CN1924619A - 光学零件与微型透镜阵列基板及它们的制造方法 - Google Patents

光学零件与微型透镜阵列基板及它们的制造方法 Download PDF

Info

Publication number
CN1924619A
CN1924619A CN 200610128627 CN200610128627A CN1924619A CN 1924619 A CN1924619 A CN 1924619A CN 200610128627 CN200610128627 CN 200610128627 CN 200610128627 A CN200610128627 A CN 200610128627A CN 1924619 A CN1924619 A CN 1924619A
Authority
CN
China
Prior art keywords
lens
glass
mentioned
micro
microlens array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200610128627
Other languages
English (en)
Inventor
梅林信弘
山中洋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Publication of CN1924619A publication Critical patent/CN1924619A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

本发明目的在于提供一种聚光特性高的光学零件与微型透镜阵列基板及它们的制造方法。本发明的光学零件是一种具备形成于玻璃制的透明基板(102)上并以玻璃为主要成分的多个微型透镜(202)的微型透镜阵列(200)。这里,邻接的微型透镜(202)由形成了该微型透镜(202)的玻璃材料连接,上述透镜的膨胀系数与上述透明基板的热膨胀系数大致相同。特别地,邻接的微型透镜(202)之间的厚度δ最好是0.1μm≤δ≤200μm。

