CN1845138A - 战场物资低风险运输的快速指挥控制方法 - Google Patents
战场物资低风险运输的快速指挥控制方法 Download PDFInfo
- Publication number
- CN1845138A CN1845138A CNA2006100402414A CN200610040241A CN1845138A CN 1845138 A CN1845138 A CN 1845138A CN A2006100402414 A CNA2006100402414 A CN A2006100402414A CN 200610040241 A CN200610040241 A CN 200610040241A CN 1845138 A CN1845138 A CN 1845138A
- Authority
- CN
- China
- Prior art keywords
- goods
- materials
- risk
- demand
- transportation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 182
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000004364 calculation method Methods 0.000 claims abstract 3
- 230000032258 transport Effects 0.000 claims description 69
- 230000009977 dual effect Effects 0.000 claims description 20
- 241000531116 Blitum bonus-henricus Species 0.000 claims description 12
- 235000008645 Chenopodium bonus henricus Nutrition 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 230000037361 pathway Effects 0.000 claims description 4
- 230000037452 priming Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 235000013399 edible fruits Nutrition 0.000 claims description 2
- 238000007726 management method Methods 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract 3
- 239000012141 concentrate Substances 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及战场物资低风险运输的快速指挥控制方法,涉及军事及相关领域,指挥控制的对象为所有战场物资,该方法根据在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量,构造以运送所有物资风险最小为目标且具有低计算复杂性和高可解性的指挥控制模型,并用线性规划、线性规划的对偶规划方法来求解该模型,再通过二维表格对求解结果进行不断改进,直至最终获得符合战场物资低风险运输要求的指挥控制方案,该方法具有应用广泛和明显提高战斗力等特点,可广泛用于所有战场物资低风险运输的快速指挥控制,本发明进一步涉及实现这种方法的技术。
Description
技术领域 本发明涉及国防及相关领域,用于对战场物资低风险运输实施快速指挥控制,实现对战场物资的低风险运输。
背景技术 在战场的供求双方之间实施低风险物资运输的指挥控制是作战指挥控制的一个重要组成部分,该方法根据在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量,制订一个以实现供求双方运送所有物资遭遇风险最小为目标且具有低计算复杂性和高可解性的运输指挥控制计划是战场指挥员对战场物资低风险运输实施快速指挥控制必须解决的关键问题,这个问题的解决对于大幅度提高战斗力,减少战场物资运输的风险,具有十分重要的意义。
机动作战能力对于夺取信息化战争的胜利至关重要,复杂的战场环境可能对物资运输的遭遇风险造成影响,从而降低运输物资的安全性,例如作战师或旅与下级之间低风险物资运输的指挥控制是提高机动作战能力的关键,其中必须解决的首要问题是制定科学的物资运输的指挥控制计划。这种计划的好坏,不仅关系到实施战场物资运输所面临的风险和消耗资源的多少,而且还关系到一些关键的作战物资如弹药、燃油等能否及时运送到机械化作战部队,以保证战斗力不至于因物资运送的延误而下降。
