CN1865882A - 微机械压力传感器及其圆片级封装方法 - Google Patents

微机械压力传感器及其圆片级封装方法 Download PDF

Info

Publication number
CN1865882A
CN1865882A CN 200510026035 CN200510026035A CN1865882A CN 1865882 A CN1865882 A CN 1865882A CN 200510026035 CN200510026035 CN 200510026035 CN 200510026035 A CN200510026035 A CN 200510026035A CN 1865882 A CN1865882 A CN 1865882A
Authority
CN
China
Prior art keywords
wafer
bonding
silicon
pressure sensor
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200510026035
Other languages
English (en)
Inventor
刘胜
密歇根
陈君杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEIEN MICROELECTRONICS Co Ltd SHANGHAI
Original Assignee
FEIEN MICROELECTRONICS Co Ltd SHANGHAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEIEN MICROELECTRONICS Co Ltd SHANGHAI filed Critical FEIEN MICROELECTRONICS Co Ltd SHANGHAI
Priority to CN 200510026035 priority Critical patent/CN1865882A/zh
Publication of CN1865882A publication Critical patent/CN1865882A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

一种微机械压力传感器及其圆片级封装方法,主要包括压力传感器、压力传感器圆片、压力传感器的应变薄膜、硅底座圆片、带过孔的盖帽玻璃圆片,其特征在于所述微机械加工的压阻压力传感器通过圆片级封装,圆片级封装采用差压封装方式或绝压封装方式。本发明的优点是应变薄膜采用氮化硅薄膜或炭化硅薄膜,提高了杨氏模量,取消了引线键合和硅凝胶的使用,提高了传感器的可靠性与准确性,减小了芯片尺寸,节省了成本。