Description

光学零件与微型透镜阵列基板及它们的制造方法
技术区域
本发明涉及光学零件与微型透镜阵列基板及它们的制造方法。
背景技术
在液晶显示装置中,为实现高亮度及广视角而提出了一种使用了微型透镜阵列的技术。根据该技术,通过在透明基板的背面一侧形成微型透镜阵列,能够避开形成于透明基板上的TFT元件或黑基体使背景光会聚,可提高光的利用效率,实现高亮度。
专利文献1:日本特开平8-166502号公报公开了一种在玻璃基板上形成由玻璃构成的微型透镜阵列的方法。专利文献1中记载的方法,通过在基板上形成由玻璃粉末和感光性树脂构成的感光性玻璃糊状的膜后,进行曝光、显影、热处理,从而形成微型透镜阵列。
具体的是,在形成热处理前的透镜图形的工序中,利用两种光掩膜进行两次曝光,对形成有两层台阶差的透镜图形进行热处理,并应用伴随玻璃粉末熔融的流变,形成所期望形状的透镜。在这种方法中,由于利用在热处理过程中的玻璃的熔融而形成透镜,所以至少需要在透镜与透镜之间设置间隙。这是因为,如果已邻接的透镜图形相接触,由于熔融了的玻璃将尽可能向减少透镜形状的表面积的方向运动,因而使得透镜的曲率半径变大,容易形成扁平形状。
这时,也可以考虑通过降低热处理的温度,保证玻璃熔融时的粘度在较大的状态下,从而限制玻璃在邻接的透镜图形之间流动,以防止透镜的平坦化。但是,如专利文献1所述,在以两层台阶差形成透镜图形的情况下,由于限制玻璃的流动,而导致残存台阶差,很难获得所期望的球面。因此,也可以考虑通过准备更多改变了开口部和遮光部的比例的光掩膜,增加曝光次数,以增多热处理前的透镜图形的层数,使其接近球面,但由于增多了工序,从生产率的观点出发,并不是所期望的。
对于专利文献1所公开的微型透镜阵列的制造方法,通过本申请的发明人的实验发现并证明存在新的问题。利用图19对这些问题进行说明。如图19(a)所示,首先,在玻璃基板1上形成感光性玻璃糊状的膜,通过曝光及显影形成了透镜图形2。透镜图形2相互独立,邻接的透镜间的厚度是0。
其次,对已形成的透镜图形2进行了热处理。通过热处理,感光性树脂在约400℃分解,在约600℃烧成。如此形成的微型透镜3如图19(b)所示,邻接的透镜完全分离并独立。
图20表示对烧成后的正六边形的微型透镜拍摄的照片,图21是表示该微型透镜的三维形状图。从这些照片及三维形状图也可以明确邻接的透镜完全分离。如图19(c)的放大图所示,透镜图形2因烧成在平面方向收缩,与此同时,透镜的外边缘附近向上凸起,其结果,变形为非球形,劣化了聚光特性。在将透镜图形2形成为圆筒形的情况下,如图19(d)所示,因烧成在平面方向收缩,与此同时,透镜的外边缘附近比中央部向上方凸起,形成了凹状的形状。从该结果也证实,通过烧成,由于透镜外边缘附近向上凸起,透镜形状则变形为非球形。
再有,在利用专利文献1所记载的制造方法,在透明基板上形成微型透镜阵列的情况下,可知基于透明基板与微型透镜阵列之间的热膨胀系数差产生诸多问题。图22是在透明基板上形成了微型透镜阵列的微型透镜阵列基板的局部剖面图。在透明基板201上形成具有多个微型透镜202的微型透镜阵列200。在该例中,邻接的微型透镜202由复合部211连接而成。最好是透明基板201、微型透镜202能够以玻璃制成。
该微型透镜阵列200在将含有玻璃粉末的感光性玻璃糊进行感光、显影后,通过烧成形成于透明基板201上,但如果在玻璃粉末与透明基板201之间存在热膨胀系数差,则在烧成后的微型透镜阵列200与透明基板201之间残余应力,产生残余变形。在实验中,玻璃粉末与透明基板201分别使用了热膨胀系数为70×10-7(/℃)的材料与38×10-7(/℃)的材料。由于该热膨胀系数差引起的残余应力,使微型透镜阵列200中发生双折射,使其偏光特性恶化。双折射对透过微型透镜阵列200的光造成不良影响,特别是将微型透镜阵列基板用于液晶显示装置,由于偏振光入射,因而使偏振光的片振方向因双折射而旋转,发生使显示品质恶化的问题。再有,如果该双折射沿着整个微型透镜阵列200一样产生,虽然易于实施对策,但由于不均匀,所以不易实施对策。
再有,由于热膨胀系数的差而产生的应力,在微型透镜202之间还存在在微型透镜阵列200上发生裂纹的情况。除此而外,还存在玻璃制的透明基板201的表面上发生剥离的情况。特别是使用了硬质玻璃制的透明基板的情况,表面的剥离是较为显著的。
另一方面,由于上述热的膨胀系数差而产生的残余应力、残余变形,发生了在微型透镜阵列基板上产生了透明基板201侧变凸、而微型透镜阵列200侧变凹之类的弯曲状的翘曲的问题。
这样的问题尤其在使用母基板获得多面微型透镜阵列基板的情况下较为显著。即,在使用母基板获得多面微型透镜阵列基板的情况下,由于在整个母基板上无间隙地形成多个微型透镜阵列以构成大面积的微型透镜阵列,所以基于因基板与微型透镜阵列的热膨胀系数差而产生的残余应力、残余变形母基板的翘曲也增大,从该母基板获得的多面微型透镜阵列基板的翘曲也增大。
由于此类微型透镜阵列基板的翘曲,对透过微型透镜的光造成不良影响。尤其是将该微型透镜阵列基板用于液晶显示装置,由于将存在翘曲的微型透镜阵列基板用于液晶显示装置,从而发生了使液晶显示装置的显示品质恶化的问题。
再有,由于膨胀系数差而产生的残余应力、残余变形,在微型透镜202之间存在在微型透镜阵列基板200上发生裂纹的问题。而且,除此之外,还存在玻璃制的透明基板201的表面发生剥离的情况。尤其是使用了硬质玻璃制的透明基板的情况下,表面的剥离很明显。
发明内容
本发明就是为解决上述问题而提出的,其目的在于提供一种聚光特性高的光学零件与微型透镜阵列基板及它们的制造方法。
本发明就是为解决上述问题而提出的,其另一目的是提供一种可抑制由于透明基板与微型透镜阵列等的光学功能部的热膨胀系数之差而产生的双折射或裂纹的发生,具有高光学性能的光学零件与微型透镜阵列基板及它们的制造方法。
本发明就是为解决上述问题而提出的,其再一目的在于提供一种能够抑制由于玻璃基板与微型透镜阵列的热膨胀系数差而产生的玻璃基板的翘曲或微型透镜阵列裂纹的发生的光学零件与微型透镜阵列基板及它们的制造方法。
本发明的光学零件具备:透明基板及形成于该透明基板上并以玻璃为主要成分的多个透镜,其特征是,邻接的透镜由形成该透镜的玻璃材料连接;上述透镜的膨胀系数与上述透明基板的膨胀系数大致相同。
这里,邻接的透镜之间的复合部的厚度δ最好是0.1μm≤δ≤200μm。另外,在将通过上述透镜的透镜中心,并连接透镜两端的任意线段的剖面的曲线设为g(x),将对该g(x)用最小平方法选配曲线的理想球面的曲线设为f(x)时,由f(x)和g(x)的高度方向上之差的均方根值(r m s值)可表示的球面偏移量,在该透镜是球面透镜时,最好在0.05μm以下。并且,上述透镜的表面粗糙度Ra最好是0.05μm以下。优选实施方式中的透明基板是在液晶显示装置中形成电极的透明基板。
再有,上述透镜含有第一玻璃成分与第二玻璃成分;在设上述第一玻璃成分的热膨胀系数为α1,第二玻璃成分的热膨胀系数为α2,上述透明基板的热膨胀系数为αb时,α1<αb<α2的关系可以成立。
这里,上述第一玻璃成分与上述第二玻璃成分的折射率最好大致相等。并且,上述第一玻璃成分的平均粒径可以是50nm以下。
本发明的微型透镜阵列基板是一种具备:玻璃基板及形成于该玻璃基板上并以玻璃为主要成分的多个微型透镜,其特征是,邻接的微型透镜由形成该微型透镜的玻璃材料连接;上述微型透镜的膨胀系数与上述玻璃基板的膨胀系数大致相同。
这里,邻接的透镜之间的复合部的厚度δ最好是0.1μm≤δ≤200μm。另外,在将通过上述透镜的透镜中心,并连接透镜两端的任意线段的剖面的曲线设为g(x),将对该g(x)用最小平方法选配曲线的理想球面的曲线设为f(x)时,由f(x)和g(x)的高度方向上之差的均方根值(r m s值)可表示的球面偏移量,在该透镜是球面透镜时,最好在0.05μm以下。
12.根据权利要求9所述的微型透镜阵列基板,其特征在于,上述微型透镜的表面粗糙度Ra是0.05μm以下。另外,上述透镜的表面粗糙度Ra最好是0.05μm以下。尤其是可使上述微型透镜与上述玻璃基板的热膨胀系数大致相同。优选实施方式中的玻璃基板是在液晶显示装置中形成电极的透明基板。
再有,上述微型透镜含有第一玻璃成分与第二玻璃成分;在设上述第一玻璃成分的热膨胀系数为α1,第二玻璃成分的热膨胀系数为α2,上述透明基板的热膨胀系数为αb时,α1<αb<α2的关系成立。
这里,上述第一玻璃成分与上述第二玻璃成分的折射率最好大致相等。另外,在邻接的微型透镜由玻璃材料连接的结构中,效果更加显著。在优选实施方式中,透明基板是在液晶显示装置中形成电极的透明基板。
优选实施方式的微型透镜阵列基板,其其αb、α1、α2为30×10-7(/℃)<αb<50×10-7(/℃)、5×10-7(/℃)<α1<30×10-7(/℃)、50×10-7(/℃)<α2<150×10-7(/℃)。另外,在设上述第一玻璃成分的软化点为T1,上述第二玻璃成分的软化点为T2时,最好是T1-T2>25℃。再有,上述第一玻璃成分在设其软化点为T1时,最好是T1>700℃的陶瓷玻璃或石英玻璃。另外,在设第二玻璃成分的软化点为T2时,上述第二玻璃成分的T2最好为400℃<T2<675℃。并且,上述第一玻璃成分的重量比相对于上述第二玻璃成分最好在5%以上30%以下。再有,上述第一玻璃成分的平均粒径最好在50nm以下。