对于战场物资的低风险运输和该运输的指挥控制来说时间显得更加重要,因此必须通过减少指挥控制模型的约束条件、通过对偶分析合理选择参数提高可解性并以运输风险最小作为优化目标来对战场物资低风险运输实施快速指挥控制。
本发明涉及战场物资低风险运输的快速指挥控制方法,涉及军事及相关领域,指挥控制的对象为所有战场物资,该方法根据在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量,构造以运送所有物资风险最小为目标且具有低计算复杂性和高可解性的指挥控制模型,并用线性规划、线性规划的对偶规划方法来求解该模型,再通过二维表格对求解结果进行不断改进,直至最终获得符合战场物资低风险运输要求的指挥控制方案,该方法具有高效、简单、客观、应用广泛和明显提高战斗力等特点,可广泛用于所有战场物资低风险运输的快速指挥控制,本发明进一步涉及实现这种方法的技术。
发明内容 本发明根据在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量,构造以运送所有物资风险最小为目标且具有低计算复杂性和高可解性的指挥控制模型,并用线性规划、线性规划的对偶规划方法来求解该模型,获得用二维表格描述的对战场物资低风险运输实施指挥控制的方案,并检查该指挥控制方案是否符合完成整个战场物资运输任务的风险需求,如果不满足要求,则通过对该二维指挥控制表格的分析,并根据影子价格、风险瓶颈对相关供应方库存物资量和运输工具等进行调整,不断重复这一求解-检查分析过程,直至最终获得符合战场物资低风险运输要求的指挥控制方案。因此,提出战场物资低风险运输的快速指挥控制的构想,引入运输遭遇风险概率的分析方法,建立寻找最优指挥控制方案的线性规划和对偶规划模型,通过减少约束条件来快速求解该模型,获得用二维表格描述的对战场物资低风险运输实施指挥控制的方案,并根据完成整个物资运输的风险要求,通过查找影响完成整个战场物资运输任务的风险瓶颈、供应方库存物资量的不合理配置和对运输工具进行调整,来不断优化和改进该指挥控制方案,并最终获得满足战场物资低风险运输要求、用二维表格描述的指挥控制方案成为本发明的重要特征。
本发明战场物资低风险运输的快速指挥控制方法的技术方案是:
首先,将战场物资低风险运输问题定义为由物资的供应方和物资的需求方所构成的供求系统,该系统的特征可以用在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量来描述,并根据对战场物资进行运输的风险要求,构造以运送所有物资风险最小为目标且具有低计算复杂性和高可解性的指挥控制模型,并用线性规划、线性规划的对偶规划方法来求解该模型,获得用二维表格描述的对战场物资低风险运输实施指挥控制的方案,通过不断寻找供求系统的风险瓶颈,对相关的供应方的物资库存量进行合理配置,采用不同运输工具等方法,最终获得满足战场物资低风险运输要求、对战场物资运输实施指挥控制的方案,完成对战场物资低风险运输的指挥控制。
对战场物资低风险运输的快速指挥控制,必须使求解指挥控制模型的线性规划及对偶规划的计算复杂性及所需要的计算时间不应对指挥控制决策的实时性产生影响,因此减少不必要的约束条件是提高指挥控制决策实时性的重要措施,为了降低指挥控制模型的计算复杂性和提高指挥控制模型的可解性,规定与需求方有关的约束条件为等于需求方需求量的约束条件、与供应方有关的约束条件为不大于供应方最大供应量的约束条件。
复杂的战场环境可能对物资运输路径的通行风险造成影响,风险可以使物资在从供应方向需求方的运输过程中遭到损坏,从而降低运输物资的安全性,对于以运送物资风险最小为目标的指挥控制来说,这种降低相当于增加了物资运输的风险,运输遭遇风险概率可以是以时间作为变量的函数,也可以是与时间无关的常数,不同路径的运输遭遇风险概率可以不同。
通过求解线性规划和求解线性规划的对偶规划的方法来求解指挥控制模型,可以分别获得从不同供应方运输物资到不同需求方的最小运输遭遇风险概率的运输路径、与不同供应方和不同需求方约束条件有关的影子价格,再将求解的结果填入一种二维指挥控制表格中,根据对该二维指挥控制表格的分析,并通过影子价格、风险瓶颈对相关参数进行调整,不断求解不断改进,直至最终获得符合战场物资低风险运输要求的指挥控制方案。
可以通过二维指挥控制表格中的不同区域来描述从每个供应方到每个需求方运输物资的数量、每个需求方需要运力的大小、运输风险、运输工具的数量和相关的影子价格,每个供应方供应物资的数量、剩余物资的变化情况和相关的影子价格以及运送所有物资的最低风险。