Description

微机械压力传感器及其圆片级封装方法
技术领域
本发明涉及一种压力传感器及其封装方法,特别涉及一种微机械压力传感器及其圆片级封装方法。
技术背景
在现代工业中压力传感器有广泛的用途,例如油井、汽车、蒸汽环境、等等。大多数检测、控制应用的条件中是恶劣的液体或气体环境化学制品,例如油、氟利昂、溶剂。而压力传感器的可靠性依赖压力传感器的封装。微机械传感器的封装不但占传感器成本的很大一部分,而且很多传感器的失效及故障往往是由于封装的失效所引起。目前用的最多的封装连接方法是引线键合,这是基于器件级的,就是说划片后再做封装。然后使用硅凝胶保护传感器的应力薄膜。凝胶弹性性质不仅转移了把压力传递到应变薄膜上面,而且把压力传递到到了键合的引线上面。这可能导致引线的断裂。虽然凝胶胶是很软的,但它多少给测试带来压力误差。
发明内容
针对已有技术中存在的缺陷,本发明提供了一种微机械压力传感器及其圆片级封装方法。本发明的目的就是为了让压力传感器能在苛刻的环境中使用,例如压力高于10,000P.S.I.,和温度高达150度或更高的环境下面使用。
本发明主要包括压力传感器、压力传感器圆片、压力传感器的应变薄膜、硅底座圆片、带过孔的盖帽玻璃圆片,其特征在于所述微机械加工的压阻压力传感器通过圆片级封装,圆片级封装采用差压封装方式或绝压封装方式。压力传感器的应变薄膜采用氮化硅薄膜或炭化硅薄膜。差压封装方式包括二个步骤:压力传感器圆片与硅底座圆片键合,传感器圆片与上方的玻璃盖帽圆片键合。硅-硅圆片键合方法是用金薄膜作为键合的中间层或直接键合,硅-硅圆片键合方法采用通过激光加热器局部融合来绑定,键合时采用局部加热,相关的集成电路做在同一圆片上面。硅-硅圆片键合方法采用熔化键合的方式,集成电路将被混合封装。硅-玻璃圆片键合方法是通过阳极键合来绑定,使得集成电路在键合的时候免受损伤。
在绝压封装方式下绝压压力传感器是基于表面微机械加工工艺的压阻压力传感器,绝压封装的结构本身带有高压过压保护。绝压封装方式的键合,金薄膜作为中间层,把传感器圆片与带有圆片过孔的盖帽圆片键合在一起。用于压力进口的圆片过孔是通过电感耦合等离子体蚀刻来完成。
本发明的优点是应变薄膜采用氮化硅薄膜或炭化硅薄膜,提高了杨氏模量,取消了引线键合和硅凝胶的使用,提高了传感器的可靠性与准确性,减小了芯片尺寸,节省了成本。
附图说明
图1本发明的差压压力传感器的封装截面图;
图2本发明的绝压压力传感器的封装截面图;
图3本发明的应变薄膜的布局图;
图4本发明的用于读出信号的全桥电路原理图。
10带过孔的盖帽玻璃圆片、11压力传感器圆片、12硅底座圆片、13芯片焊盘、14焊接凸点、15凸点下金属化、16入口、17应变薄膜、18金薄膜、19压力入口、20硅盖帽圆片、21压力传感器、22金层、23芯片焊盘、24金属层、25铝焊盘、26应变薄膜、27密闭真空腔体、28焊接凸点、29过孔、30不能活动的应变薄膜、31活动的应变薄膜、32活动的应变薄膜、33不能活动的应变薄膜、34中心、35膜、36焊盘、37金属丝、R固定的电阻、R(1+λp)变量电阻。
具体实施方式
下面结合附图进一步说明本发明的实施例:
实施例1:
参见图1,图1为圆片级封装差压压力传感器的横截面,包括压力传感器圆片11,硅底座圆片12,带过孔的盖帽玻璃圆片10。差压的第一个压力通过位于底座圆片12中心的压力入口19,作用在应变薄膜17上,差压的第二个压力通过位于玻璃帽子圆片11中心的入口16作用在应变薄膜17,压力传感器输出为这两个压力之差。
为了应用在高压的范围下面,这里的应变薄膜可以是氮化硅或碳化硅薄膜。氮化硅应变薄膜可以是在860度用低压化学气相沉积生长而成,为了提高可靠性,这种薄膜是“富硅”的氮化硅薄膜,生长的时候进入反应炉的SiH2Cl2∶NH3气体流量比为4∶1,用来降低薄膜的残余应力,从而提高薄膜的可靠性。如果压力传感器用于超高温的环境下面,应变薄膜也可以是用碳化硅薄膜制作。碳化硅薄膜是一种耐高温的材料,因为这种薄膜在高温下面有很好的机械鲁棒性,和稳定性的电学特性。碳化硅薄膜的的压力传感器可以在500℃度下面可靠的工作。炭化硅薄膜可以在射频感应加热反应炉里面用常压化学气相沉淀的方法制作而成。
压力传感器圆片11和底座圆片12通过金薄膜18作中间层被键合在一起。传感器圆片和盖帽玻璃圆片10通过阳极键合在一起。工艺制作中,首先溅射一层大约0.1um厚的金薄膜在传感器圆片上。溅射金层的操作是在物理气相沉积系统下完成的。然后通过光刻来制作电镀的图形。然后电镀高度约1um的金薄膜。两个圆片被清洁之后,它们在400℃的温度下被键合在一起。由于两个圆片都是硅片,热膨胀系数一样,在圆片间没有较大的热膨胀不匹配。芯片凸点下金属化15由Ti-W和Cu组成。凸点下金属化和焊接凸点14是通过电镀制作而成。传感器圆片11和底座圆片12也可以是通过直接硅-硅键合来完成。
硅熔融键合过程包括预处理过程和退火。在室温下,两个圆片进行表面抛光,以及清洗过程,就在退火过程起反应形成Si-O-Si键合。退火过程是在激光加热下完成的,圆片可以在温度范围从400℃到450℃局部性加热。依照键合力,温度范围可能不同。之后可以在更高的温度下进行热处理,消除键合面的空洞。在这里使用的玻璃圆片10是Pyrex 7740,为了获得比较好的键合效果,平整度小于5微米。在玻璃圆片和传感器圆片间套准之后,它们被放进键合机器。在抽真空时,两圆片被加热到预先设好的温度,相对于玻璃圆片为正的电压加到两个圆片上面,使它们通过阳极键合绑定在一起。键合条件如下:温度变化从200℃度到300℃度,电压是600V,接触力是200N。因为键合的温度比较低,这样先加工的CMOS电路就不至于受到高温的损害。
圆片级封装工艺做完之后,压力传感器用玻璃圆片保护起来,同时在底座圆片上加工凸点,然后封装好的传感器芯片通过倒装焊安装在印刷电路板上面。
实施例2:
参见图2,图2为绝压压力传感器封装的横截面。表面加工的微机械压力传感器21通过硅盖帽圆片20保护起来。这个传感器也是基于压阻原理的,应变薄膜多晶电阻被加工在应变薄膜26的边缘。应变薄膜是通过牺牲层技术成形的,应变薄膜材料可以是上面提及的氮化硅或碳化硅。牺牲层被蚀刻之后应变薄膜形成,一个密闭真空腔体27被制造出来。表面加工微机械压力传感器带有天然的过压保护。当很大的压力作用在应变薄膜上时,它将弯曲直到接触到腔体下面的硅片,这样,应变薄膜就不会断裂,带有过压保护功能。压力传感器圆片和硅盖帽圆片是用金层22作为中间层偶合在一起的,制作过程等同于上面。为了电信号的连接,金属层24,例如铝,喷溅在芯片焊盘23上的。焊接凸点28用同上面一样的过程制作在盖帽圆片上。在硅盖帽圆片的中心有过孔29,它是用来作为压力进气的。过孔压力入口是通过电感耦合等离子体ICP蚀刻的。ICP利用Bosch工艺,用反应气体SF6和钝化气体C4F8两者交替输入来获得很直的侧墙。圆片级封装过程之后,压力传感器能通过倒装焊圆片键合安装在印刷电路板上面。
图3为表面加工微机械压力传感器的应变薄膜结构。压力传感器本质上是半可调的全桥电路。传感器包括二个活动的应变薄膜31,32和二个不能活动的应变薄膜30,33。不能活动的假应变薄膜的牺牲层,例如磷硅酸盐玻璃PSG没有被刻蚀调。这些假应变薄膜有和活动薄膜一样版图应变薄膜,四个应变薄膜通过芯片上面的金属丝37和Al焊盘36排列为惠斯通电桥形状。膜35被固定在中心34。这样的结构是为了应用于更高的压力范围设计的,如30,000psi.。
图4是全桥电路原理图。在图表上在底层的哑巴应变薄膜装有固定的电阻R。活动的应变薄膜有电阻R(1+λp)。这里,λp是由于由于压力作用所引起的电阻变化。当一个半可调全桥电路作用激励电压Vin时,我们能获得Vout
V out = ( λ p R 2 R + λ p R ) V in = ( λ p 2 - λ p 2 4 + λ p 3 8 - . . . ) V in ≈ λ p 2 V in
虽然灵敏度是全可调全桥电路的一半,压力传感器的偏移量可以通过假应变薄膜来补偿达到几乎能被排除的效果,误差电压为mV级。

