06 2005-03-05 Methods and devices for non-invasively measuring quantitative information of substances in living organisms CN1925786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US55091304P true 2004-03-06 2004-03-06

Publications (1)

Publication Number Publication Date
CN1925786A true CN1925786A (en) 2007-03-07

Family

ID=34976112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580006926 CN1925786A (en) 2004-03-06 2005-03-05 Methods and devices for non-invasively measuring quantitative information of substances in living organisms

Country Status (11)

Country Link
US (3) US7395104B2 (en)
EP (1) EP1722681A4 (en)
JP (1) JP2007527750A (en)
KR (1) KR20060129507A (en)
CN (1) CN1925786A (en)
AU (1) AU2005220794A1 (en)
CA (1) CA2558239A1 (en)
EA (1) EA200601463A1 (en)
IL (1) IL177889D0 (en)
TW (1) TW200535416A (en)
WO (1) WO2005086725A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103892843A (en) * 2012-12-27 2014-07-02 龙华科技大学 Non-intrusive blood glucose measurer
TWI450707B (en) * 2010-11-09 2014-09-01 Univ Chung Hua Bio-impedance measurement apparatus and assembly
CN104545910A (en) * 2014-12-29 2015-04-29 深圳市前海安测信息技术有限公司 Method and system for chronic disease early period electrophysiological detection
CN105011946A (en) * 2015-07-22 2015-11-04 通普生物科技(北京)有限公司 Method for measuring value of blood glucose

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989891B2 (en) 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
CN1925786A (en) * 2004-03-06 2007-03-07 卡里斯托医药有限公司 Methods and devices for non-invasively measuring quantitative information of substances in living organisms
JP4947440B2 (en) * 2005-11-10 2012-06-06 バイオボーション・アーゲーBiovotion AG Apparatus for determining the glucose level in the body tissue
US7937140B2 (en) * 2006-06-12 2011-05-03 Regni Jr Gerald J Detection and diagnostic system and method
US20080077072A1 (en) * 2006-08-15 2008-03-27 Richard Keenan Analyte detection system with user interface providing trend display
US20090187232A1 (en) * 2008-01-16 2009-07-23 Issa Salim Systems And Methods For Therapeutic Treatments
US8682425B2 (en) * 2008-01-30 2014-03-25 Miridia Technology Inc. Electroacupuncture system
US9307935B2 (en) 2008-10-27 2016-04-12 Biosensors, Inc. Non-invasive monitoring of blood metabolite levels
US20090270756A1 (en) * 2008-04-23 2009-10-29 Gamache Ronald W Determining physiological characteristics of animal
US20140148726A1 (en) * 2010-10-21 2014-05-29 Timothy Andrew WAGNER Methods for detecting a condition
CA2819461A1 (en) * 2010-11-30 2012-06-07 Newlife Sciences Llc Apparatus and method for treatment of pain with body impedance analyzer
US20130261420A1 (en) * 2011-06-06 2013-10-03 Semen Kucherov System and method for non-invasive diagnostic of mammals
US8781565B2 (en) 2011-10-04 2014-07-15 Qualcomm Incorporated Dynamically configurable biopotential electrode array to collect physiological data
US20130317318A1 (en) * 2012-05-25 2013-11-28 Qualcomm Incorporated Methods and devices for acquiring electrodermal activity
US9378655B2 (en) 2012-12-03 2016-06-28 Qualcomm Incorporated Associating user emotion with electronic media
US9462949B2 (en) * 2014-07-31 2016-10-11 Chung Hua University Method for biomedical system