本发明是一种光学零件的制造方法,上述光学零件具备:透明基板及形成于该透明基板上并以玻璃为主要成分的多个透镜,其特征是,具备以下步骤:在上述透明基板上形成可形成多个透镜形状的透镜形成层的步骤;及通过烧成上述透镜形成层,从而在邻接的透镜之间形成连接了的透镜的步骤。这里,上述透镜形成层的形成步骤最好具有以下步骤:在上述透明基板上涂敷由玻璃粉末与感光性树脂构成的感光性玻璃糊的步骤;及通过借助于灰度掩模对上述涂敷后的感光性玻璃糊进行曝光、显影,从而形成具有复合部的透镜形状的步骤。另外,邻接的透镜之间的复合部的厚度δ最好是0.1μm≤δ≤200μm。再有,上述透镜形成层的形成步骤具有:在上述透明基板上形成含有热膨胀率低于该透明基板的第一玻璃粉末及热膨胀率高于上述透明基板的第二玻璃粉末的透镜形成层的步骤。
这里,上述透镜形成层的形成步骤最好具有以下步骤:在上述透明基板上涂敷由上述第一玻璃粉末、上述第二玻璃粉末与感光性树脂构成的感光玻璃糊的步骤;及通过借助于灰度掩模对上述涂敷后的感光性玻璃糊进行曝光、显影,从而形成多个透镜的步骤
本发明的微型透镜阵列基板的制造方法,所要制造的微型透镜阵列基板具备:玻璃基板及形成于该玻璃基板上并以玻璃为主要成分的多个微型透镜,其特征是,具备以下步骤:在上述玻璃基板上形成可形成多个微型透镜形状的透镜形成层的步骤;及通过烧成上述透镜形成层,从而在邻接的微型透镜之间形成连接了的微型透镜的步骤。
这里,上述透镜形成层的形成步骤具有以下步骤:在上述玻璃基板上涂敷由玻璃粉末与感光性树脂构成的感光性玻璃糊的步骤;及通过借助于灰度掩模对上述涂敷后的感光性玻璃糊进行曝光、显影,从而形成具有复合部的微型透镜形状的步骤。另外,烧成后的邻接的微型透镜之间的复合部的厚度δ最好是0.1μm≤δ≤200μm。
再有,具有以下步骤:在上述玻璃基板上形成含有热膨胀率低于该玻璃基板的第一玻璃粉末及热膨胀率高于上述玻璃基板的第二玻璃粉末、并可形成多个微型透镜形状的透镜形成层的步骤;及通过烧成上述透镜形成层,从而形成微型透镜的步骤。
这里,上述透镜形成层的形成步骤最好具有以下步骤:在上述玻璃基板上涂敷由上述第一玻璃粉末、上述第二玻璃粉末与感光性树脂构成的感光玻璃糊的步骤;及通过借助于灰度掩模对上述涂敷后的感光性玻璃糊进行曝光、显影,从而形成微型透镜形状的步骤。
根据本发明可提供一种聚光特性高的光学零件与微型透镜阵列基板及它们的制造方法。
附图说明
图1是表示本发明的微型透镜阵列基板的制造方法的图。
图2是表示灰度掩模的透射率分布与曝光、显影后的透镜形成层的结构的关系图。
图3是表示热处理工序的温度变化的曲线图。
图4是表示由热处理引起的结构变化的剖面图。
图5是利用本发明的制造方法形成的微型透镜阵列的照片。
图6是利用本发明的制造方法形成的微型透镜阵列的三维形状图。
图7是表示烧成温度、表面粗糙度Ra与透射率的关系表。
图8是表示表面粗糙度Ra与烧成温度的关系的曲线图。
图9是表示透射率与表面粗糙度Ra关系的曲线图。
图10是表示微型透镜的球度的测定例的曲线图。
图11是表示微型透镜的球面偏移量与波面像差的关系的表及曲线图。
图12是表示本发明的微型透镜阵列基板的制造方法的图。
图13是本发明的液晶显示装置的剖面图。
图14是本发明的微型透镜阵列基板的局部剖面图。
图15是用于比较本发明的微型透镜阵列基板的各部件的热膨胀系数的曲线图。
图16是本发明的微型透镜阵列基板的局部剖面图。
图17是从形成微型透镜阵列的一面观察母基板时的俯视图。
图18是图17的A-A线的母基板的剖面图。
图19是用于说明现有技术存在的问题的图。
图20是利用现有的制造方法形成的微型透镜阵列的照片。
图21是利用现有的制造方法形成的微型透镜阵列的三维形状图。
图22是用于说明现有技术存在的问题的图。
图中:
200微型透镜阵列,201透明基板,202微型透镜,203边框,
21透镜形成层,211复合部,212感光性树脂,
222高熔点玻璃粉末,232低熔点玻璃粉末,242低熔点玻璃基体,
252感光性树脂,30灰度掩模,100液晶板,101透明基板,
102透明基板,103液晶层,104彩膜层,106透明电极,
107取向膜,108 TFT元件,109偏光板,110衬垫,
111密封构件,161b反射部,161像素电极,161a开口部,
162配线,500微型透镜阵列基板,1000,母基板
具体实施方式
以下,说明可适用本发明的实施方式。以下的说明是说明本发明的实施方式,本发明不受以下的实施方式的限定。另外,为了使说明更加明确,对以下各点予以适宜、省略及简要的说明。另外,本技术区域的人员在本发明的权利要求范围内可以很容易地对以下实施方式的各要素进行变更、追加、变换。再有,本说明书所指的微型透镜不仅是指凸形或凹形的普通透镜,还包括柱面透镜、环带透镜、棱镜的概念,微型透镜阵列是指他们的集合体。还有,微型透镜阵列基板是指形成微型透镜阵列的基板。
实施方式1
下面,说明本发明的实施方式1的微型透镜阵列基板的制造方法。本发明实施方式的微型透镜阵列基板的制造工序,具备:使用激光描绘在干片上描绘掩模图形,做成主灰度掩模的工序;借助于主灰度掩模对乳剂感光片进行曝光,做成母灰度掩模的工序;借助于母灰度掩模对涂敷在透明基板上的感光性玻璃糊进行曝光,形成微型透镜阵列的工序。
再有,即便只使用主灰度掩模虽然也能形成微型透镜阵列,但通过使用母灰度掩模,可获得大面积且多个。本发明的特征在于:借助于母灰度掩模对涂敷在透明基板上的感光性玻璃糊进行曝光,形成微型透镜阵列的工序,下面,利用图1详细进行说明。
首先,如图1(a)所示,准备玻璃制的透明基板102。其次,如图1(b)所示,沿着该透明基板102整个一面涂敷感光性玻璃糊,通过成膜,形成了透镜形成层(光学功能形成层)21。涂敷方法有旋涂法或隙涂法。
感光性玻璃糊以玻璃粉末(玻璃粉)和感光性树脂(抗蚀剂)为主要成分。为了做成感光性玻璃糊,首先,粉碎玻璃块,制成10μm以下的微粉。其后,进行硅烷处理。将玻璃粉末和感光性树脂进行混炼,使玻璃粉末分散在感光性树脂中。由此,可做成感光性玻璃糊。
感光性树脂最好是紫外线硬化树脂。作为感光性树脂期望可利用有机溶剂、碱溶液、水的任意一种进行显影。作为紫外线硬化树脂,期望含有至少在侧链上具有羧基和乙烯性不饱和基的丙烯系共聚物与光反应性化合物。在侧链上具有羧基和乙烯性不饱和基的丙烯系共聚物是聚合粘合剂成分,通过对使不饱和羧酸与乙烯性不饱和化合物进行共聚而形成的丙烯系共聚物中在侧链上添加乙烯不饱和基进行制造。
不饱和羧酸是例如丙烯酸、甲基丙烯酸、衣康酸、克酮酸及它们的酸酐等。乙烯性不饱和化合物是例如丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯等。作为侧链的乙烯不饱和基有如乙烯基、烯丙基、丙烯基之类的物质。
作为具有缩水甘油基的乙烯性不饱和化合物,可列举丙烯酸缩水甘酯、甲基丙烯烯酸缩水甘油酯、烯丙基缩水甘油醚等。在感光性玻璃糊中所包含的感光性树脂中,作为聚合粘合剂成分还能够并用丙烯系共聚物以外的感光性聚合物及非感光性聚合物。
作为感光性聚合物,有光不增溶型和光增溶型,作为光不增溶型的物质,可列举如下:将一个分子内含有一个以上不饱和基等的官能性单体或将低聚物与适当的聚合粘合剂混合的物质,将芳香族重氮化合物、芳香族叠氮化合物、有机卤素化合物等的感光化合物与适当的聚合粘合剂混合的物质,通过将感光性的基作为已有的高分子的侧基而得到的感光高分子或者将其改性的物质,重氮系胺和甲醛的缩和物等的所谓重氮树脂等。另外,作为光增溶型的物质,可列举如下:将重氮化合物的无机盐或与有机酸的复体、醌二叠氮基类等与适当的聚合粘合物混合的物质,使醌重氮类与适当的聚合粘合剂结合的、例如苯酚、酚醛清漆树脂的萘醌-1,2-二叠氮基-5-磺酸酯等。
作为非感光性聚合物,可列举如下:聚乙烯醇、聚乙烯醇缩丁醛、甲基丙烯酸酯聚合物、丙烯酸酯聚合物、丙烯酸酯-甲基丙烯酸酯共聚物、α-甲基苯乙烯聚合物等。
作为光反应性化合物,能够使用含有具有公知的光反应性的碳-碳不饱和键的单体、低聚物。例如,光反应性化合物有丙烯酸丙烯酯、丙烯酸苄酯、丙烯酸丁氧基乙基酯、丁氧基三甘醇丙烯酸酯等。另外,作为低聚物的代表例,可列举聚酯丙烯酸酯、聚氨酯丙烯酸酯、环氧丙烯酸酯等。
紫外线硬化树脂所使用的光聚合引发剂有,例如苯酮、o-苯甲酰苯甲酸甲酯、4,4-双(二甲胺)苯酮、4,4-双(二乙基胺)苯酮、4,4-二氯苯酮等的还原剂的组合等。
在本发明的实施方式中,感光性树脂的烧尽温度约为500℃,比玻璃粉末的软化温度600℃更低。在图1所示的例子中,作为感光性树脂,使用了感光部分硬化的所谓阴型光致抗蚀剂。若与阳型光致抗蚀剂比较,阴型光致抗蚀剂适于形成由多角形构成的透镜。在使用阳型光致抗蚀剂的情况下,存在的问题是,若在高温回流,则多角形的角部变圆,无法维持其多角形的形状。但是,即便是多角形透镜,在不需高精度的场合或圆形透镜的场合,也可以使用阳型光致抗蚀剂。