如果求得的指挥控制方案不能满足预定的风险要求,则可以通过二维指挥控制表,对原线性规划以及对偶规划的结果进行分析,来确定影响战场物资运输的风险瓶颈,再通过对供应方的库存物资进行合理配置、增加运输工具的数量以及采用不同的运输工具等手段,来消除风险瓶颈,并重复这一过程,直至完成战场物资运输的风险符合预定的要求。
本发明设计的战场物资低风险运输的快速指挥控制方法适用于所有战场物资低风险运输是本发明的重要特征。
战场物资低风险运输的快速指挥控制的问题分析如下。
假定战场物资的运输问题可以用由m个供应物资结点和n个需求物资结点、并且在不同的供求结点之间存在一条运输物资的路径的网络来描述,从供应结点i向需求结点j运送的物资数量为xij,运输遭遇风险概率为pij(t),运输遭遇风险概率是指复杂的战场环境可能对物资运输路径的通行风险造成影响,风险可以使物资在从供应方向需求方的运输过程中遭到损坏,从而降低运输物资的安全性,对于以运送物资风险最小为目标的指挥控制来说,这种降低相当于增加了物资运输的风险,运输遭遇风险概率可以是以时间作为变量的函数,也可以是与时间无关的常数,表示为pij,不同路径的运输遭遇风险概率可以不同。
需要解决的问题是设计一个从m个供应结点运送物资到n个需求结点,同时使运送所有物资风险最小的运输计划,并且计算出每个供应结点运送物资所需要运输工具的数量,相关的战场物资运输指挥控制模型及线性规划方程如下:
目标函数:
需求量约束条件:
供应量约束条件:
非负约束条件:xij≥0,(i=1,…,m;j=1,…,n)
供应结点i(i=1,…m)需要的运输工具数量V1:
与第j个需求结点有关的最大运输遭遇风险概率:
完成所有战场物资运输遭遇的风险概率:min P=max{pj},j(j=1,…n)
与第j个需求结点有关的风险运载量:
战场物资运输的总风险运载量:
其中:
m为供应物资的结点总数;
n为需求物资的结点总数;
Pop为指挥控制模型获最优解时由相关路径的pij组成的集合;
minZ为指挥控制模型获最优解时目标函数的值,称为风险运载量,该值越小越好;
pij为供应结点i(i=1,…m)与需求结点j(j=1,…n)之间的运输遭遇风险概率,可以是以时间t作为变量的函数;
Vi为供应物资的结点i(i=1,…m)运送物资需要的运输工具数量;
L为每个运输工具运送物资的能力(单位:吨);
Si为供应结点i(i=1,…m)所能供应物资的数量(单位:吨);
Dj为需求结点j(j=1,…n)需要物资的数量(单位:吨);
上述模型表明:目标函数相当于求加权概率的和,在通过线性规划求得风险运载量minZ值的基础上,可以计算出每个供应结点必须向相关需求结点运送的物资数量xij,相关路径的pij,再根据运输工具的载重量L,即可计算出每个供应结点需要的运输工具数量Vi,最后又可计算出每个需求结点的风险运载量minZj、最大运输遭遇风险概率pj,完成所有战场物资运输遭遇的风险概率minP,从而实现对战场物资低风险运输的指挥控制,为了合理设置约束条件、提高可解性、更好地利用上述线性规划模型,给出该模型的对偶线性规划模型如下:
目标函数:
约束条件:Djyj+Siyn+i≤pij,(i=1,…,m;j=1,…,n)
非负约束条件:yj,yn+1≥0,(i=1,…,m;j=1,…,n)
其中:yj,yn+1分别为与原线性规划的需求和供应物资约束条件的影子价格或机会成本有关的决策变量。
由于原始线性规划解决的是与需求结点j和供应结点i(i=1,…,m;j=1,…,n)的约束条件有关的资源最优利用问题,所以对偶规划解决的则是估计使需求结点j和供应结点i(i=1,…,m;j=1,…,n)的约束条件满足必须付出的代价问题,即用价问题,而影子价格yj和yn+i反映的正是使需求结点j和供应结点i(i=1,…,m;j=1,…,n)的约束条件满足必须付出的成本,通过使与成本有关的目标函数值最小化(或最大化),影子价格可以用于比较各个约束条件对目标函数值的贡献或对这种贡献影响进行等价分析,影子价格越大,表明该约束条件对指挥控制方案的最低风险运载力的影响越大,但满足该条件也就越困难,因此,引入影子价格就可以通过比较影子价格与实际目标函数值,来研究原线性规划约束条件的变化能否使目标函数获得增益。
具体实施方式
实施举例
在信息化战争中,机械化作战师的战场运输能力是其战斗力的一个重要组成部分,对庞大的战场物资低风险运送能力的需求,使得实施战场物资低风险运送的指挥控制成为至关重要的任务,假定某机械化作战师必须用载重量为16吨、平均时速为70公里的卡车,从5个供应点向14个需求点运送指定量的作战物资,供求点之间运输遭遇风险概率和供求量如表1所示,
表1:机械化作战师供求点之间运输遭遇风险概率、供求量(单位:概率、吨)
01供应点 | 02供应点 | 03供应点 | 04供应点 | 05供应点 | 需求数量 | |