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US455271A (en) * 1891-06-30 Shingles
FR1344459A (en) * 1962-10-18 1963-11-29 Method and apparatus for electrical study of living organisms
US3608543A (en) * 1968-10-03 1971-09-28 Univ Carnegie Mellon Physiological impedance-measuring apparatus
US3971366A (en) * 1974-11-25 1976-07-27 Hiroshi Motoyama Apparatus and method for measuring the condition of the meridians and the corresponding internal organs of the living body
US4016870A (en) * 1975-10-14 1977-04-12 Chuck Lock Electronic acupuncture point finder
JPS584982B2 (en) * 1978-10-31 1983-01-28 Matsushita Electric Ind Co Ltd
US4317817A (en) * 1979-08-27 1982-03-02 Richardson-Merrell Inc. Novel steroid 5α-reductase inhibitors
FR2473882B1 (en) * 1980-01-21 1983-10-28 Deloffre Auguste
US4494552A (en) * 1980-08-08 1985-01-22 R2 Corporation Physiological monitoring electrode system
US4436094A (en) * 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
CA1196691A (en) * 1982-01-12 1985-11-12 Bradley Fry Reconstruction system and methods for impedance imaging
US4557271A (en) * 1983-05-11 1985-12-10 Stoller Kenneth P Method and apparatus for detecting body illness, dysfunction, disease and/or pathology
US5197951A (en) * 1983-12-14 1993-03-30 Mahurkar Sakharam D Simple double lumen catheter
US4655225A (en) * 1985-04-18 1987-04-07 Kurabo Industries Ltd. Spectrophotometric method and apparatus for the non-invasive
US4690152A (en) * 1985-10-23 1987-09-01 American Mediscan, Inc. Apparatus for epithelial tissue impedance measurements
US4714080A (en) * 1986-10-06 1987-12-22 Nippon Colin Co., Ltd. Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation
US5163439A (en) * 1986-11-05 1992-11-17 Dardik Irving I Rhythmic biofeedback technique
US4897162A (en) * 1986-11-14 1990-01-30 The Cleveland Clinic Foundation Pulse voltammetry
US4911175A (en) * 1987-09-17 1990-03-27 Diana Twyman Method for measuring total body cell mass and total extracellular mass by bioelectrical resistance and reactance
JPH0827235B2 (en) * 1987-11-17 1996-03-21 倉敷紡績株式会社 Spectroscopic measurement of sugar concentration
US4882492A (en) * 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US4947862A (en) * 1988-10-28 1990-08-14 Danninger Medical Technology, Inc. Body composition analyzer
US5028787A (en) * 1989-01-19 1991-07-02 Futrex, Inc. Non-invasive measurement of blood glucose
US5086229A (en) * 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
US5077476A (en) * 1990-06-27 1991-12-31 Futrex, Inc. Instrument for non-invasive measurement of blood glucose
US5139023A (en) * 1989-06-02 1992-08-18 Theratech Inc. Apparatus and method for noninvasive blood glucose monitoring
US5101814A (en) * 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5769793A (en) * 1989-09-08 1998-06-23 Steven M. Pincus System to determine a relative amount of patternness
US5562596A (en) * 1989-09-08 1996-10-08 Steven M. Pincus Method and apparatus for controlling the flow of a medium
US5846189A (en) * 1989-09-08 1998-12-08 Pincus; Steven M. System for quantifying asynchrony between signals
US5050612A (en) * 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
CA2028261C (en) * 1989-10-28 1995-01-17 Won Suck Yang Non-invasive method and apparatus for measuring blood glucose concentration
US5036861A (en) * 1990-01-11 1991-08-06 Sembrowich Walter L Method and apparatus for non-invasively monitoring plasma glucose levels
US5070874A (en) * 1990-01-30 1991-12-10 Biocontrol Technology, Inc. Non-invasive determination of glucose concentration in body of patients
US5222496A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US5222495A (en) * 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths
US5146091A (en) * 1990-04-19 1992-09-08 Inomet, Inc. Body fluid constituent measurement utilizing an interference pattern
US5115133A (en) * 1990-04-19 1992-05-19 Inomet, Inc. Testing of body fluid constituents through measuring light reflected from tympanic membrane
EP0465897B1 (en) * 1990-07-09 1997-09-10 Fuji Photo Film Co., Ltd. A lens-fitted main body of a camera