玻璃粉末使用了SCHOTT社制的无碱玻璃。这种材料的α=37×10-7,n=1.53,中心粒径为D50=0.4μm。在感光性玻璃糊中所包含的玻璃体积比最好是30~50%。在本例中,是40%。另外,最好使玻璃粉末与感光性树脂的折射率大致相等。
其次,如图1(c)所示,在形成了透镜形成层21的面的相反一侧上配置灰度掩模30并曝光。从灰度掩模30侧照射的曝光的光,由灰度掩模30的透镜形成用区域对曝光强度进行调制。详细的说,对曝光强度进行调制就是使曝光强度以透镜形成用区域的中心部为最大,并呈同心圆状地减少。通过由灰度掩模30的透镜形成用区域对对曝光强度进行了调制的曝光的光,使透镜形成层21硬化为透镜形状。如图1(d)所示,在结束了透镜形成层21的曝光之后,通过对透镜形成层21进行显影而除去未硬化部分。
图2表示灰度掩模30的透射率分布与使用该灰度掩模30对透镜形成层21进行曝光并显影后的剖面的对应关系。如图2所示,灰度掩模30的透射率分布与透镜形成层21的透镜曲率相对应。如图2(a)(b)的下半部分所示,邻接的透镜由复合部211连接。图2(a)所示的复合部211呈锐角的谷部,在谷的底部与透明基板102之间存在一定厚度的透镜形成层21。另外,在图2(b)所示的复合部211的表面上形成有既定宽度的大致平坦部。为了形成这样的形状,灰度掩模30在相当于复合部211的部分中,具有不为0的透射率,以使规定的曝光的光照射在感光性玻璃糊上。
再有,在玻璃软化温度以上的温度进行热处理(烧成),形成了微型透镜202(图1(e))。图3表示热处理工序中的温度变化。如图所示,对应热处理温度上升,在约400℃使感光性树脂分解,在约500℃使碳化物挥发。再在玻璃软化点以上的温度使玻璃熔融。
在本实施方式的微型透镜阵列200中,邻接的透镜之间由形成该透镜的玻璃材料连接。并且,用玻璃材料连接的透镜之间的边界部的自透明基板102的上面的厚度δ(烧成后的厚度)最好是0.1μm≤δ≤200μm。再有,优选范围是0.5μm≤δ≤50μm。更优选的范围是1μm≤δ≤10μm。本实施方式的δ为1μm。δ大于200μm时,可以确认在烧成时,由于边界部的玻璃膜的应力会引起裂纹。这里,最好微型透镜阵列200与透明基板102的膨胀系数大致相同。具体的是,设透明基板102的膨胀系数为α1,设微型透镜阵列200的膨胀系数为α2时,(α12)/α1的绝对值最好是0.5以下。即,α1和α2的差对α1的比最好是50%以下。通过使二者的膨胀系数大致相同,从而能够防止由于热处理在二者之间发生应力,导致微型透镜阵列200产生龟裂而破损。
在本发明的微型透镜阵列基板的制造方法中,虽然通过热处理使玻璃软化并收缩,但透镜的聚光特性却没有劣化。下面,利用图4说明其理由。图4是同时表示在透镜形成层21结束了曝光、显影后的状态(烧成前的状态)和烧成后形成了微型透镜202状态的局部放大剖面图。如图所示,可知:通过烧成,在高度方向(光轴方向)上收缩。但这可以分析如下:虽然在微型透镜阵列的平面方向(透镜的排列方向)上在产生了收缩的力F1,但由于邻接的透镜在复合部211中被连接,所以在邻接的透镜之间不会分离,力F1因产生于透明基板102的反作用力F2所缓和。由此,透镜外周部不向上方(远离透明基板102的方向)凸起,由于透镜大致均匀地在高度方向上收缩,因此透镜的聚光特性不会劣化。
图5表示的是拍摄利用本发明的制造方法制造的烧成后的微型透镜的照片,图6表示的是该微型透镜的三维形状图。从这些照片或三维形状图中可知:各个透镜没有分离,且可维持透镜形状。
其次,说明透镜形成层21的烧成温度、表面粗糙度Ra及透射率的关系。图7是表示三者关系的表。在实验中,从550℃至600℃改变烧成温度,形成微型透镜阵列,测定了所形成的微型透镜阵列的表面粗糙度Ra及透射率。粗糙度测定是利用激光显微镜(非接触三维测定装置:三鹰光器株式会社制NH3)在切割(尺寸)80μm,测定长度480μm的条件下进行的。另外,透射率的测定是利用岛津制造所制的分光器进行的,求出波长400~800nm的平均值。
图8是基于图7所示的数据,将烧成温度与表面粗糙度的关系画成曲线的的曲线图,图9相同的也是将表面粗糙度与透射率关系画成曲线的曲线图。搭载在液晶显示装置上的微型透镜阵列,其透射率最好是83%以上,更优选90%以上。为了使透射率在83%以上,如图9所示,表面粗糙度Ra必须在0.05μm以下。同样,为了使透射率在90%以上,表面粗糙度Ra必须在0.02μm以下。并且,如图8所示,为了使表面粗糙度Ra在0.05μm以下,烧成温度必须在约560℃以上,为了使表面粗糙度Ra在0.02μm以下,烧成温度必须在约565℃以上。
再有,作为评价微型透镜202的透镜曲率稳定性的另一个指标是透镜的球度。评价透镜球度的r m s(root mean square)值可如下式(1)表示。
r m s = Σ i = 0 n ( f ( i ) - g ( i ) ) 2 / n - - - ( 1 )
图10是测定了微型透镜的球度的曲线图。透镜的球度是在将通过微型透镜的透镜中心,并连接透镜两端任意线段的剖面的曲线设为g(x),将对该g(x)用最小平方法选配曲线的理想球面的曲线设为f(x)时,将f(x)和g(x)的高度方向之的差的平方的平均值(r m s值)作为球面偏移量进行评价。该值越小,透镜曲率更接近于球,曲率越稳定。图11是表示球面透镜场合的微型透镜的球面偏移量与波面像差关系的表和曲线(图11(a)和图11(b))。根据马歇尔临界值,由于只要波面像差在0.07λrms或其以下,一般具有透镜的功能,因此如图11所示,作为球面透镜的球面偏移量,只要在0.05μm以下即可。即,球面透镜的球面偏移量只要在0以上0.05μm以下即可。
实施方式2
在发明的实施方式1中,感光性玻璃糊中的感光性树脂虽使用阴型光致抗蚀剂,但在本实施方式2中,使用感光部分分解、对溶剂的溶解性提高的阳型光致抗蚀剂。
利用图12说明本实施方式2的微型透镜阵列基板的制造方法。首先,如图12(a)所示,准备了玻璃制的透明基板102。其次,如图12(b)所示,沿着该透明基板102的整个一面涂敷感光性玻璃糊,通过成膜,形成了透镜形成层21。
其次,如图12(c)所示,在形成了透镜形成层21的上方配置灰度掩模30并曝光。从灰度掩模30侧照射的曝光的光,由灰度掩模30的透镜形成用区域对曝光强度进行调制。详细的说,对曝光强度进行调制就是使曝光强度以透镜形成用区域的中心部为最小,并呈同心圆状地增大。通过由灰度掩模30的透镜形成用区域对对曝光强度进行了调制的曝光的光,使透镜形成层21的透镜形状以外的部分被显影液分解。
如图12(d)所示,在结束了透镜形成层21的曝光之后,通过对透镜形成层21进行显影而除去未硬化部分。在透镜形成层21中,在邻接的透镜形状之间形成复合部。再有,用玻璃的软化温度以上的温度进行热处理(烧成),形成了微型透镜202(图12(e))。在本实施方式的微型透镜阵列中,邻接的透镜之间由形成该透镜的玻璃材料连接。
在本发明的微型透镜阵列基板的制造方法中,虽然通过热处理使玻璃软化并收缩,但透镜的聚光特性没有劣化。
实施方式3
本发明的实施方式3对利用本发明的实施方式1制造方法制造的光学零件进行了说明。这里,作为光学零件的一个例子,利用在透明基板上形成作为光学功能部的微型透镜阵列的微型透镜阵列基板进行说明。
首先,利用图14说明本发明实施方式3的微型透镜阵列基板。图14是该微型透镜阵列基板的局部剖面图,仅表示了一个微型透镜部分。图14(a)表示的是烧成前的状态,图14(b)表示的是烧成后的状态。微型透镜阵列基板将于后面详细叙述,形成与液晶显示装置的像素对应个数的微型透镜。
在透明基板102上形成微型透镜阵列2。微型透镜阵列2具有许多微型透镜。在该例子的微型透镜阵列2中,邻接的微型透镜202之间连接,各微型透镜彼此沿着整个微型透镜阵列基板形成一体。
本发明实施方式3的透明基板102是用于液晶显示装置中的表面形成有TFT等的开关元件及电极的玻璃基板。该玻璃基板若在玻璃中含有碱金属氧化物,则在热处理时碱离子将扩散到成膜后的半导体物质中,由于导致膜特性的劣化,因此最好实质上不含有碱金属氧化物。另外,最好具有在光刻工序中不因所使用的各种酸、碱等化学物质而劣化的耐药性。再有,为了在成膜等的液晶制造工序中,不因玻璃基板热收缩而引起图形偏移,最好具有高变形点,具体的是具有600℃以上的变形点。再有,为了不在玻璃中发生作为基板不佳的熔融缺陷,最好使其具有优良的熔融性。另外,在表面所形成的微型透镜阵列2及开关元件或电极等材料的热膨胀系数最好具有近似的热膨胀系数。透明基板102的热膨胀系数αb根据所使用的玻璃材料而不同,例如,为30×10-7(/℃)<αb<50×10-7
图14(a)所示的烧成前的微型透镜阵列基板,在前面详细说明的制造工序中,通过在透明基板102上形成由两种玻璃粉末(玻璃粉末)与感光性树脂(抗蚀剂)构成的感光性玻璃糊的膜,并进行曝光、显影而形成。该例子的微型透镜202以感光性树脂212、高熔点玻璃粉末222、低熔点玻璃粉末232为主要成分。包含在感光性玻璃糊中的玻璃的体积百分比最好是30~50%。另外,玻璃粉末与感光性树脂的折射率最好大致相等。