01需求点02需求点 | 0.0370.034 | 0.0130.025 | 0.0700.083 | 0.0740.087 | 0.0440.031 | 36.0021.00 |
03需求点04需求点05需求点06需求点07需求点08需求点09需求点10需求点11需求点12需求点13需求点14需求点 | 0.0250.0140.0260.0240.1200.1590.1120.0620.0910.1260.0900.081 | 0.0280.0150.0350.0200.0980.1380.0960.0370.0660.0970.0680.056 | 0.1080.0970.0820.1100.0120.0510.0960.0460.0170.0810.0990.020 | 0.1120.1010.0860.1000.1290.1490.0250.0500.0790.0860.1040.066 | 0.0660.0580.0560.0390.1050.1450.1100.0590.0730.0270.0110.075 | 90.00130.0070.0040.0060.0016.0029.0036.0090.0022.0018.0024.00 |
可供数量 | 250.00 | 200.00 | 300.00 | 400.00 | 150.00 |
根据上述线性规划及指挥控制模型和相关的对偶线性规划模型,通过单纯形算法计算出机械化作战师最小风险运输指挥控制方案如表2所示,其中吨风险为需求结点的风险运载量min Zj、风险概率为需求结点的最大运输遭遇风险概率pj。
表2:机械化作战师最小风险运输指挥控制方案(单位:吨、吨风险、概率、辆)
01供应点 | 02供应点 | 03供应点 | 04供应点 | 05供应点 | 吨风险 | 风险概率 | 卡车 | 影子价格 | |
01需求点02需求点03需求点04需求点05需求点06需求点07需求点08需求点09需求点10需求点11需求点12需求点13需求点14需求点 | 90.0090.0070.00 | 36.0021.0040.0040.0036.00 | 60.0016.0090.0024.00 | 29.00 | 22.0018.00 | 0.4680.5252.2501.8601.8200.8000.7200.8160.7251.3321.5300.5940.1980.480 | 0.0130.0250.0250.0150.0260.0200.0120.0510.0250.0370.0170.0270.0110.020 | 32695341236222 | 0.0012.0013.002.0014.007.000.0039.000.0024.005.0016.000.008.00 |
合计 | 250.00 | 173.00 | 190.00 | 29.00 | 40.00 | 14.118 | 0.051 | 50 | |
可供数量 | 250.00 | 200.00 | 300.00 | 400.00 | 150.00 | ||||
供后余量 | 0.00 | 27.00 | 110.00 | 371.00 | 110.00 | ||||
影子价格 | 12.00 | 13.00 | 12.00 | 25.00 | 11.00 |
*完成运输任务的风险概率为0.051
通过对指挥控制方案(表2)分析可知,完成运输任务需要的卡车总数为50辆、风险概率为0.051,01~05供应点需要的卡车分别是17、14、13、2和4辆,因此必须对01、02和03供应点实施重点保护,进一步分析可知,从03供应点向08需求点运送16吨物资的风险概率0.051是降低完成所有战场物资运输遭遇风险概率的瓶颈,如果用更低风险的直升机来完成这部分物资的运输,则可将风险概率降低为0.037,减少量为27.45%,又如果采用同样的方法消除0.037的瓶颈,则可将风险概率降低为0.027,减少量为47.06%,几乎仅为原有风险概率的一半,
从对需求量约束条件Dj(j=1,…,14)影子价格的分析可知,价格的大小真实反映了相关约束条件满足的难易程度,影子价格为0是指在特定的取值范围内,相关的约束条件对目标函数值不构成影响,最易满足,又例如,为了满足约束条件D8,向08需求点运送物资的风险为0.051,该约束条件的影子价格为最大值39,说明该条件最难满足,用类似的方法可以按Dj满足的难易程度,从难到易排序:D8,D10,D12,D5,……,从对供应量约束条件Si(i=1,…,5)影子价格的分析可知,Si满足的难易程度,从难到易排序:S4,S2,S1,S3,S5,即约束条件S4最难满足。
此外,从完成任务后每个供应点的库存量可以看出,01供应点和02供应点的库存明显偏低,特别是01供应点库存物资已全部用完,这一事实说明:如果01供应点有更多的物资,再加上S1约束条件较易满足,就可能获得更好的运输计划,因此,还可以用上述方法对每个供应点的物资进行合理的配置,实现库存量的最优管理。