US5131401A (en) * 1990-09-10 1992-07-21 Axon Medical Inc. Method and apparatus for monitoring neuromuscular blockage
US5063937A (en) * 1990-09-12 1991-11-12 Wright State University Multiple frequency bio-impedance measurement system
EP0930045A3 (en) * 1991-03-07 1999-10-27 Masimo Corporation Signal processing apparatus and method for an oximeter
US5322063A (en) * 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5372141A (en) * 1992-07-01 1994-12-13 Body Composition Analyzers, Inc. Body composition analyzer
US5433197A (en) * 1992-09-04 1995-07-18 Stark; Edward W. Non-invasive glucose measurement method and apparatus
US5379764A (en) * 1992-12-09 1995-01-10 Diasense, Inc. Non-invasive determination of analyte concentration in body of mammals
US5360004A (en) * 1992-12-09 1994-11-01 Diasense, Inc. Non-invasive determination of analyte concentration using non-continuous radiation
US5339827A (en) * 1993-02-11 1994-08-23 Intech Scientific, Inc. Acupuncture system and method
US5579782A (en) * 1993-08-12 1996-12-03 Omron Corporation Device to provide data as a guide to health management
US5568049A (en) * 1993-10-22 1996-10-22 The United States Of America As Represented By The Secretary Of The Navy Fiber optic faraday flux transformer sensor and system
US5458140A (en) * 1993-11-15 1995-10-17 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
US5590650A (en) * 1994-11-16 1997-01-07 Raven, Inc. Non-invasive medical monitor system
AT130U3 (en) * 1994-11-23 1995-07-25 5E Systeme Fuer Holistische Me Apparatus and method for recording subvorrichtung and method for recording substance-specific and specific energetisstanzspezifischen body and body-specific information energetic information chen
JP3240401B2 (en) * 1994-12-07 2001-12-17 オムロン株式会社 Impedance measuring device and a health management guideline advising apparatus
US5752512A (en) * 1995-05-10 1998-05-19 Massachusetts Institute Of Technology Apparatus and method for non-invasive blood analyte measurement
US6456865B2 (en) * 1995-06-08 2002-09-24 Ilan Zadik Samson Non-invasive medical probe
KR0161602B1 (en) * 1995-06-24 1999-01-15 이재석 Component analysis of human body and analytical method thereof using bioelectrical impedance analysis
US7016713B2 (en) * 1995-08-09 2006-03-21 Inlight Solutions, Inc. Non-invasive determination of direction and rate of change of an analyte
US5725480A (en) * 1996-03-06 1998-03-10 Abbott Laboratories Non-invasive calibration and categorization of individuals for subsequent non-invasive detection of biological compounds
US6990422B2 (en) * 1996-03-27 2006-01-24 World Energy Labs (2), Inc. Method of analyzing the time-varying electrical response of a stimulated target substance
US6016445A (en) * 1996-04-16 2000-01-18 Cardiotronics Method and apparatus for electrode and transthoracic impedance estimation
US6517482B1 (en) * 1996-04-23 2003-02-11 Dermal Therapy (Barbados) Inc. Method and apparatus for non-invasive determination of glucose in body fluids
US5890489A (en) * 1996-04-23 1999-04-06 Dermal Therapy (Barbados) Inc. Method for non-invasive determination of glucose in body fluids
US5830139A (en) * 1996-09-04 1998-11-03 Abreu; Marcio M. Tonometer system for measuring intraocular pressure by applanation and/or indentation
US6120460A (en) * 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US6544193B2 (en) * 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
US5894939A (en) * 1996-10-09 1999-04-20 Frankel Industries, Inc. System for sorting post-consumer plastic containers for recycling
US6246893B1 (en) * 1997-06-12 2001-06-12 Tecmed Incorporated Method and device for glucose concentration measurement with special attention to blood glucose determinations
ES2281143T3 (en) * 1997-11-12 2007-09-16 Lightouch Medical, Inc. Method for non-invasive measurement of an analyte.
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6261236B1 (en) * 1998-10-26 2001-07-17 Valentin Grimblatov Bioresonance feedback method and apparatus