感光性玻璃糊由于与本发明实施方式1中的说明相同,所以省略说明。
作为感光性树脂,使用了在本发明实施方式1中使用的阴型光致抗蚀剂,和本发明实施方式2中使用的阳型光致抗蚀剂。作为感光性树脂,虽然可以使用阴型光致抗蚀剂与阳型光致抗蚀剂的任意一种,但若与阳型光致抗蚀剂相比,阴型光致抗蚀剂适合于形成由多角形构成的透镜。在使用阳型光致抗蚀剂的情况下,存在的问题是,当高温回流时,因多角形的角部变圆而无法维持其多角形的形状。但是,即便是多角形透镜,在不需高精度的场合或圆形透镜的场合,可以使用阳型光致抗蚀剂。
高熔点玻璃粉末222使用热膨胀系数低于透明基板102及低熔点玻璃粉末232的材料,最好是使用热膨胀系数的α1是5×10-7(/℃)<α1<30×10-7材料。当设高熔点玻璃粉末222的软化点为T1时,最好是使用T1>700℃的陶瓷玻璃或石英玻璃。例如,作为高熔点玻璃粉末222的材料,可使用热膨胀系数为6×10-7(/℃)、折射率为1.46的石英玻璃。
低熔点玻璃粉末232使用热膨胀系数比透明基板102及高熔点玻璃粉末222高的材料,最好是使用热膨胀系数α2是50×10-7(/℃)<α2<150×10-7材料。当设低熔点玻璃粉末232的软化点为T2时,该低熔点玻璃粉末232最好使用400℃<T2<675℃的材料。
期望高熔点玻璃粉末222与低熔点玻璃粉末232的折射率大致相等。这是因为能够防止由于二者的界面的折射率差引起的散射、折射而产生的光利用效率的降低。另外,在将高熔点玻璃粉末222的软化点设为T1,将低熔点玻璃粉末232的软化点设为T2时,期望T1-T2>25℃。高熔点玻璃粉末222的重量比例相对于低熔点玻璃粉末232最好在5%以上30%以下。
图14(b)表示的是烧成后的微型透镜阵列基板的局部剖面。通过烧成,包含在微型透镜202中的感光性树脂212(合成树脂)烧尽,低熔点玻璃粉末232熔融,形成低熔点玻璃基体242。高熔点玻璃粉末222未熔融呈粒状残留其上。当经过烧成工序时,微型透镜202整体收缩,例如,微型透镜202的高度变为烧成工序前的40%左右。再有,在烧成工序之后,期望通过进行硼-氟酸处理,使透镜表面平滑(平滑化处理)。高熔点玻璃粉末222是耐氟酸性低的石英玻璃的情况下,通过硼-氟酸处理,能够溶解成为在透镜表面上产生凹凸的原因的高熔点玻璃粉末222,从而可实现平滑化。
在本实施方式的微型透镜阵列2中,邻接的微型透镜202之间由形成该透镜的玻璃材料连接。并且,在用玻璃材料连接的透镜之间的边界部的自透明基板102上面的厚度δ(烧成后的厚度)优选0.1μm≤δ≤200μm。更优选的范围是0.5μm≤δ≤50μm,最优选的范围是1μm≤δ≤10μm。
如上述说明,高熔点玻璃粉末222的热膨胀系数为α1,低熔点玻璃粉末232的热膨胀系数为α2,透明基板102的热膨胀系数为αb,具有α1<αb<α2的关系。图15表示高熔点玻璃粉末222的热膨胀系数α1、低熔点玻璃粉末232的热膨胀系数α2、及透明基板102的热膨胀系数αb的关系。采用本发明的实施方式,通过由热膨胀系数低于透明基板102的高熔点玻璃粉末222与热膨胀系数高于透明基板102的低熔点玻璃粉末232形成微型透镜202,从而能够调整为与该透明基板102近似的热膨胀系数。具体的是,设透明基板102的热膨胀系数为α1,微型透镜阵列2的膨胀系数为α2时,(α12)/α1的绝对值最好是0.5以下。即,α1和α2的差对α1的比最好是50%或其以下。由于被调整后的微型透镜202与透明基板102具有大致相同的热膨胀系数,因此能够降低由于热膨胀系数的差而发生的应力,与此同时,能够抑制双折射及裂纹的发生。α1和α2的差对α1的比例若更优选30%以下,则可进一步提高偏光特性。
实施方式4
利用图16说明本发明实施方式4的微型透镜阵列基板。图16是该微型透镜阵列基板的局部剖面图,并仅表示了一个微型透镜部分。图16(a)表示的是烧成前的状态、图16(b)表示的是烧成后的状态。
本发明实施方式4的透明基板102,由于与本发明的实施方式1的透明基板相同,因此省略说明。
图16(a)所示的烧成前的微型透镜阵列基板,通过在透明基板102上形成由两种玻璃粉末与感光性树脂构成的感光性玻璃糊的膜,并进行曝光、显影而形成。该例子的微型透镜202以分散了所谓纳米粒子的高熔点玻璃粉末的感光性树脂252、低熔点玻璃粉末232为主要成分。包含在感光性玻璃糊中的玻璃的体积百分比最好是30~50%。另外,玻璃粉末与感光性树脂的折射率最好大致相同。
感光性树脂由于与本发明实施方式1中的说明相同,所以省略说明。
分散在感光性树脂252中的高熔点玻璃粉末使用热膨胀系数低于透明基板102及低熔点玻璃粉末232的材料,最好是使用热膨胀系数α1是5×10-7(/℃)<α1<30×10-7的材料。作为高熔点玻璃粉末可使用高折射率的Ta2O5。这里,Ta2O5的热膨胀系数为8×10-7(/℃),折射率为2.20。本发明实施方式4中的高熔点玻璃粉末是所谓的纳米粒子,其平均粒径是50nm以下,最好是30nm以下。在本发明实施方式3中,高熔点玻璃粉末与低熔点玻璃粉末为了防止由于界面的折射率差引起的散射、折射而产生的光利用效率的降低虽使用折射率近似的物质,但由于在本发明实施方式4的高熔点玻璃粉末粒径极小,不被光所识别,因此能够使用折射率与低熔点玻璃粉末大不相同的材料。由此,作为高熔点玻璃粉末能够使用如Ta2O5那样的高折射率材料,能够制造高折射率的微型透镜。通过将微型透镜高折射率化,由于能够降低透镜的高度,因此适用于空间受到限制的机器的情况。特别地,高折射率的微型透镜由于数值孔径高,能够缩短焦距,所以即便透明基板102的厚度较薄的情况,也能够高效地聚光于TFT元件及反射电极的开口部,可提高光利用效率。
低熔点玻璃粉末232使用热膨胀系数比透明基板102及高熔点玻璃粉末222高的材料,最好是使用热膨胀系数α2是50×10-7(/℃)<α2<150×10-7材料。低熔点玻璃粉末232在设该低熔点玻璃粉末232的软化点为T2时,最好是使用400℃<T2<675℃(例如,约600℃)的材料。
在设高熔点玻璃粉末222的软化点为T1,将低熔点玻璃粉末232的软化点为T2时,期望T1-T2>25℃。高熔点玻璃粉末222的重量比相对于低熔点玻璃粉末232最好在5%以上30%以下。
图16(b)表示的是烧成后的微型透镜阵列基板的局部剖面。通过烧成,包含在微型透镜202中的感光性树脂212(合成树脂)烧尽,低熔点玻璃粉末232熔融。高熔点玻璃粉末未熔融而呈粒状残留在其上,但如上所述,由于其粒径极小,所以透镜表面基本上是平滑的。因此,无需进行硼-氟酸处理等的平滑化处理,能够简化制造工序。当经过烧成工序时,微型透镜202整体收缩,例如,微型透镜202的高度变为烧成工序前的40%左右。在本实施方式4的微型透镜阵列2中,邻接的微型透镜202之间由形成该透镜的玻璃材料连接。
采用本发明的实施方式4,通过由热膨胀系数低于透明基板102的高熔点玻璃粉末222与热膨胀系数高于透明基板102的低熔点玻璃粉末232形成微型透镜202,从而能够调整为与该透明基板102近似的热膨胀系数。因此,由于微型透镜202与透明基板102具有大致相同的热膨胀系数,所以能够降低由于热膨胀系数的差产生的应力,与此同时,能够抑制双折射及裂纹的发生。
再有,在本发明实施方式4中,作为高熔点玻璃粉末由于使用平均粒径是50nm以下的纳米粒子,因此能够将微型透镜202高折射率化。
再有,上述实施方式3、4的微型透镜,虽然由高熔点玻璃粉末和低熔点玻璃粉末这两种玻璃粉末形成,但并不限于此,也可由3种以上的玻璃粉末形成。
实施方式5
在本发明的实施方式5中,基于附图,说明用于获得多面微型透镜阵列基板的母基板。在本发明的实施方式5中,适当参照图1,说明使用了本发明实施方式1的制造方法的情况。图17是从形成微型透镜阵列的面一侧观察母基板时的俯视图。图18是图17的A-A线的剖面图。
如图17及图18所示,在母基板1000上以一定间隔呈矩阵状排列多个微型透镜阵列200及包围其外周的边框203。即,如图17及图18所示,多个微型透镜阵列200中的邻接的微型透镜阵列200相互分离地配置。另外,多个边框203中的邻接的边框203相互分离地配置。
另外,如图17所示,在邻接的微型透镜阵列200之间的间隙内设定切断线X1-X1、X2-X2、…、Xn-Xn、Y1-Y1、Y2-Y2、Y3-Y3,通过沿这些切断线X1-X2等切断母基板1000,从而能够从母基板1000中获得多面微型透镜阵列基板500。另外,如图18所示,各切断线X1-X2等设定在邻接的边框203之间的间隙内。邻接的边框203的外侧壁间的间隔,为了例如防止碎玻璃的发生,将其设定成:即便研磨切断后的微型透镜阵列基板500的外侧端面或角部,也不会削到边框203。
其次,说明本发明实施方式1的母基板及微型透镜阵列基板的制造方法。图1是表示本发明实施方式1的微型透镜阵列基板的制造方法的图。另外,在图1中,特别地示意地表示用图17所示的母基板1000的微型透镜阵列200的形成区域的剖面。