Claims (9)
1、本发明涉及战场物资低风险运输的快速指挥控制方法,涉及军事及相关领域,指挥控制的对象为所有战场物资,该方法根据在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量,构造以运送所有物资风险最小为目标且具有低计算复杂性和高可解性的指挥控制模型,并用线性规划、线性规划的对偶规划方法来求解该模型,再通过二维表格对求解结果进行不断改进,直至最终获得符合战场物资低风险运输要求的指挥控制方案,该方案适用于所有战场物资低风险运输的指挥控制。
2、根据权利要求1所述的战场物资低风险运输的快速指挥控制方法,其特征在于所述指挥控制的对象为所有战场物资是指将所有战场物资作为指挥控制的对象,所述指挥控制是指根据战场对物资的实际需求,设计将战场物资从不同的供应方运输到不同的需求方,并且使所有运输遭遇风险的加权概率为最小的、可供实施的方案。
3、根据权利要求1所述的战场物资低风险运输的快速指挥控制方法,其特征在于所述该方法根据在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量是指通过这些参数可以建立一个战场物资运输的供求系统,在此基础上获得对战场物资运输实施指挥控制的方法。
4、根据权利要求1所述的战场物资低风险运输的快速指挥控制方法,其特征在于所述运输遭遇风险概率是指复杂的战场环境可能对物资运输路径的通行风险造成影响,风险可以使物资在从供应方向需求方的运输过程中遭到损坏,从而降低运输物资的安全性,对于以运送物资风险最小为目标的指挥控制来说,这种降低相当于增加了物资运输的风险,运输遭遇风险概率可以是以时间作为变量的函数,也可以是与时间无关的常数,不同路径的运输遭遇风险概率可以不同。
5、根据权利要求1所述的战场物资低风险运输的快速指挥控制方法,其特征在于所述构造以运送所有物资风险最小为目标且具有低计算复杂性和高可解性的指挥控制模型是指为了降低该指挥控制模型的计算复杂性和提高该指挥控制模型的可解性,规定与需求方有关的约束条件为等于需求方需求量的约束条件、与供应方有关的约束条件为不大于供应方最大供应量的约束条件。
6、根据权利要求1所述的战场物资低风险运输的快速指挥控制方法,其特征在于所述并用线性规划、线性规划的对偶规划方法来求解该模型,再通过二维表格对求解结果进行不断改进,直至最终获得符合战场物资低风险运输要求的指挥控制方案是指通过求解线性规划和求解线性规划的对偶规划的方法来求解指挥控制模型,可以分别获得从不同供应方运输物资到不同需求方的最小运输遭遇风险概率的运输路径、与不同供应方和不同需求方约束条件有关的影子价格,再将求解的结果填入一种二维指挥控制表格中,根据对该二维指挥控制表格的分析,并通过影子价格、风险瓶颈对相关参数进行调整,不断求解不断改进,直至最终获得符合战场物资低风险运输要求的指挥控制方案。
7、根据权利要求1所述的战场物资低风险运输的快速指挥控制方法,其特征在于所述并用线性规划、线性规划的对偶规划方法来求解该模型,再通过二维表格对求解结果进行不断改进,直至最终获得符合战场物资低风险运输要求的指挥控制方案是指可通过作为指挥控制方案的二维表格中的不同区域来描述从每个供应方到每个需求方运输物资的数量、每个需求方需要运力的大小、运输风险、运输工具的数量和相关的影子价格,每个供应方供应物资的数量、剩余物资的变化情况和相关的影子价格以及运送所有物资的最低风险。
8、根据权利要求1所述的战场物资低风险运输的快速指挥控制方法,其特征在于所述该方法根据在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量,构造以运送所有物资风险最小为目标且具有低计算复杂性和高可解性的指挥控制模型,并用线性规划、线性规划的对偶规划方法来求解该模型是指下述对战场物资低风险运输的快速指挥控制的问题分析,但下述的数学公式、推导过程、计算结果以及应用方法适用于对所有战场物资低风险运输的快速指挥控制,
假定战场物资的运输问题可以用由m个供应物资结点和n个需求物资结点、并且在不同的供求结点之间存在一条运输物资的路径的网络来描述,从供应结点i向需求结点j运送的物资数量为xij,运输遭遇风险概率为pij(t),运输遭遇风险概率是指复杂的战场环境可能对物资运输路径的通行风险造成影响,风险可以使物资在从供应方向需求方的运输过程中遭到损坏,从而降低运输物资的安全性,对于以运送物资风险最小为目标的指挥控制来说,这种降低相当于增加了物资运输的风险,运输遭遇风险概率可以是以时间作为变量的函数,也可以是与时间无关的常数,表示为pij,不同路径的运输遭遇风险概率可以不同,