US6266774B1 (en) * 1998-12-08 2001-07-24 Mcafee.Com Corporation Method and system for securing, managing or optimizing a personal computer
US6424847B1 (en) * 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
DE19911200A1 (en) * 1999-03-13 2000-09-21 Bruno M Hess Device for measurement of bio-electric parameters such as voltage and resistance of skin or tissue between acupuncture points in a human or animal has opposite polarity constant current sources and measurement electrodes
AUPQ113799A0 (en) * 1999-06-22 1999-07-15 University Of Queensland, The A method and device for measuring lymphoedema
US6280381B1 (en) * 1999-07-22 2001-08-28 Instrumentation Metrics, Inc. Intelligent system for noninvasive blood analyte prediction
KR100324703B1 (en) * 1999-08-09 2002-02-16 차기철 Apparatus and Method for Analyzing Body Composition Using Novel Hand Electrodes
DE60012283T2 (en) 1999-10-12 2005-07-21 Tanita Corp. Instrument for a living body
US6594521B2 (en) * 1999-12-17 2003-07-15 Electrical Geodesics, Inc. Method for localizing electrical activity in the body
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
IL134381A (en) * 2000-02-03 2006-06-11 Alexander Kanevsky Non-invasive method for disease diagnosis
US6328694B1 (en) 2000-05-26 2001-12-11 Inta-Medics, Ltd Ultrasound apparatus and method for tissue resonance analysis
US6702743B2 (en) * 2000-05-26 2004-03-09 Inta-Medics, Ltd. Ultrasound apparatus and method for tissue resonance analysis
US6522903B1 (en) * 2000-10-19 2003-02-18 Medoptix, Inc. Glucose measurement utilizing non-invasive assessment methods
AU2002247008B2 (en) * 2001-01-22 2006-02-09 F. Hoffmann-La Roche Ag Lancet device having capillary action
US7039446B2 (en) * 2001-01-26 2006-05-02 Sensys Medical, Inc. Indirect measurement of tissue analytes through tissue properties
JP2004526482A (en) * 2001-02-05 2004-09-02 グルコセンス、インコーポレイテッド The method of determining the blood glucose concentration
JP3562798B2 (en) * 2001-03-01 2004-09-08 学校法人慶應義塾 Analysis method and apparatus and diagnosis apparatus biological response waveform information
RU2179042C1 (en) * 2001-03-23 2002-02-10 Маркин Юрий Владимирович Method and device for treating human organism
JP2004528935A (en) * 2001-06-13 2004-09-24 シーケーエム ダイアグノスティックス,インコーポレーテッドCkm Diagnostics,Inc. Non-invasive detection methods and detection apparatus of tissue
US6599253B1 (en) * 2001-06-25 2003-07-29 Oak Crest Institute Of Science Non-invasive, miniature, breath monitoring apparatus
US6631282B2 (en) * 2001-08-09 2003-10-07 Optiscan Biomedical Corporation Device for isolating regions of living tissue
EP1427332A1 (en) 2001-08-24 2004-06-16 Glucosens, Inc. Biological signal sensor and device for recording biological signals incorporating the said sensor
JPWO2003062214A1 (en) 2002-01-23 2005-05-19 杏林製薬株式会社 New stable crystal benzyl thiazolidinedione derivatives and their preparation
US7050847B2 (en) * 2002-03-26 2006-05-23 Stig Ollmar Non-invasive in vivo determination of body fluid parameter
US7027848B2 (en) * 2002-04-04 2006-04-11 Inlight Solutions, Inc. Apparatus and method for non-invasive spectroscopic measurement of analytes in tissue using a matched reference analyte
MXPA04011451A (en) * 2002-05-20 2005-08-15 Chemstop Pty Ltd Process for the preparation and activation of substances and a means of producing same.
JP2004016609A (en) * 2002-06-19 2004-01-22 Omron Healthcare Co Ltd Method and apparatus for measuring concentration of bodily fluid component
US6865407B2 (en) * 2002-07-11 2005-03-08 Optical Sensors, Inc. Calibration technique for non-invasive medical devices
AU2003291637A1 (en) * 2002-10-09 2004-05-04 Bodymedia, Inc. Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information
JP2004329412A (en) * 2003-05-02 2004-11-25 Tanita Corp Body composition measuring instrument
US6954662B2 (en) * 2003-08-19 2005-10-11 A.D. Integrity Applications, Ltd. Method of monitoring glucose level
CN1925786A (en) * 2004-03-06 2007-03-07 卡里斯托医药有限公司 Methods and devices for non-invasively measuring quantitative information of substances in living organisms