在本发明的实施方式5中,透明基板102能够使用例如400μm~500μm厚的玻璃基板(图1(a))。其次,如图1(b)所示,沿着该透明基板102的整个一面的区域,通过涂敷感光性玻璃糊并成膜,形成了透镜形成层21。
其次,如图1(c)所示,在形成了透镜形成层21的面的相反一侧,配置灰度掩模30,对图17所示的微型透镜阵列200的形成区域内进行曝光。这里,邻接的微型透镜阵列200的形成区域如图17所示,相互分离地设定。在微型透镜阵列200的形成区域内,从灰度掩模30侧照射的曝光的光,由灰度掩模30的透镜形成用区域对曝光强度进行调制。
详细的是,曝光强度以透镜形成用区域的中心部为最大,呈同心圆状减小地对曝光强度进行调制。利用由灰度掩模30的透镜形成区域进行曝光强度调制的曝光的光,使透镜形成层21硬化成透镜形状。这时,灰度掩模30可与微型透镜202一起制作,从而可同时形成图17所示的边框203。并且,利用该灰度掩模30,通过还对图17所示的边框203的形成区域内进行曝光,硬化成边框形状。这样,通过利用同一灰度掩模30同时形成许多微型透镜202及边框203,从而能够高效率地在透明基板102上形成微型透镜阵列200及边框203。
接着,进行图1(d)所示的透镜形成层21的曝光显影工序。这时,在微型透镜阵列200及边框203的形成区域以外的区域,由于没有进行曝光及显影的处理,所以在该区域内,可以完全除去透镜形成层21。
再有,如图1(e)所示,在玻璃的软化温度以上的温度进行热处理(烧成)之后,进行缓冷,在图17所示的微型透镜阵列200的形成区域内形成许多微型透镜202,同时,在图17所示的边框203的形成区域内形成边框203。这时,形成例如微型透镜202的高度约为15μm,边框203的高度约为20μm。由于在烧成工序中感光性树脂烧尽,所以微型透镜阵列200及边框203仅由玻璃的成分形成。另外,邻接的微型透镜阵列200相互分离地配置,邻接的边框203也相互分离地配置。
并且,能够得到图17所示的透明基板102上形成了多个微型透镜阵列200及边框203的母基板1000。再有,在母基板1000的微型透镜202形成面的相反一侧的面上,如图13所示,还形成有透明电极106、TFT元件108及取向膜107。
这时,邻接的微型透镜202之间由形成该微型透镜202的玻璃材料连接,并形成复合部211。这时,例如将复合部211的高度形成为约为10μm以下。这里,若对比图1(d)和图1(c)可知:通过烧成,透镜形成层21在透镜高度方向(光轴方向)上收缩。这时,虽然在微型透镜阵列200的平面方向(透镜的排列方向)上产生收缩的力,但由于邻接的透镜在复合部211连接,所以邻接的透镜之间未分离,透镜排列方向的收缩力由产生在透明基板102上并与透镜排列方向平行方向上的反作用力所缓和。由此,乐以分析为:由于透镜的外周部不向上方(远离透明基板102的方向)凸起,透镜大致均匀地在高度方向上收缩,所以透镜的聚光特性没有劣化。
这样,在烧成后,由于邻接的微型透镜阵列200或边框203分别相互分开配置,所以即便在微型透镜阵列200及边框203与玻璃制的透明基板102之间存在热膨胀系数差,在烧成后的缓冷时,也能够降低发生在微型透镜阵列200透明基板102之间的残余应力及残余变形的发生。其结果,能够抑制由于玻璃制的透明基板102与微型透镜阵列200的热膨胀系数差产生的玻璃制的透明基板102的翘曲或微型透镜阵列200的裂纹的发生。
其次,如图17所示,通过沿设置在邻接的微型透镜阵列200之间的切段线X1-X2、…、Y1-Y2、…切断母基板1000,从而将母基板1000切成多个微型透镜阵列基板500。再有,在切断母基板1000时,使用例如划线-截断方式。在划线-截断方式中,利用划线器形成划线之后,通过利用截断棒在划线上加压,从而分开母基板1000。
然后,研磨切断后的各个微型透镜阵列基板500的外周端面或角部。通过该研磨工序,能够防止碎玻璃的发生。这时,由于邻接的边框203相互分离,所以在微型透镜阵列基板500的外周端面能够确保研磨区域,即便研磨微型透镜阵列基板500的外周端面或角部,也不会研削到边框203。
再有,母基板1000的切断除了切断母基板1000的单板的情况外,还可以考虑同时切断两个母基板的情况,即:用密封材料111将用于获得多面图13所示的多个第一透明基板101的其它的母基板(未图示)粘贴在母基板1000上之后,同时切断双方的母基板1000的情况,或者用密封材料111将母基板1000与上述其它母基板粘贴,并在两个母基板及被密封材料111包围的空间内注入液晶并进行密封之后,再同时切断双方的母基板。再有,上述其它母基板上的透明电极106的形成区域与母基板1000上的透明基板106的形成区域相对应。
实施方式6
在本发明的实施方式6中,基于附图说明用于获得多面微型透镜阵列基板的母基板。在本发明的实施方式5中,适当参照图12说明使用了本发明实施方式2的制造方法的情况。
其次,说明本发明实施方式2的母基板及微型透镜阵列基板的制造方法。此外,在图12中,特别示意地表示了图17所示的母基板1000的微型透镜阵列200的形成区域的剖面。
首先,如图12(a)、图12(b)所示,沿着所预备的玻璃制的透明基板102的整个一面形成透镜形成层21。
其次,在图12(c)所示的曝光工序中,对图17所示的微型透镜阵列200的形成区域内,和微型透镜阵列200及边框203的形成区域以外的区域内进行曝光。这里,邻接的微型透镜阵列200的形成区域如图17所示,相互分离地设定。在微型透镜阵列200的形成区域内,从灰度掩模30侧照射的曝光的光,由灰度掩模30的透镜形成用区域进行曝光强度调制。
详细的是,为了使曝光强度以透镜形成用区域的中心部为最小,呈同心圆状地增加,对曝光强度进行调制。通过由灰度掩模30的透镜形成用区域进行了曝光强度调制的曝光的光,透镜形成层21的透镜形状以外的部分被显影液分解。另外,通过对微型透镜阵列200及边框203的形成区域以外的区域内进行曝光,在微型透镜阵列200及边框203的形成区域以外的区域,透镜形成层21被分解。
这时,灰度掩模30制作成可与微型透镜202一起同时形成图17所示的边框203。并且,利用该灰度掩模30,通过还对图17所示的边框203的形成区域内进行曝光,边框203的形状以外的部分被显影液分解。
接着,进行图12(d)所示的曝光显影工序。再有,在玻璃的软化温度以上的温度进行热处理(烧成)之后,进行缓冷,如图12(e)所示,在图17所示的微型透镜阵列200的形成区域内形成多个微型透镜202,同时,在图17所示的边框203区域的形成区域内形成边框203。在烧成工序中,由于感光性树脂烧尽,所以仅以玻璃成分形成微型透镜阵列200及边框203。另外,邻接的微型透镜阵列200相互分离地配置,邻接的边框203也相互分离地配置。
并且,能够获得在图17所示的透明基板102上形成多个微型透镜阵列200及边框203的母基板1000。这时,邻接的微型透镜202之间由形成该微型透镜202的玻璃材料连接,形成复合部211。
这样,在烧成后,由于邻接的微型透镜阵列200及边框203各自相互分离地配置,所以即便在微型透镜阵列200或边框203与透明基板102之间存在热膨胀系数差,也能够在烧成后的缓冷时降低产生在微型透镜阵列200或边框203与透明基板102之间的残余应力或残余变形。其结果,能够抑制由于玻璃制的透明基板102与微型透镜阵列200的热膨胀系数差产生的玻璃制透明基板102的翘曲或微型透镜阵列200的裂纹的发生。
下面,说明微型透镜阵列基板的应用例子。
本发明实施方式的微型透镜阵列基板可搭载在液晶显示装置中。图13是表示搭载了微型透镜阵列基板的液晶显示装置的剖面图。该液晶显示装置是所谓的半透射型液晶显示装置。在图13中,液晶显示装置具备液晶板100及微型透镜阵列200。在液晶板100中,将液晶层103夹持在两张透明基板101、102之间。
在彩膜层104与液晶层103之间依次叠层形成透明电极106及取向膜107。在配置于液晶板100的背面侧的透明基板102上形成有TFT元件108,再叠层形成透明电极106、取向膜107。在TFT元件108侧的透明电极106上形成有像素电极161及配线162,像素电极161具有开口部161a及反射部161b。开口部161a成为从透明基板102侧对液晶板100入射光的通道。反射部161b起到反射从透明基板101侧入射的光的反射板的作用。
在透明基板102的背面侧设有微型透镜阵列200。微型透镜阵列200具有边框203及微型透镜202。微型透镜阵列200用于将来自背景光的光聚光在开口部161a上,能够提高光的利用效率,并提高亮度。例如,在半透射型的场合,能够将光的利用效率提高约3倍。在透射型的场合,能够将光的利用效率提高约2倍。偏光板109是具有相对于入射光仅使特定的偏振光成分透射的功能的光学构件,并粘贴在两块透明基板101、102的两侧表面上。衬垫110是控制透明基板101、102之间的液晶层103高度的树脂粒子,沿着透明基板101、102之间的整个范围,分散设置多个。
本发明实施方式的微型透镜阵列基板不限于液晶显示装置,也可用于其它用途。