需要解决的问题是设计一个从m个供应结点运送物资到n个需求结点,同时使运送所有物资风险最小的运输计划,并且计算出每个供应结点运送物资所需要运输工具的数量,相关的战场物资运输指挥控制模型及线性规划方程如下:
目标函数:
需求量约束条件:
(j=1,…,n)
供应量约束条件:
(i=1,…,m)
非负约束条件:xij≥0,(i=1,…,m;j=1,…,n)
供应结点i(i=1,…m)需要的运输工具数量Vi:
与第j个需求结点有关的最大运输遭遇风险概率:
j(j=1,…n)
完成所有战场物资运输遭遇的风险概率:min P=max{pj},j(j=1,…n)
与第j个需求结点有关的风险运载量:
j(j=1,…n)
战场物资运输的总风险运载量:
其中:
m为供应物资的结点总数;
n为需求物资的结点总数;
Pop为指挥控制模型获最优解时由相关路径的pij组成的集合;
minZ为指挥控制模型获最优解时目标函数的值,称为风险运载量,该值越小越好;
pij为供应结点i(i=1,…m)与需求结点j(j=1,…n)之间的运输遭遇风险概率,可以是以时间t作为变量的函数;
Vi为供应物资的结点i(i=1,…m)运送物资需要的运输工具数量;
L为每个运输工具运送物资的能力(单位:吨);
Si为供应结点i(i=1,…m)所能供应物资的数量(单位:吨);
Dj为需求结点j(j=1,…n)需要物资的数量(单位:吨);
上述模型表明:目标函数相当于求加权概率的和,在通过线性规划求得风险运载量minZ值的基础上,可以计算出每个供应结点必须向相关需求结点运送的物资数量xij,相关路径的pij,再根据运输工具的载重量L,即可计算出每个供应结点需要的运输工具数量Vi,最后又可计算出每个需求结点的风险运载量min Zj、最大运输遭遇风险概率pj,完成所有战场物资运输遭遇的风险概率min P,从而实现对战场物资低风险运输的指挥控制,为了合理设置约束条件、提高可解性、更好地利用上述线性规划模型,给出该模型的对偶线性规划模型如下:
目标函数:
约束条件:Djyj+Siyn+i≤pij,(i=1,…,m;j=1,…,n)
非负约束条件:yj,yn+i≥0,(i=1,…,m;j=1,…,n)
其中:yj,yn+i,分别为与原线性规划的需求和供应物资约束条件的影子价格或机会成本有关的决策变量,
由于原始线性规划解决的是与需求结点j和供应结点i(i=1,…,m;j=1,…,n)的约束条件有关的资源最优利用问题,所以对偶规划解决的则是估计使需求结点j和供应结点i(i=1,…,m;j=1,…,n)的约束条件满足必须付出的代价问题,即用价问题,而影子价格yj和yn+i反映的正是使需求结点j和供应结点i(i=1,…,m;j=1,…,n)的约束条件满足必须付出的成本,通过使与成本有关的目标函数值最小化(或最大化),影子价格可以用于比较各个约束条件对目标函数值的贡献或对这种贡献影响进行等价分析,影子价格越大,表明该约束条件对指挥控制方案的最低风险运载力的影响越大,但满足该条件也就越困难,因此,引入影子价格就可以通过比较影子价格与实际目标函数值,来研究原线性规划约束条件的变化能否使目标函数获得增益。
9、根据权利要求1所述的战场物资低风险运输的快速指挥控制方法,其特征在于所述该方法根据在从不同供应方到不同需求方物资运输路径上的运输遭遇风险概率、供应方物资的供应量和需求方物资的需求量、运输工具的运载量,构造以运送所有物资风险最小为目标且具有低计算复杂性和高可解性的指挥控制模型,并用线性规划、线性规划的对偶规划方法来求解该模型,再通过二维表格对求解结果进行不断改进,直至最终获得符合战场物资低风险运输要求的指挥控制方案是指如果求得的指挥控制方案不能满足预定的风险要求,则可以通过二维指挥控制表,对原线性规划以及对偶规划的结果进行分析,来确定影响战场物资运输的风险瓶颈,再通过对供应方的库存物资进行合理配置、增加运输工具的数量以及采用不同的运输工具等手段,来消除风险瓶颈,并重复这一过程,直至完成战场物资运输的风险符合预定的要求,这一过程可用下述实例来描述,但在实例中所描述的数学公式、计算结果、各种表格以及应用方法适用于对所有战场物资低风险运输的快速指挥控制,
假定某机械化作战师必须用载重量为16吨、平均时速为70公里的卡车,从5个供应点向14个需求点运送指定量的作战物资,供求点之间运输遭遇风险概率和供求量如表1所示,
表1:机械化作战师供求点之间运输遭遇风险概率、供求量(单位:概率、吨)
01供应点
02供应点
03供应点
04供应点
05供应点
需求数量
01需求点02需求点03需求点04需求点05需求点06需求点07需求点08需求点09需求点10需求点11需求点12需求点13需求点14需求点
0.0370.0340.0250.0140.0260.0240.1200.1590.1120.0620.0910.1260.0900.081