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450707B (en) * 2010-11-09 2014-09-01 Univ Chung Hua Bio-impedance measurement apparatus and assembly
US8825150B2 (en) 2010-11-09 2014-09-02 Chung Hua University Bio-impedance measurement apparatus and assembly
CN103892843A (en) * 2012-12-27 2014-07-02 龙华科技大学 Non-intrusive blood glucose measurer
CN104545910A (en) * 2014-12-29 2015-04-29 深圳市前海安测信息技术有限公司 Method and system for chronic disease early period electrophysiological detection
CN104545910B (en) * 2014-12-29 2017-08-22 深圳市前海安测信息技术有限公司 Chronic electrophysiological early detection methods and systems
CN105011946A (en) * 2015-07-22 2015-11-04 通普生物科技(北京)有限公司 Method for measuring value of blood glucose

Also Published As

Publication number Publication date
JP2007527750A (en) 2007-10-04
KR20060129507A (en) 2006-12-15
US20070149876A1 (en) 2007-06-28
CA2558239A1 (en) 2005-09-22
TW200535416A (en) 2005-11-01
US20050197555A1 (en) 2005-09-08
AU2005220794A1 (en) 2005-09-22
EA200601463A1 (en) 2007-02-27
WO2005086725A2 (en) 2005-09-22
IL177889D0 (en) 2006-12-31
US20070156040A1 (en) 2007-07-05
EP1722681A4 (en) 2010-03-03
WO2005086725A3 (en) 2006-08-03
EP1722681A2 (en) 2006-11-22
US7395104B2 (en) 2008-07-01

Similar Documents

Publication Publication Date Title
JP3657277B2 (en) Device for the assessment of neuromuscular function
EP1141685B1 (en) Impedance measurements of bodily matter
EP0638281A1 (en) Pulse wave analysis device
Liao et al. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors
EP1384436B1 (en) Measurement system and electrode for measuring skin impedance in small region of skin
Wegmüller Intra-body communication for biomedical sensor networks
US8473047B2 (en) Multifrequency bioimpedence device and related methods
CN101188969B (en) Patient monitoring system and method
JP3320413B2 (en) Measuring device of the electrical impedance of the organic substance or biological substance
US20040267099A1 (en) Pain assessment user interface
US8603000B2 (en) Method and apparatus for measuring blood volume
CN100384369C (en) Apparatus for appraising functional state and balance state in humans
Tamada et al. Noninvasive glucose monitoring: comprehensive clinical results
US8060196B2 (en) Device for determining thoracic impedance
JP3209523B2 (en) Dedicated device to be used to determine the state of the autonomous part of the nervous system
US5797854A (en) Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance
US8337408B2 (en) Remote monitoring of patient cognitive function using implanted CRM devices and a patient management system
US20060074341A1 (en) Handheld audiometric device and method for hearing testing
JP2009514619A (en) Apparatus for determining the glucose level in the body tissue
JPH1014898A (en) Bioelectric impedance measuring device
JP4668175B2 (en) Processing method and apparatus for biomedical signals using wavelet
JP2003502090A (en) Characteristic monitor system for use with an analyte sensor
JP2004526482A (en) The method of determining the blood glucose concentration
JP5525655B2 (en) Motion detection of lead by cable microphone effect
EA001007B1 (en) Improving radio frequency spectral analysis for in vitro or in vivo environments

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)