Claims (34)

1.一种光学零件,具备:透明基板及形成于该透明基板上并以玻璃为主要成分的多个透镜,其特征在于,
邻接的透镜由形成该透镜的玻璃材料连接;
上述透镜的膨胀系数与上述透明基板的膨胀系数大致相同。
2.根据权利要求1所述的光学零件,其特征在于,邻接的透镜之间的复合部的厚度δ是0.1μm≤δ≤200μm。
3.根据权利要求1所述的光学零件,其特征在于,在将通过上述透镜的透镜中心,并连接透镜两端的任意线段的剖面的曲线设为g(x),将对该g(x)用最小平方法选配曲线的理想球面的曲线设为f(x)时,由f(x)和g(x)的高度方向上之差的均方根值(rms值)可表示的球面偏移量,在该透镜是球面透镜时,在0.05μm以下。
4.根据权利要求1所述的光学零件,其特征在于,上述透镜的表面粗糙度Ra是0.05μm以下。
5.根据权利要求1所述的光学零件,其特征在于,上述透明基板是在液晶显示装置中形成电极的透明基板。
6.根据权利要求1所述的光学零件,其特征在于,
上述透镜含有第一玻璃成分与第二玻璃成分;
在设上述第一玻璃成分的热膨胀系数为α1,第二玻璃成分的热膨胀系数为α2,上述透明基板的热膨胀系数为αb时,α1<αb<α2的关系成立。
7.根据权利要求6所述的光学零件,其特征在于,上述第一玻璃成分与上述第二玻璃成分的折射率大致相等。
8.根据权利要求6所述的光学零件,其特征在于,上述第一玻璃成分的平均粒径是50nm以下。
9.一种微型透镜阵列基板,具备:玻璃基板及形成于该玻璃基板上并以玻璃为主要成分的多个微型透镜,其特征在于,
邻接的微型透镜由形成该微型透镜的玻璃材料连接;
上述微型透镜的膨胀系数与上述玻璃基板的膨胀系数大致相同。
10.根据权利要求9所述的微型透镜阵列基板,其特征在于,邻接的透镜之间的复合部的厚度δ是0.1μm≤δ≤200μm。
11.根据权利要求9所述的微型透镜阵列基板,其特征在于,在将通过上述透镜的透镜中心,并连接透镜两端的任意线段的剖面的曲线设为g(x),将对该g(x)用最小平方法选配曲线的理想球面的曲线设为f(x)时,由f(x)和g(x)的高度方向上之差的均方根值(rms值)可表示的球面偏移量,在该透镜是球面透镜时,在0.05μm以下。
12.根据权利要求9所述的微型透镜阵列基板,其特征在于,上述微型透镜的表面粗糙度Ra是0.05μm以下。
13.根据权利要求9所述的微型透镜阵列基板,其特征在于,上述微型透镜与上述玻璃基板的热膨胀系数大致相同。
14.根据权利要求9所述的微型透镜阵列基板,其特征在于,上述玻璃基板是在液晶显示装置中形成电极的透明基板。
15.根据权利要求9所述的微型透镜阵列基板,其特征在于,
上述微型透镜含有第一玻璃成分与第二玻璃成分;
在设上述第一玻璃成分的热膨胀系数为α1,第二玻璃成分的热膨胀系数为α2,上述透明基板的热膨胀系数为αb时,α1<αb<α2的关系成立。
16.根据权利要求15所述的微型透镜阵列基板,其特征在于,上述第一玻璃成分与上述第二玻璃成分的折射率大致相等。
17.根据权利要求15所述的微型透镜阵列基板,其特征在于,邻接的微型透镜由玻璃材料连接。
18.根据权利要求15所述的微型透镜阵列基板,其特征在于,上述玻璃基板是在液晶显示装置中形成电极的透明基板。
19.根据权利要求18所述的微型透镜阵列基板,其特征在于,其αb、α1、α2为30×10-7(/℃)<αb<50×10-7(/℃)、5×10-7(/℃)<α1<30×10-7(/℃)、50×10-7(/℃)<α2<150×10-7(/℃)。
20.根据权利要求18所述的微型透镜阵列基板,其特征在于,在设上述第一玻璃成分的软化点为T1,上述第二玻璃成分的软化点为T2时,T1-T2>25℃。
21.根据权利要求18所述的微型透镜阵列基板,其特征在于,上述第一玻璃成分在设其软化点为T1时,是T1>700℃的陶瓷玻璃或石英玻璃。
22.根据权利要求18或21所述的微型透镜阵列基板,其特征在于,在设第二玻璃成分的软化点为T2时,上述第二玻璃成分的T2为400℃<T2<675℃。
23.根据权利要求18所述的微型透镜阵列基板,其特征在于,上述第一玻璃成分的重量比相对于上述第二玻璃成分在5%以上30%以下。
24.根据权利要求18所述的微型透镜阵列基板,其特征在于,上述第一玻璃成分的平均粒径在50nm以下。
25.一种光学零件的制造方法,上述光学零件具备:透明基板及形成于该透明基板上并以玻璃为主要成分的多个透镜,其特征在于,具备以下步骤:
在上述透明基板上形成可形成多个透镜形状的透镜形成层的步骤;及
通过烧成上述透镜形成层,从而在邻接的透镜之间形成连接了的透镜的步骤。
26.根据权利要求25所述的光学零件的制造方法,其特征在于,
上述透镜形成层的形成步骤具有以下步骤:
在上述透明基板上涂敷由玻璃粉末与感光性树脂构成的感光性玻璃糊的步骤;及
通过借助于灰度掩模对上述涂敷后的感光性玻璃糊进行曝光、显影,从而形成具有复合部的透镜形状的步骤。
27.根据权利要求25所述的光学零件的制造方法,其特征在于,邻接的透镜之间的复合部的厚度δ是0.1μm≤δ≤200μm。
28.根据权利要求25所述的光学零件的制造方法,其特征在于,
上述透镜形成层的形成步骤具有:在上述透明基板上形成含有热膨胀率低于该透明基板的第一玻璃粉末及热膨胀率高于上述透明基板的第二玻璃粉末的透镜形成层的步骤。
29.根据权利要求28所述的光学零件的制造方法,其特征在于,
上述透镜形成层的形成步骤具有以下步骤:
在上述透明基板上涂敷由上述第一玻璃粉末、上述第二玻璃粉末与感光性树脂构成的感光玻璃糊的步骤;及
通过借助于灰度掩模对上述涂敷后的感光性玻璃糊进行曝光、显影,从而形成多个透镜的步骤。
30.一种微型透镜阵列基板的制造方法,上述微型透镜阵列基板具备:玻璃基板及形成于该玻璃基板上并以玻璃为主要成分的多个微型透镜,其特征在于,具备以下步骤:
在上述玻璃基板上形成可形成多个微型透镜形状的透镜形成层的步骤;
及通过烧成上述透镜形成层,从而在邻接的微型透镜之间形成连接了的微型透镜的步骤。
31.根据权利要求30所述的微型透镜阵列基板的制造方法,其特征在于,
上述透镜形成层的形成步骤具有以下步骤:
在上述玻璃基板上涂敷由玻璃粉末与感光性树脂构成的感光性玻璃糊的步骤;及
通过借助于灰度掩模对上述涂敷后的感光性玻璃糊进行曝光、显影,从而形成具有复合部的微型透镜形状的步骤。
32.根据权利要求30所述的微型透镜阵列基板的制造方法,其特征在于,邻接的微型透镜之间的复合部的厚度δ是0.1μm≤δ≤200μm。
33.根据权利要求30所述的微型透镜阵列基板的制造方法,其特征在于,具有以下步骤:
在上述玻璃基板上形成含有热膨胀率低于该玻璃基板的第一玻璃粉末及热膨胀率高于上述玻璃基板的第二玻璃粉末、并可形成多个微型透镜形状的透镜形成层的步骤;及
通过烧成上述透镜形成层,从而形成微型透镜的步骤。
34.根据权利要求33所述的微型透镜阵列基板的制造方法,其特征在于,上述透镜形成层的形成步骤具有以下步骤:
在上述玻璃基板上涂敷由上述第一玻璃粉末、上述第二玻璃粉末与感光性树脂构成的感光玻璃糊的步骤;及
通过借助于灰度掩模对上述涂敷后的感光性玻璃糊进行曝光、显影,从而形成微型透镜形状的步骤。
CN 200610128627 2005-08-30 2006-08-29 光学零件与微型透镜阵列基板及它们的制造方法 Pending CN1924619A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005249019A JP2007065126A (ja) 2005-08-30 2005-08-30 マイクロレンズアレイ基板及びマイクロレンズアレイ基板の製造方法
JP2005249019 2005-08-30
JP2005269444 2005-09-16
JP2006000874 2006-01-05