0.0130.0250.0280.0150.0350.0200.0980.1380.0960.0370.0660.0970.0680.056
0.0700.0830.1080.0970.0820.1100.0120.0510.0960.0460.0170.0810.0990.020
0.0740.0870.1120.1010.0860.1000.1290.1490.0250.0500.0790.0860.1040.066
0.0440.0310.0660.0580.0560.0390.1050.1450.1100.0590.0730.0270.0110.075
36.0021.0090.00130.0070.0040.0060.0016.0029.0036.0090.0022.0018.0024.00
可供数量
250.00
200.00
300.00
400.00
150.00
根据上述线性规划及指挥控制模型和相关的对偶线性规划模型,通过单纯形算法计算出机械化作战师最小风险运输指挥控制方案如表2所示,其中吨风险为需求结点的风险运载量min Zj、风险概率为需求结点的最大运输遭遇风险概率pj,
表2:机械化作战师最小风险运输指挥控制方案(单位:吨、吨风险、概率、辆)
01供应点
02供应点
03供应点
04供应点
05供应点
吨风险
风险概率
卡车
影子价格
01需求点02需求点03需求点04需求点05需求点06需求点07需求点08需求点09需求点10需求点11需求点12需求点13需求点14需求点 90.0090.0070.00
36.0021.0040.0040.0036.00 60.0016.0090.0024.00 29.00 22.0018.00
0.4680.5252.2501.8601.8200.8000.7200.8160.7251.3321.5300.5940.1980.480
0.0130.0250.0250.0150.0260.0200.0120.0510.0250.0370.0170.0270.0110.020
32695341236222
0.0012.0013.002.0014.007.000.0039.000.0024.005.0016.000.008.00
合计
250.00
173.00
190.00
29.00
40.00
14.118
0.051*
50
可供数量
250.00
200.00
300.00
400.00
150.00
供后余量
0.00
27.00
110.00
371.00
110.00
影子价格
12.00
13.00
12.00
25.00
11.00
*完成运输任务的风险概率为0.051
通过对指挥控制方案(表2)分析可知,完成运输任务需要的卡车总数为50辆、风险概率为0.051分钟,01~05供应点需要的卡车分别是17、14、13、2和4辆,因此必须对01、02和03供应点实施重点保护,进一步分析可知,从03供应点向08需求点运送16吨物资的风险概率0.051是降低完成所有战场物资运输遭遇风险概率的瓶颈,如果用更低风险的直升机来完成这部分物资的运输,则可将风险概率降低为0.037,减少量为27.45%,又如果采用同样的方法消除0.037的瓶颈,则可将风险概率降低为0.027,减少量为47.06%,几乎仅为原有风险概率的一半,
从对需求量约束条件Dj(j=1,…,14)影子价格的分析可知,价格的大小真实反映了相关约束条件满足的难易程度,影子价格为0是指在特定的取值范围内,相关的约束条件对目标函数值不构成影响,最易满足,又例如,为了满足约束条件D8,向08需求点运送物资的风险为0.051,该约束条件的影子价格为最大值39,说明该条件最难满足,用类似的方法可以按Dj满足的难易程度,从难到易排序:D8,D10,D12,D5,……,从对供应量约束条件Si(i=1,…,5)影子价格的分析可知,Si满足的难易程度,从难到易排序:S4,S2,S1,S3,S5,即约束条件S4最难满足,
此外,从完成任务后每个供应点的库存量可以看出,01供应点和02供应点的库存明显偏低,特别是01供应点库存物资已全部用完,这一事实说明:如果01供应点有更多的物资,再加上S1约束条件较易满足,就可能获得更好的运输计划,因此,还可以用上述方法对每个供应点的物资进行合理的配置,实现库存量的最优管理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100402414A CN1845138A (zh) | 2006-05-12 | 2006-05-12 | 战场物资低风险运输的快速指挥控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2006100402414A CN1845138A (zh) | 2006-05-12 | 2006-05-12 | 战场物资低风险运输的快速指挥控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1845138A true CN1845138A (zh) | 2006-10-11 |
Family
ID=37064066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006100402414A Pending CN1845138A (zh) | 2006-05-12 | 2006-05-12 | 战场物资低风险运输的快速指挥控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1845138A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114219341A (zh) * | 2021-12-22 | 2022-03-22 | 中国人民解放军陆军装甲兵学院 | 一种物资供应模型构建方法 |
-
2006
- 2006-05-12 CN CNA2006100402414A patent/CN1845138A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114219341A (zh) * | 2021-12-22 | 2022-03-22 | 中国人民解放军陆军装甲兵学院 | 一种物资供应模型构建方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mao et al. | Design of intelligent warehouse management system | |
CN107368991A (zh) | 一种基于α‑可靠度平均超出后悔值的应急物流选址‑路径安排方法 | |
CN1845138A (zh) | 战场物资低风险运输的快速指挥控制方法 | |
Andrejszki et al. | ForFITS: a new help in transport decision making for a sustainable future | |
CN1845154A (zh) | 战场机械化步兵低风险部署的快速指挥控制方法 | |
CN1848161A (zh) | 一种战场物资快速运输的指挥控制方法 | |
CN1845139A (zh) | 战场物资低风险运输的指挥控制方法 | |
CN1845140A (zh) | 战场物资快速低风险运输的快速指挥控制方法 | |
CN1845153A (zh) | 一种战场物资快速运输的快速指挥控制方法 | |
CN1848148A (zh) | 战场导弹火力快速高命中率分配的快速指挥控制方法 | |
CN1845141A (zh) | 战场物资快速低风险运输的指挥控制方法 | |
CN1848150A (zh) | 战场导弹火力高命中率分配的快速指挥控制方法 | |
He et al. | An operation planning generation and optimization method for the new intelligent combat SoS | |
CN1845159A (zh) | 战场机械化步兵快速低风险部署的快速指挥控制方法 | |
CN1848151A (zh) | 战场作战飞机快速低风险部署的快速指挥控制方法 | |
CN1845149A (zh) | 战场伤员低风险转运的快速指挥控制方法 | |
CN1845145A (zh) | 战场作战飞机低风险部署的快速指挥控制方法 | |
CN1845155A (zh) | 一种战场机械化步兵快速部署的快速指挥控制方法 | |
CN1845147A (zh) | 一种战场伤员快速转运的快速指挥控制方法 | |
CN1845157A (zh) | 战场机械化步兵低风险部署的指挥控制方法 | |
CN1845152A (zh) | 战场伤员快速低风险转运的快速指挥控制方法 | |
CN1848159A (zh) | 战场导弹火力高命中率分配的指挥控制方法 | |
Liu | Design of dynamic programming model for multi-objective cold chain logistics deployment path based on meme algorithm | |
CN1848157A (zh) | 一种战场导弹火力快速分配的快速指挥控制方法 | |
CN1845144A (zh) | 战场作战飞机低风险部署的指挥控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20061011 |