Claims (9)

1.一种微机械压力传感器及其圆片级封装方法,主要包括压力传感器、压力传感器圆片、压力传感器的应变薄膜、硅底座圆片、带过孔的盖帽玻璃圆片,其特征在于所述微机械加工的压阻压力传感器通过圆片级封装,圆片级封装采用差压封装方式或绝压封装方式。
2.根据权利要求1所述的一种微机械压力传感器及其圆片级封装方法,其特征在于所述压力传感器的应变薄膜采用氮化硅薄膜或炭化硅薄膜。
3.根据权利要求1所述的一种微机械压力传感器及其圆片级封装方法,其特征在于所述差压封装方式包括二个步骤:压力传感器圆片与硅底座圆片键合,传感器圆片与上方的玻璃盖帽圆片键合。
4.根据权利要求3所述的一种微机械压力传感器及其圆片级封装方法,其特征在于所述硅—硅圆片键合方法是用金薄膜作为键合的中间层或直接键合,硅—硅圆片键合方法采用通过激光加热器局部融合来绑定,键合时采用局部加热,相关的集成电路做在同一圆片上面。
5.根据权利要求3所述的一种微机械压力传感器及其圆片级封装方法,其特征在于所述硅—硅圆片键合方法采用熔化键合的方式,集成电路将被混合封装。
6.根据权利要求3所述的一种微机械压力传感器及其圆片级封装方法,其特征在于所述差压封装方式的键合,金薄膜作为中间层,把传感器圆片与带有圆片过孔的盖帽圆片键合在一起。
7.根据权利要求3所述的一种微机械压力传感器及其圆片级封装方法,其特征在于所述硅—玻璃圆片键合方法是通过阳极键合来绑定,使得集成电路在键合的时候免受损伤。
8.根据权利要求1所述的一种微机械压力传感器及其圆片级封装方法,其特征在于所述绝压封装的结构本身带有高压过压保护。
9.根据权利要求1所述的一种微机械压力传感器及其圆片级封装方法,其特征在于所述绝压封装方式下用于压力进口的圆片过孔是通过电感耦合等离子体蚀刻来完成。
CN 200510026035 2005-05-20 2005-05-20 微机械压力传感器及其圆片级封装方法 Pending CN1865882A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510026035 CN1865882A (zh) 2005-05-20 2005-05-20 微机械压力传感器及其圆片级封装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510026035 CN1865882A (zh) 2005-05-20 2005-05-20 微机械压力传感器及其圆片级封装方法

Publications (1)

Publication Number Publication Date
CN1865882A true CN1865882A (zh) 2006-11-22

Family

ID=37424965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510026035 Pending CN1865882A (zh) 2005-05-20 2005-05-20 微机械压力传感器及其圆片级封装方法

Country Status (1)

Country Link
CN (1) CN1865882A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156012A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems压力传感器及其制作方法
CN104236766A (zh) * 2013-06-13 2014-12-24 中国科学院上海微系统与信息技术研究所 封装应力与温漂自补偿的双悬浮式力敏传感器芯片及制备方法
CN102589753B (zh) * 2011-01-05 2016-05-04 飞思卡尔半导体公司 压力传感器及其封装方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589753B (zh) * 2011-01-05 2016-05-04 飞思卡尔半导体公司 压力传感器及其封装方法
CN102156012A (zh) * 2011-03-15 2011-08-17 迈尔森电子(天津)有限公司 Mems压力传感器及其制作方法
WO2012122875A1 (zh) * 2011-03-15 2012-09-20 迈尔森电子(天津)有限公司 Mems压力传感器及其制作方法
US9073746B2 (en) 2011-03-15 2015-07-07 Memsen Electronics Inc MEMS pressure sensor and manufacturing method therefor
CN104236766A (zh) * 2013-06-13 2014-12-24 中国科学院上海微系统与信息技术研究所 封装应力与温漂自补偿的双悬浮式力敏传感器芯片及制备方法
CN104236766B (zh) * 2013-06-13 2016-09-14 中国科学院上海微系统与信息技术研究所 封装应力与温漂自补偿的双悬浮式力敏传感器芯片及制备方法

Similar Documents

Publication Publication Date Title
US7216547B1 (en) Pressure sensor with silicon frit bonded cap
US7563634B2 (en) Method for mounting semiconductor chips, and corresponding semiconductor chip system
JP3464657B2 (ja) ダイアフラム利用センサを使用して構成される装置
US7260994B2 (en) Low cost high-pressure sensor
JP5568803B2 (ja) 高温用媒体適合電気絶縁圧力センサ
CN101248340B (zh) 压力传感器及其制造方法
US7436037B2 (en) Moisture resistant pressure sensors
US20030132493A1 (en) High-vacuum packaged microgyroscope and method for manufacturing the same
EP2189773A2 (en) Design of wet/wet differential pressure sensor based on microelectronic packaging process
US8127617B2 (en) Pressure sensor, manufacturing method thereof, and electronic component provided therewith
EP1975587A1 (en) Pressure sensor package and electronic part
US5520054A (en) Increased wall thickness for robust bond for micromachined sensor
US5932809A (en) Sensor with silicon strain gage
CN1948932A (zh) 制作压力传感器的方法
CN1865882A (zh) 微机械压力传感器及其圆片级封装方法
CN1250445C (zh) 微机电元件的晶圆级封装装置
CN207456650U (zh) 压力传感器
CN106644247A (zh) 具有复合腔体的压力传感器及其制造方法
RU2284613C1 (ru) Полупроводниковый преобразователь давления и способ его изготовления
CN114235236A (zh) 一种降低输出漂移的mems压力传感器芯片的制作方法
Alfaro et al. Harsh environment piezoresistive pressure sensors
JPH07128365A (ja) 半導体加速度センサとその製造方法
JP2001284603A (ja) 半導体圧力センサの製造方法
Kurtz et al. High accuracy piezoresistive internal combustion engine transducers
JPH0727641A (ja) 半導体センサチップ及びその製造方法並びに半導体圧力センサ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20061122