Publications (1)

Publication Number Publication Date
CN1924619A true CN1924619A (zh) 2007-03-07

Family

ID=37817338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610128627 Pending CN1924619A (zh) 2005-08-30 2006-08-29 光学零件与微型透镜阵列基板及它们的制造方法

Country Status (2)

Country Link
JP (1) JP2007065126A (zh)
CN (1) CN1924619A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147505A (zh) * 2010-02-08 2011-08-10 菲尼萨公司 增强型多体式光学设备
CN102491258A (zh) * 2011-12-30 2012-06-13 东南大学 圆片级球形微透镜阵列的制备方法
CN102713687A (zh) * 2010-01-25 2012-10-03 日产化学工业株式会社 微透镜的制造方法
CN102757014A (zh) * 2012-06-21 2012-10-31 西安交通大学 一种玻璃棒表面微透镜阵列的制备方法
CN102789010A (zh) * 2011-05-16 2012-11-21 中国科学院微电子研究所 一种双面微透镜阵列及其制造方法
CN109212634A (zh) * 2017-07-06 2019-01-15 奇景光电股份有限公司 用于制造高垂度透镜阵列的方法以及高垂度透镜阵列
CN110749975A (zh) * 2019-10-31 2020-02-04 Oppo广东移动通信有限公司 镜头模组和电子装置
CN111512209A (zh) * 2017-12-28 2020-08-07 日东电工株式会社 光学元件、微透镜阵列、及光学元件的制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634353B1 (ko) 2008-12-04 2016-06-28 삼성전자주식회사 마이크로 렌즈, 상기 마이크로 렌즈 제조방법, 상기 마이크로 렌즈 제조 장치, 및 상기 마이크로 렌즈를 구비한카메라 모듈
KR101648540B1 (ko) 2009-08-13 2016-08-16 삼성전자주식회사 웨이퍼-레벨 렌즈 모듈 및 이를 구비하는 촬상 장치
US8305699B2 (en) 2009-09-23 2012-11-06 Samsung Electronics Co., Ltd. Wafer-level lens module with extended depth of field and imaging device including the wafer-level lens module
CN114279303B (zh) * 2021-12-28 2022-10-21 中国科学院光电技术研究所 一种双面微柱面透镜阵列垂直度的检测装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436701A (ja) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd ガラス素子,表示素子及びこれらの製造方法
JPH06242303A (ja) * 1993-02-19 1994-09-02 Nippon Sheet Glass Co Ltd 平板状レンズアレイおよびその製造方法
JPH09230112A (ja) * 1996-02-27 1997-09-05 Toray Ind Inc マイクロレンズアレイおよびその製造方法
JP4164888B2 (ja) * 1997-11-05 2008-10-15 株式会社ニコン 微小レンズ及び微小レンズアレイの製造方法
JP2002029762A (ja) * 2000-07-06 2002-01-29 Victor Co Of Japan Ltd フライアイレンズの製造方法及びその製造装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713687A (zh) * 2010-01-25 2012-10-03 日产化学工业株式会社 微透镜的制造方法
CN102713687B (zh) * 2010-01-25 2014-11-12 日产化学工业株式会社 微透镜的制造方法
CN102147505A (zh) * 2010-02-08 2011-08-10 菲尼萨公司 增强型多体式光学设备
US8903206B2 (en) 2010-02-08 2014-12-02 Finisar Corporation Reinforced multi-body optical devices
CN102789010A (zh) * 2011-05-16 2012-11-21 中国科学院微电子研究所 一种双面微透镜阵列及其制造方法
CN102491258A (zh) * 2011-12-30 2012-06-13 东南大学 圆片级球形微透镜阵列的制备方法
CN102757014A (zh) * 2012-06-21 2012-10-31 西安交通大学 一种玻璃棒表面微透镜阵列的制备方法
CN102757014B (zh) * 2012-06-21 2015-08-05 西安交通大学 一种玻璃棒表面微透镜阵列的制备方法
CN109212634A (zh) * 2017-07-06 2019-01-15 奇景光电股份有限公司 用于制造高垂度透镜阵列的方法以及高垂度透镜阵列
CN111512209A (zh) * 2017-12-28 2020-08-07 日东电工株式会社 光学元件、微透镜阵列、及光学元件的制作方法
CN110749975A (zh) * 2019-10-31 2020-02-04 Oppo广东移动通信有限公司 镜头模组和电子装置

Also Published As

Publication number Publication date
JP2007065126A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
CN1924619A (zh) 光学零件与微型透镜阵列基板及它们的制造方法
CN1303439C (zh) 微透镜阵列基板及其制造方法以及使用该基板的投影液晶显示装置
CN1109268C (zh) 液晶显示元件用衬底以及配备这种衬底的液晶显示装置
CN1120385C (zh) 反射型液晶显示装置
CN1249455C (zh) 制造微透镜矩阵和投影类液晶显示设备的方法
CN200944140Y (zh) 一种平直波导显示器面板
CN1206564C (zh) 一种改良的透射式或反射式液晶显示器及其制作方法
CN1224849C (zh) 微型透镜及制造方法、微型透镜阵列板、电光装置和电子仪器
CN1862290A (zh) 微透镜及其微透镜的制造方法、光学片、漫射片
KR20070026085A (ko) 광학부품 및 마이크로렌즈 어레이 기판 및 그것들의제조방법
CN1667468A (zh) 角隅棱镜反射器、其制作方法及有该器件的反射显示装置
CN1284009C (zh) 微透镜阵列的曝光装置和曝光方法
CN1269018A (zh) 微透镜阵列基片及其制造方法和显示器
CN1836179A (zh) 具有形成图案的包层的平面波导及其生产方法
SG178391A1 (en) Wafer level, lens, production method of wafer level lens, and imaging unit
JP2010204631A (ja) ウェハレベルレンズアレイの製造方法、ウェハレンズアレイ、レンズモジュール及び撮像ユニット
CN1463368A (zh) 光学功能性薄片
CN103376657A (zh) 光阻组合物及其制备方法、彩膜基板和显示装置
CN1904651A (zh) 光学片及其制造方法及切断方法、背光灯组件、电光装置
CN101042472A (zh) 电光装置及投影机
CN1839347A (zh) 菲涅耳透镜片、透射型屏幕及背投型显示装置
CN101040200A (zh) 滤色器和设有滤色器的液晶显示装置
CN1624498A (zh) 滤色片基板、液晶显示板、液晶显示设备及其制法
CN1612015A (zh) 反射型显示器件
KR20130069711A (ko) 렌티큘라 렌즈 시트, 그 제조 방법 및 광학 소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication